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Abstract

Co-clustering is a widely used technique for analyzing complex and high-
dimensional data across various domains. However, traditional models focus on
continuous and dense data in fixed time frames, where cluster assignments remain
static. Also, they often require all data to be in memory, posing issues for large
datasets. The proposed online co-clustering model addresses this by processing
data incrementally. We introduce a novel inference process for the latent block
model to handle online co-clustering of sparse data matrices. This model assumes
observations follow a time and block dependent mixture of zero-inflated distribu-
tions, combining stochastic processes with time-varying sparsity modeling. We
use Bayesian online change point detection to detect abrupt changes in cluster
memberships and data sparsity. The inference process employs a unique varia-
tional procedure, with the maximization step training an LSTM neural network to
solve the dynamical systems. Numerical experiments on simulated datasets show
the effectiveness of our methodology for count data streams. Applied to a large-
scale dataset from the Regional Center of Pharmacovigilance of Nice (France),
the model provides meaningful online segmentation of drugs and adverse drug
reactions.
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1. Introduction
The need for unsupervised machine learning techniques, like clustering, is growing, par-
ticularly in pharmacovigilance, where detecting drug-associated adverse events is crit-
ical for ensuring drug safety. Current methods heavily rely on manual analysis, which
can be incomplete due to the sheer volume of data. Automated clustering methods can
effectively summarize data to detect safety signals over time, freeing pharmacovigilance
experts to focus on critical tasks. Beyond pharmacovigilance, clustering methods are
vital in social media, e-commerce, and biomedical data due to their ability to handle
high-dimensional, sparse datasets. Co-clustering, which clusters both observations and
features simultaneously, is especially useful for summarizing complex data structures.
In dynamic environments like pharmacovigilance, where data patterns evolve over time
due to new drugs or changing drug effects, dynamic co-clustering methods are essential.
Online change point detection algorithms can identify shifts in data patterns, trigger-
ing timely investigations. This paper proposes an online model-based co-clustering
approach for real-time safety signal detection from adverse drug reaction notifications.
By analyzing count data over time, our method identifies temporal breaks in safety
signals, facilitating alerts and further investigations by medical authorities. The aim is
to demonstrate the method’s potential as a routine tool in pharmacovigilance.

1.1. Related work
This section summarizes the related work in dynamic co-clustering and change point
detection.

Co-clustering and Latent Block Models. Co-clustering is a versatile method for
analyzing datasets by simultaneously clustering both observations and features. Various
co-clustering approaches exist, categorized into metric-based methods like non-negative
matrix tri-factorization (NMTF) (Labiod and Nadif 2011; Ding et al. 2006), spectral
co-clustering (Dhillon 2001), information theory (Dhillon et al. 2003), and model-based
approaches (e.g., Bouveyron et al. 2019). Model-based co-clustering, in particular,
is valued for its robust statistical foundations and adaptability to diverse data types
and levels of sparsity. The latent block model (LBM) (Govaert and Nadif 2003) is
foundational in model-based co-clustering, initially designed for binary data matrices.
LBM assumes rows and columns are grouped into hidden clusters, with observations
within a block (intersection of a row cluster and a column cluster) being indepen-
dent and identically distributed. Over the last two decades, LBM has been extended
to accommodate count data (Govaert and Nadif 2010), continuous data (Lomet 2012),
categorical data (Keribin et al. 2015), ordinal data (Jacques and Biernacki 2018; Corneli
et al. 2020), functional data (Bouveyron et al. 2018), textual data (Bergé et al. 2019),
and mixed-type data (Selosse et al. 2020). For a comprehensive overview, Biernacki
et al. (2023) provide a detailed survey of LBM and its applications. Recently, Boutalbi
et al. (2020) introduced the tensor latent block model (TLBM), which co-clusters rows
and columns of a 3D matrix where covariates represent the third dimension. TLBM
is implemented across various datasets including continuous (Gaussian TLBM), binary
(Bernoulli TLBM), and contingency tables (Poisson TLBM), demonstrating its versa-
tility and applicability.
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Dynamic models for clustering and co-clustering. Dynamic clustering models
have gained attention in recent years, particularly in extending static model-based tech-
niques to handle temporal data. While static model-based clustering and co-clustering
have been extensively studied, dynamic models represent a more recent development.
Notably, more work has been done in dynamic network clustering, particularly with
the Stochastic Block Model (SBM) (Nowicki and Snijders 2001), which is a special
case of the latent block model (LBM) adapted for non-square and non-symmetric data
matrices. Yang et al. (2011) introduced a dynamic version of SBM where nodes can
switch clusters over time in a Markovian framework, using transition probabilities col-
lected into a transition matrix. Matias and Miele (2017) demonstrated that in dynamic
SBMs, varying both connectivity parameters and cluster memberships over time can
lead to identifiability issues. Recently, Marchello et al. (2022) proposed extensions of
LBM for dynamic co-clustering, including a model for three-dimensional counting ten-
sors that clusters rows, columns, and slices simultaneously. Their subsequent work,
Zip-dLBM, allows observations and features to switch clusters dynamically over time,
using zero-inflated distributions to handle highly sparse datasets (Marchello et al. 2024).
In a different approach, Casa et al. (2021) extended LBM to longitudinal data using
a shape invariant model, while Boutalbi et al. (2021) developed a model-based co-
clustering method for sparse three-way data, treating the third dimension as discrete
and temporal. These methods primarily facilitate macroscopic analysis as they do not
explicitly capture the temporal dependence of variables.

Change point detection. Change points indicate abrupt shifts in the pattern of
a time series dataset, crucial for analyzing and forecasting such data. They pinpoint
significant moments when the underlying process generating the data undergoes a no-
ticeable change. Numerous change point detection algorithms exist in the literature,
categorized into online and offline methods. Online algorithms operate in real-time as
data streams in, making them suitable for detecting pharmacovigilance events promptly.
Among online methods, likelihood and probabilistic approaches have proven effective
(Kondratev et al. 2022; Kavitha and Punithavalli 2010). A seminal approach is Bayesian
Online Change Point Detection (BOCD) introduced by Adams and MacKay (2007).
BOCD assesses the likelihood of a run length increasing with each new data point
and resets when a change point is detected. Another approach, by Kawahara and
Sugiyama (2009), employs subspace identification within state-space models to detect
change points based on time series data.

1.2. Our contribution
This paper presents an online extension of Zip-dLBM (Marchello et al. 2024), a co-
clustering method tailored for evolving data matrices with sparsity. Three key innova-
tions are introduced: first, an online estimation algorithm capable of processing data
streams; second, integration of Bayesian Online Change Point Detection (BOCD) to
identify abnormal events affecting data generation; third, adoption of LSTM networks
in place of fully connected neural networks for improved modeling of time-evolving
parameters. The code repository is accessible at https://github.com/giuliamar95/
Stream-Zip-dLBM.

https://github.com/giuliamar95/Stream-Zip-dLBM
https://github.com/giuliamar95/Stream-Zip-dLBM
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1.3. Organization of the paper
This paper is organized as follows. Section 2 recalls the generative model Zip-dLBM.
Section 3 introduces the proposed online inference for stream data. Section 4 presents
various experiments on simulated data to test and evaluate the model performances.
In Section 5, an application on a real ADRs dataset is presented to illustrate the po-
tential of Stream Zip-dLBM in pharmacovigilance. Section 6 provides some concluding
remarks.

2. Stream Zip-dLBM
The following section outlines the zero-inflated Poisson Dynamic Latent Block Model
(Zip-dLBM, Marchello et al. 2024) for batch processing. Although applicable to any
zero-inflated distribution, we focus on the zero-inflated Poisson (ZIP) distribution due
to its relevance in pharmacovigilance count data. In Zip-dLBM, data are collected into
time-evolving matrices over the interval [0, T ], with equally spaced time points:

0 = t0 < t1 < tu ≤ tU = T.

We denote each time point as tu or simply t. At time t, the incidence matrix X(t) ∈
NN×M has Xij(t) as its element, representing the number of interactions between ob-
servation i and feature j from t − 1 to t. Rows of X(t) are indexed by i = {1, . . . , N}
and columns by j = {1, . . . , M}. The goal of Zip-dLBM is to cluster the rows and
columns of the series of data matrices {X(t)}t for t ∈ [0, T ].

2.1. A zero-inflated dynamic latent block model
Consider a fixed time interval [0, T ] with a non-online model. The goal of Zip-dLBM is
to cluster the rows and columns of time-varying data matrices {X(t)}t. The numbers of
clusters, Q for rows and L for columns, remain constant, but memberships can change
over [0, T ].

Cluster modeling
We use evolving random matrices, Z(t) for rows and W (t) for columns, to track clus-
ter memberships. Z(t) ∈ {0, 1}N×Q, with Zi(t) denoting the i-th row, and W (t) ∈
{0, 1}M×L, with Wj(t) denoting the j-th row. These are parameterized by α(t) and
β(t):

Zi(t) ∼ M(1, α(t)), Wj(t) ∼ M(1, β(t)),

where M(·, ·) is the multinomial probability mass function. αq(t) = P{ziq(t) = 1} and
βℓ(t) = P{wjℓ(t) = 1}, with ∑Q

q=1 αq(t) = 1 and ∑L
ℓ=1 βℓ(t) = 1. Z and W are assumed

to be independent.

Sparsity modeling
In order to model a potentially extreme sparsity, the observed data are assumed to
follow a mixture of block-conditional zero-inflated Poisson (ZIP) distributions, where
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the entries Xij(t) are conditionally independent in (i, j, t):

Xij(t)|Zi(t), Wj(t) ∼ ZIP (ΛZi(t),Wj(t), π(t)), (1)

where Λ is the Q×L block-dependent intensity function of the Poisson component, and
π(t) is a vector of length T that indicates the level of sparsity at any given time period.
In order to ease the inference, we finally provide an equivalent formulation of the above
equations in terms of a hidden random matrix, A ∈ {0, 1}N×M , where, independently
for all i and j:

Aij(t) ∼ B(π(t)),
with B(·) denoting the Bernoulli distribution of parameter π(t) and such that

Aij(t) = 1 ⇒ Xij(t)|Zi(t), Wj(t) = 0,

Aij(t) = 0 ⇒ Xij(t)|Zi(t), Wj(t) ∼ P(Xij(t), ΛZi(t),Wj(t)),
(2)

where P(·, Λ) denotes the Poisson distribution with intensity parameter Λ.

Modeling the temporal evolution of the parameters
We assume that the evolution of the mixing proportions α, β, and the sparsity param-
eter π are governed by a system of ordinary differential equations (ODEs). By using
ODEs, we can model the temporal evolution of both the composition of clusters and
sparsity. Since we work in discrete time we discretize the dynamic systems by making
use of their Euler schemes:

a(t + 1) = a(t) + fZ(a(t)),
b(t + 1) = b(t) + fW (b(t)),
c(t + 1) = c(t) + fA(c(t)),


αq(t) = softmax(aq(t)) = eaq(t)/

∑Q
q=1 eaq(t),

βℓ(t) = softmax(bℓ(t)) = ebℓ(t)/
∑L

ℓ=1 ebℓ(t),

π(t) = ec(t)/1 + ec(t).

where fZ , fW and fA are assumed to be three continuously differentiable functions.
Remark that, if we want to relax the condition of equally spaced points, we can intro-
duce a parameter ∆t such that

a(t + ∆t) ∼= a(t) + fZ(a(t)) · ∆t,

where ∆t indicates the length of the considered time interval. Henceforth, in order to
simplify the exposition, we assume that ∆t is constant, denoted as ∆. Furthermore,
for convenience, we set ∆ = 1 without loss of generality.

2.2. The joint distribution
The set of the model parameters is denoted by θ = (Λ, α, β, π) and the latent variables
used so far are Z, W , and A, where we denote α ≜ {α(t)}t, β ≜ {β(t)}t, π ≜ {π(t)}t.
Thus, the likelihood of the complete data reads

p(X, Z, W, A|θ) = p(X|Z, W, A, Λ, π)p(A | π)p(Z|α)p(W |β). (3)

The terms on the right hand side of the above equation can be further developed, as in
Marchello et al. (2024).
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3. Online Inference for Stream Data
In this section, we present the online extension of the Zip-dLBM method, called Stream
Zip-dLBM. The objective is to perform co-clustering of rows and columns in real-time as
new data become available. To prevent memory overload, we have revisited the original
inference algorithm of Zip-dLBM, enabling the data to be processed without the need
to store it in memory. To allow the algorithm to update the parameter estimates
continuously as a new data is incorporated, we use a moving window, Gd(t), of size d.
In more detail, at time t, we keep in memory only the data in the interval [t − d, t],
namely X(t − d), X(t − d + 1), . . . , X(t), that will be used for the estimation of the
model parameters. The data outside the interval can be discarded to prevent memory
overloads and maintain the algorithm’s functionality. Once a time point t quit the time
window (after passing through it) the parameter estimates at that point become fixed,
and the "past" data can be discarded by the inference procedure.

3.1. Variational assumption
To estimate model parameters, traditional methods maximize the log-likelihood p(X|θ).
However, direct maximization and the EM-algorithm are infeasible due to the complex
dependencies and continuous evolution of latent variables (Z, W ). Additionally, α,
β, and π cannot be updated using closed formulas due to their link with systems of
ordinary differential equations.
Instead, we use a combination of Variational-EM inference and Stochastic Gradient De-
scent (SGD). We introduce a variational distribution q(.) over (A, Z, W ) to decompose
the observed data log-likelihood as

log p(X|θ) = L(q, θ) + KL(q(.)||p(.|X, θ)), (4)

where L, the lower bound of p(X|θ), is

L(q, θ) = Eq(A,Z,W )[log(p(X, A, Z, W |θ)] − Eq(A,Z,W )[log(q(A, Z, W ))]. (5)

The Kullback-Liebler divergence KL between the true and approximate posterior q(·)
is

KL(q(.)||p(.|X, θ)) = −
∑
A

∑
Z

∑
W

q(A, Z, W ) log p(A, Z, W |X, θ)
q(A, Z, W ) . (6)

Our goal is to find a distribution q(.) that maximizes the lower bound L(q, θ). To
optimize L(q, θ), we use the mean field approximation, assuming q(A, Z, W ) factorizes
as follows for all t:

q(A(t), Z(t), W (t)) = q(A(t))q(Z(t))q(W (t)) =
N∏

i=1

M∏
j=1

q(Aij(t))
N∏

i=1
q(Zi(t))

M∏
j=1

q(Wj(t)).

(7)

3.2. Variational E-step
The optimal variational updates of q(·), under the assumption in Eq. (7), can be ob-
tained as in Bishop (2008, Ch.10). Denoting by δij(t) := q(Aij(t) = 1) the variational
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probability of success for Aij(t), the optimal update is

δij(t) = exp(Rij(t))
(1 + exp(Rij(t)))

, (8)

with

Rij(t) = log(π(t)1{Xij(t)=0}) +
Q∑

q=1

L∑
ℓ=1

[
− Eq(W,Z)[Ziq(t)]Eq(W,Z)[Wjℓ(t)]Xij(t) log Λqℓ

+ Eq(W,Z)[Ziq(t)]Eq(W,Z)[Wjℓ(t)]Λqℓ

]
+ log Xij(t)! − log(1 − π(t)).

Note that, formally, when Xij(t) ̸= 0, Rij(t) = −∞ and δij(t) = 0, which makes sense:
non-null observations in X come from a Poisson distribution with probability one (see
Eq. (2)).
Regarding q(Z), let us denote by τiq(t) := q(Ziq(t) = 1) the variational probability of
success of Ziq(t). The optimal update can be written as

τiq(t) = riq(t)∑Q
q0=1 riq0(t)

, (9)

with riq(t) is denoted by

riq(t) ∝ exp
 M∑

j=1

L∑
ℓ=1

{
(1 − Eq(A,W )[Aij(t)])

[
Eq(A,W )[Wjℓ(t)]Xij(t) log(Λqℓ)

− Eq(A,W )[Wjℓ(t)]Λqℓ

]}
+ log(αq(t))

.

Similarly for the latent variable W , denoting by ηjℓ(t) := q(Wjℓ(t) = 1) the variational
probability for Wjℓ(t), the optimal update of q(W ) is

ηjℓ(t) = sjℓ(t)∑L
ℓo=1 sjℓo(t)

, (10)

where

sjℓ(t) ∝ exp
 N∑

i=1

Q∑
q=1

{
(1 − Eq(A,Z)[Aij(t)])

[
Eq(A,Z)[Ziq(t)]Xij(t) log(Λqℓ)

− Eq(A,Z)[Ziq(t)]Λqℓ

]}
+ log(βℓ(t))

.

The proofs of Equations (8), (9) and (10) are provided in Marchello et al. (2024). It
is worth noting that these update equations can be executed step by step, allowing for
incremental updates of the variational parameters. Also, note that the update in these
equations can be computed independently for any pair (i, j), at any time point t.
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3.3. Online variational M-step
While the updates in the E-step for τ(t), η(t), and δ(t) depend solely on the current
time instant t, the same cannot be said for the updates in the M-step. The M-step
involves updating the model parameters, such as θ = (Λ, α, β, π), based on the current
estimates obtained in the E-step. In order to obtain the updates of the parameter
set θ, the objective of the M-Step is the maximization of the lower bound L(q, θ)
with respect to θ = (Λ, α, β, π), while holding the variational distribution q(·) fixed.
Denoting t as the current time instant, we develop Eq. (5) such that the variational
lower bound L(q, θ) can be written as

L(q, θ) =
t∑

u=1

N∑
i=1

M∑
j=1

δij(u) log(π(u)1{Xij(u)=0}) + (1 − δij(u))
[

log(1 − π(u))

+
Q∑

q=1

L∑
ℓ=1

{
τiq(u)ηjℓ(u)Xij(u) log Λqℓ − τiq(u)ηjℓ(u)Λqℓ

}]

− (1 − δij(u)) log(Xij(u)!)


+
t∑

u=1

N∑
i=1

Q∑
q=1

τiq(u) log(αq(u)) +
t∑

u=1

M∑
j=1

L∑
ℓ=1

ηjℓ(u) log(βℓ(u))

−
t∑

u=1

N∑
i=1

Q∑
q=1

τiq(u) log(τiq(u)) −
t∑

u=1

M∑
j=1

L∑
ℓ=1

ηjℓ(u) log(ηjℓ(u))

−
t∑

u=1

N∑
i=1

M∑
j=1

(
δij(u) log(δij(u)) + (1 − δij(u)) log(1 − δij(u))

)
.

(11)

Update of Λ
Here our goal is to derive the online update of the zero-inflated Poisson intensity pa-
rameter, Λ. The variational distribution q(A, Z, W ) is kept fixed, while the lower bound
is maximized with respect to Λ at every time instant t, to obtain its update, Λ̂.
The updating formula of Λ is obtained by maximizing L(q, θ) with respect to the
parameter. Denoting Λ̂old

qℓ = N old
qℓ /Dold

qℓ , we obtain the final online update

Λ̂qℓ = Λ̂old
qℓ ·

Dold
qℓ

Dold
qℓ + D

(t)
qℓ

+
N

(t)
qℓ

Dold
qℓ + D

(t)
qℓ

, (12)

with

• N
(t)
qℓ = ∑N

i=1
∑M

j=1 τiq(t)ηjℓ(t)(Xij(t) − δij(t)Xij(t)),

• Dold
qℓ = ∑N

i=1
∑M

j=1
∑(t−1)

u=1 τiq(u)ηjℓ(u)(1 − δij(u)),

• D
(t)
qℓ = ∑N

i=1
∑M

j=1 τiq(t)ηjℓ(t)(1 − δij(t)).

Hence, when a new observation comes, Λ can be updated thanks to Eq.(17), along with
the update of Dold

qℓ . The proof is provided in Appendix A.1.
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Update of α, β and π through deep neural networks
As mentioned in Section 2.1.3, the mixture proportions α and β, as well as the sparsity
parameter π are driven by three systems of differential equations, respectively. Hence,
the update process for these parameters in the online inference algorithm poses a chal-
lenge because they lack closed-form updating formulas. As a result, the decomposition
strategy used for updating Λ cannot be applied. To address this issue, we introduce
an approximation technique that leverages a moving window Gd(t) of size d, allowing
us to update the parameters based on the most recent d observations. In addition to
its role in parameter updates, the moving window Gd(t) serves another purpose as the
input for a deep neural network. As we assumed that the functions fA, fW and fZ are
continuous, we propose to parametrize them with three LSTM networks (Hochreiter
and Schmidhuber 1997). LSTM is a type of recurrent neural network that operates on
sequences of a specific length and produces a sequence of the same length, shifted one
time step ahead. For instance, let’s consider the current time t and the time window
Gd(t) with a length of d. The input for the LSTM networks consists of a series of
values ranging from t − 1 − d to t − 1, representing the historical observations within
the window. The LSTM networks then predict a sequence of values from t − d to t,
which correspond to the updated parameter values for α, β, and π. Optimizing the
lower bound in Eq.(11) with respect to α, β, and π reduces to maximize it with respect
to the parameters of the neural networks. For instance, the loss function for α can be
expressed as follows

L =
∑

u∈Gd(t)

N∑
i=1

Q∑
q=1

τiq(u) log αq(u). (13)

The loss functions of β and π can be similarly derived using their respective distribution-
specific equations. The whole inference procedure is summarized in Algorithm 1 in the
Appendix.

3.4. Initialization and model selection
In clustering methods based on the EM algorithm, initializing and selecting the appro-
priate number of clusters for rows and columns are crucial. These tasks become more
complex when using deep neural networks to model cluster dynamics and sparsity, but
these networks also provide flexibility that reduces computational burdens, as shown
in Section 4.2. Here, we modify the initialization method from Marchello et al. (2024)
for online adaptation. First, we apply a static LBM algorithm to the initial data slice
Xt0 for various cluster pairs (q, ℓ), where q = 2, . . . , Qmax and ℓ = 2, . . . , Lmax. The
ICL criterion (Integrated Completed Likelihood, Biernacki et al. (2000)) determines
the optimal cluster numbers

ICL(Q, L) = log p(X, Ẑ, Ŵ ; θ̂) − Q − 1
2 log N − L − 1

2 log M

− QL

2 log(NM) − 1
2 log(NM).

(14)

The pair (Q̂, L̂) that leads to the highest value for the ICL is considered as the most
meaningful cluster numbers for the considered slice of data Xt0 . The pair (Q̂, L̂) with the
highest ICL is considered optimal for Xt0 . However, since Q̂ and L̂ may not be optimal
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for all future times, the VEM-SGD algorithm runs with more components (Qmax ≥ Q̂

and Lmax ≥ L̂). New data entries initialize part of the model parameters with θ̂(t) from
a static LBM run, while additional clusters start at zero. Deep neural networks allow
VEM-SGD to initialize with empty clusters, placeholders for new patterns. LSTMs
capture complex data relationships even with sparse data, focusing computation on
relevant data parts and delaying empty cluster processing. This avoids the need to
run the algorithm with all cluster combinations, handling large datasets efficiently as
demonstrated in the next section. Initially, for the first d time points, α(t), β(t), and
π(t) are modeled via two-layer fully connected neural networks following Marchello
et al. (2024). After t = d, estimates from the previous step serve as LSTM inputs for
online parameter estimation. More details are in Section 3.3 and Appendix A.4.

3.5. Bayesian online change point detection
As previously stated, one of the aims of Stream Zip-dLBM is to perform multivariate
online change point detection. To accomplish this task, we combine the Bayesian Online
Change Point Detection (BOCD) method, proposed in a seminal paper by Adams
and MacKay (2007), with our strategy. BOCD detects change points based on the
estimation of the posterior distribution over the current "run length", or time segment
since the last change point, given the data observed so far, using a simple message-
passing algorithm. Essentially, the run length is used to determine if a new data point
belongs to the current partition based on previous observations. If the new data point
belongs to the current partition, the run length will increase by 1 at the next time step,
otherwise it will reset to 0. This process is continuously repeated at each time step.
It is worth noticing that the BOCD algorithm is typically implemented in an online
fashion, analyzing the data as it streams in. However, in our case, we directly apply
the algorithm to detect change points on the estimates of α(t), β(t), and π(t) that are
generated by the LSTM. To prevent detecting change points on parameters that will
be recalculated in future time steps, we run the BOCD algorithm only on time points
"behind" Gd(t). Stated differently, at time t, BOCD operates on parameter values at
time instances t − d.

4. Numerical Experiments
This section highlights the key features of Stream Zip-dLBM using simulated datasets
and validates the inference algorithm described earlier. The first experiment applies
Stream Zip-dLBM to a dataset with evolving block patterns and sparsity, showing its
capability to recover data structure in real-time. The second experiment demonstrates
the model selection procedure on a simulated dataset.

4.1. Introductory example
A simulated dataset with dimension 350×300×150 has been generated according to our
model to perform this experiment. The simulated dynamics of α, β and π can be seen on
the left-hand side of Figure 1. Concretely, α, β and π are three time series independently
fluctuating around constant trends. Fluctuations are obtained at each time by means
of independent Gaussian distributions with constant variance. The mean levels change
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when a change point occurs. The levels of the simulated change points and the values
of the simulated parameter Λ are indicated in the Appendix 5. Based on the mixture
proportions α, β, the values of the latent variables were then simulated through their
distributions. Next, we used the sparsity proportions, π, and the intensity parameter,
Λ, to simulate the three-dimensional tensor X as zero-inflated Poisson variables. We
then applied the Stream Zip-dLBM inference algorithm to the simulated dataset, using
the actual values of Q = 3 and L = 2 to demonstrate the model’s ability to recover
the parameters. Figure 1 displays the true mixture proportions on the left side and
the online estimates on the right side. The red dashed lines depict the simulated and
estimated change points, respectively. From these results we see that Stream Zip-dLBM
perfectly recovers the evolution of the mixing proportion and the sparsity parameter
over time, including the change points.

4.2. Model selection experiment
In this experiment, we assess the ability of Stream Zip-dLBM to determine the optimal
number of clusters for rows and columns. Initially, we utilize the Integrated Completed
Likelihood (ICL) criterion to compute the optimal number of clusters on the first slice.
This ensures that the algorithm is initialized with the best possible parameters. Once
initialized, the algorithm maintains consistent results without making any alterations,
thus retaining the optimal number of clusters. To evaluate the effectiveness of the
algorithm and verify if it activates new clusters, we generate a dataset based on the
configuration described in Section 4.1. The dataset consists of 3 row clusters (Q=3)
and 2 column clusters (L=2). We then apply Stream Zip-dLBM to this dataset, with
maximum values of Qmax = 7 and Lmax = 7. Figure 2 provides an illustrative demon-
stration of the algorithm’s behavior, specifically regarding the activation of clusters.
It is clear from the figure that the unnecessary clusters remain empty and that the
estimates of the α, β, and π parameters are also accurate. Finally, it is worth noticing
that Stream Zip-dLBM successfully identifies the changing points in α, β and π over
time, despite not using the optimal number of input clusters. Finally, to evaluate the
performance of the model in identifying the correct rows and columns partitions, we
use the adjusted Rand index (ARI) (Rand 1971). The adjusted Rand index, from a
mathematical point of view, is closely related to the accuracy measure, however it is a
commonly used method for evaluating clustering problems since it can be applied for
measuring the similarity between two partitions even with different number of clusters
and it is invariant to label switching. We also use a measure called CARI, recently
introduced by Robert et al. (2021). This new criterion is based on the Adjusted Rand
Index (Rand 1971) and it was developed especially for being applied to co-clustering
methods. The closer these indexes are to 1, the more two label vectors are similar to
each other. We compared the original matrices Z and W , with the estimates τ and η
given by the output of Stream Zip-dLBM. We evaluate the performance indexes at each
time step, obtaining the following results:

Table 1:

ARI rows ARI columns CARI
0.99 ± 0.03 1 ± 0 0.99 ± 0.02
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(a) True α.
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(b) Estimated α.
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(c) True β.
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(d) Estimated β.
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(e) True π.
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(f) Estimated π.

Figure 1: Evolution of the true (left) and estimated (right) proportions of the param-
eters α, β and π, respectively.

Thus, we can conclude that our algorithm satisfyingly identifies the composition of the
original clusters in time.

5. Analysis of the Adverse Drug Reaction Dataset
This section focuses on the online application of Stream Zip-dLBM to a large-scale
pharmacovigilance dataset, with the aim of illustrating the potential of the tool for
such studies.
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(b) Estimated α.
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(c) True β.
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(d) Estimated β.
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(e) True π.
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(f) Estimated π.

Figure 2: Evolution of the true (left) and estimated (right) proportions of the param-
eters α, β and π, respectively.

5.1. Protocol and data
This section examines a large adverse drug reaction (ADR) dataset collected by the
Regional Center of Pharmacovigilance (RCPV) at the University Hospital of Nice, cov-
ering an area with 2.3 million inhabitants over 7 years, from January 1st, 2015, to
March 3rd, 2022. Due to data sparsity, monthly aggregations were made, resulting in
a dataset with 39,267 declarations, including drug names, ADRs, and reception dates.
We focused on drugs and ADRs reported more than 10 times, yielding 419 drugs, 614
ADRs, and 87 time intervals with 23,264 non-zero entries. To avoid duplicate entries for
the same molecule under different brand names, we used international nonproprietary
names (INNs). Looking at Figure 3a, in 2017 we notice a significant increase in ADR
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Figure 3: On the left, number of declarations received by the pharmacovigilance center
from 2015 to 2022, sorted by month. On the right, histogram of declarations over time,
with change points.

reports for Lévothyrox®, used to treat hypothyroidism. This peak was due to a new
formula introduced to correct drug stability issues, which received extensive media cov-
erage. Additionally, since late 2020, COVID-19 vaccinations began, with Comirnaty®,
Moderna®, and Vaxzevria® being introduced sequentially. The dataset reflects varying
signal amplitudes, highlighting both prominent and less visible ADRs, such as those
involving Mirena® in 2017, which also caused health policy concerns. Stream Zip-
dLBM is expected to help uncover hidden signals within this sparse dataset, which
has a sparsity range of 99.25% to 99.98% per month. To prevent numerical issues, an
LSTM network inferred the parameters α and β, with point estimates of π̂ used in the
inference process.

5.2. Summary of the results
To initialize the algorithm, we computed the ICL criterion on the first month’s data,
identifying the optimal clusters as Q̂ = 3 and L̂ = 3 (Section 3.4). We then ran Stream
Zip-dLBM, updating parameters with each new entry in tensor X, with Qmax = 7 and
Lmax = 7 to allow dynamic clustering. The process took about an hour on a 2020
MacBook Pro, with a 2.3 GHz Quad-Core Intel Core i7 and 16 GB RAM, using a
5-month moving window Gd(t). In Figure 3b, shows monthly declaration frequencies
from 2015 to 2022, with detected change points marked by dashed lines: green for drug
clusters and blue for ADR clusters.Figure 4a presents estimated Poisson intensities (Λ)
for 3 drug clusters (D) and 3 ADR clusters (A). This figure only focuses on the 3
groups of drug clusters and the 3 groups of ADR clusters that have been activated in
the inference. This representation provides valuable insights for model interpretation
as it gives an overview of the relationships between drug clusters and ADR clusters
and how they evolve over time. Each color refers to a drug (rows) or ADR (columns)
cluster and the higher is the value in each block, the strongest is the relationship (i.e
the expected number of declarations received in the time unit) between the related
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Figure 4: Estimated Poisson intensities, each color represents a different drug (ADR)
cluster (top left); evolution of the estimates of α̂ (top right); evolution of the estimates
of β̂ (bottom left), evolution of the estimates π̂ (bottom right).

pair of clusters. Figures 4b and 4c display the estimated mixture proportions of drug
clusters (α̂) and ADR clusters (β̂) respectively. The dashed lines in the figures rep-
resent the change points identified by the BOCD algorithm. Figure 4d illustrates the
sparsity parameter π̂, showing no change points due to insufficient variability, as the
values range goes from 0.99 to 1. Figures 4a, 4b, and 4c reveal that the clusters with
the highest intensity are the least populated. For instance, cluster drug cluster D2
exhibits a significant level of interaction with ADR clusters A1 and A3. However, from
May 2017. D2’s population declines significantly. This phenomenon is attributed to
the presence of drugs associated with significant health crises that happened during
the reporting period. Notably, Mirena® in early 2017, Lévothyrox® in late 2017, and
Covid-19 vaccines in 2021 were the primary drivers of these crises. Each crisis period
corresponds to a detected change point in both drug and ADR cluster proportions.
Similarly, analyzing clusters A1 and A3 reveals the most reported ADRs during each
crisis. Cluster A1 includes mainly hormonal side effects (e.g., anxiety, heat shock, ag-
gressive behavior) during the Mirena® crisis. During the Lévothyrox® crisis, A1 has
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a peak, likely due to extensive media coverage prompting diverse side effect reports.
In 2021, A1 peaks with Covid-19 vaccine-related ADRs, such as arm pain, inflam-
mation, and flu-like symptoms. Cluster D1 remains empty until August 2017, then
includes widely used drugs like paracetamol and amoxicillin, frequently reported after
the Lévothyrox® crisis. The evolution of cluster D1’s proportion, shown in Figure 4b,
aligns with the change points identified by the algorithm. Cluster D1’s evolution, de-
picted in Figure 4b, shows significant changes corresponding to detected change points.
Despite initial emptiness, D1 begins to include widely used drugs such as paracetamol
and amoxicillin after the Lévothyrox® crisis, indicating a shift in reporting patterns.
In contrast, Cluster D3 maintains consistently low interaction intensities with ADR
clusters, as illustrated in Figure 4b. Post-2017, D3 comprises drugs with low reporting
frequencies, reflecting its distinct role in the pharmacovigilance landscape. Examining
Figures 4a and 4c, clusters A2 and A3 initially house the majority of adverse effects.
However, during the Mirena® crisis, A2 and A3 retain only residual effects unrelated to
the specific health issue, while cluster A1 becomes predominant. This shift intensifies
after October 2017, with A1 focusing specifically on Lévothyrox®-related ADRs such
as hair loss and insomnia. After the Lévothyrox® crisis, cluster A1 becomes empty
until the subsequent change point detected in January 2021. From this moment until
the peak of Covid-19 vaccine reports in February 2022, cluster A1 includes the main
adverse effects reported for Covid-19 vaccines (e.g. pain at the vaccination site, skin
rash, pericarditis, etc.). Also, Figure 4c clearly highlights the Lévothyrox® crisis as a
pivotal moment in pharmacovigilance history, likely prompting increased reporting of
drug and vaccine side effects. Lastly, Figure 4d shows the estimated evolution of the
sparsity parameter, indicating minimal variability and no detected change points in
π̂. Initially high at 99.7% in 2015, sparsity decreases to 98.75% by the peak in 2017
and reaches a global minimum of 98.65% in March 2021, coinciding with the Covid-19
vaccine reporting peak. The Stream Zip-dLBM algorithm performed very well on the
pharmacovigilance dataset, providing meaningful a segmentation on drugs and adverse
effect clusters over time. Its ability to adapt and process data in real-time ensured
accurate and insightful analysis, proving highly effective for monitoring and identifying
safety signals.

6. Conclusions
This paper addresses the need to analyze and summarize observations and features of
a dynamic matrix in an online setting for pharmacovigilance. We propose an online
dynamic co-clustering technique that clusters rows and columns over time, allowing for
changes in cluster memberships and detecting structural changes in interactions. Our
method introduces a generative zero-inflated dynamic latent block model as an online
extension of Zip-dLBM, using three systems of ordinary differential equations for time
modeling. Inference is done via a Variational EM algorithm and stochastic optimization
of LSTM network parameters. We also incorporate an online change point detection
method to create real-time alerts. The approach is evaluated with simulated data sce-
narios and applied to a large dataset from the Regional Center of Pharmacovigilance
of Nice (France), providing meaningful online segmentation of drugs and adverse drug
reactions. This model shows promise for identifying significant pharmacovigilance pat-



Journal of Data Science, Statistics, and Visualisation 17

terns or emerging public health concerns. We are currently developing a web platform
for the Regional Center of Pharmacovigilance in Nice to run the model on incoming
data, identify structural changes, and send email notifications with reports. The soft-
ware’s effectiveness will be assessed over six months, with plans for national expansion.
The online inference algorithm and change point detection enable Stream Zip-dLBM
to continuously analyze ADR data and trigger alerts, facilitating further investigation
and intervention by medical authorities.
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A. Appendix

A.1. Update of the intensity parameter
Here our goal is to derive the online update of the zero-inflated Poisson intensity pa-
rameter, Λ. The variational distribution q(A, Z, W ) is kept fixed, while the lower bound
is maximized with respect to Λ at every time instant t, to obtain its update, Λ̂. To find
the optimal update we compute the derivative of the lower bound L(q, θ) in Eq. (11)
with respect to Λ and set it equal to zero, as follows

∂ log L(q, θ)
∂Λqℓ

=
N∑

i=1

M∑
j=1

t∑
u=1

(1 − δij(u))
[

τiq(u)ηjℓ(u)Xij(u)
Λqℓ

− τiq(u)ηjℓ(u)
]

= 0

⇔
N∑

i=1

M∑
j=1

t∑
u=1

(1 − δij(u))
[
τiq(u)ηjℓ(u)Xij(u) − τiq(u)ηjℓ(u)Λqℓ

]
= 0

⇔
N∑

i=1

M∑
j=1

t∑
u=1

(1 − δij(u))τiq(u)ηjℓ(u)Λqℓ =
N∑

i=1

M∑
j=1

t∑
u=1

τiq(u)ηjℓ(u)
[
Xij(u) − Xij(u)δij(u)

]

⇒ Λ̂qℓ =
∑N

i=1
∑M

j=1
∑t

u=1 τiq(u)ηjℓ(u)(Xij(u) − δij(u)Xij(u))∑N
i=1

∑M
j=1

∑t
u=1 τiq(u)ηjℓ(u)(1 − δij(u))

. (15)

Although the update of Λ̂qℓ sums over all the past observations (Xij(1), . . . , Xij(t)), we
can develop Eq. (15) as follows

Λ̂qℓ =[
N∑

i=1

M∑
j=1

(t−1)∑
u=1

τiq(u)ηjℓ(u)(Xij(u) − δij(u)Xij(u))+
N∑

i=1

M∑
j=1

τiq(t)ηjℓ(t)(Xij(t) − δij(t)Xij(t))
]

/[
N∑

i=1

M∑
j=1

(t−1)∑
u=1

τiq(u)ηjℓ(u)(1 − δij(u)) +
N∑

i=1

M∑
j=1

τiq(t)ηjℓ(t)(1 − δij(t))
]

=
N old

qℓ + N
(t)
qℓ

Dold
qℓ + D

(t)
qℓ

=
N old

qℓ

Dold
qℓ + D

(t)
qℓ

+
N

(t)
qℓ

Dold
qℓ + D

(t)
qℓ

. (16)

By splitting Λ in two different parts, we can distinguish between a part known at time
t − 1, namely N old

qℓ and Dold
qℓ , and the current updates at time t, N

(t)
qℓ and D

(t)
qℓ . Then,

we divide and multiply the first term for Dold
qℓ , such that, denoting Λ̂old

qℓ = N old
qℓ /Dold

qℓ ,
we obtain the final online update

Λ̂qℓ = Λ̂old
qℓ ·

Dold
qℓ

Dold
qℓ + D

(t)
qℓ

+
N

(t)
qℓ

Dold
qℓ + D

(t)
qℓ

. (17)

Hence, when a new observation comes Λ can be updated thanks to Eq.(17), along with
the update of Dold

qℓ .
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Algorithm 1 VEM-SGD Algorithm for Stream Zip-dLBM
Require: X, Q̂, L̂, Qmax, Lmax, max.iter, Gd(t).

Initialization of τ(t = 0) and η(t = 0): sampling from M(α(t = 0)) and M(β(t = 0)),
respectively;
Initialization of δ(t = 0): matrix of 1, then setting δ(t = 0) = 0 when X > 0;
while New observations X(t) come: do

Initialization of α(t), β(t), π(t), Λ with LBM; % with Q̂, and L̂
▶ Add Qmax − Q̂ columns of zeros to α(t);
▶ Add Lmax − L̂ columns of zeros to β(t);
▶ Add Qmax − Q̂ rows and Lmax − L̂ columns of zeros to Λ;
for it = 1 to max.iter do

VE-Step:
for p = 1 to Fixed.Point do

alternatively update δ(t), τ(t), η(t); % fix point eqs
end for
M-Step:

Update θ = (Λ, π(t), α(t), β(t)), Λ̂qℓ = Λ̂old
qℓ ·

Dold
qℓ

Dold
qℓ + D

(t)
qℓ

+
N

(t)
qℓ

Dold
qℓ + D

(t)
qℓ

.

Update α(t), β(t), π(t) %LSTM on the moving window t ∈ Gd(t)
end for
Discard all the observation before Gd(t).

end while

α
cp 16 66 103

β
cp 25 62 112

π
cp 16 66 103

Λ =

6 4
1 2
7 3



Figure 5: Simulated time instants for change points of α, β and π and simulated values
of Λ.

A.2. Pseudocode of the inference algorithm
The algorithm employs fixed-point equations to iteratively update the variational pa-
rameters (δ(t), τ(t), and η(t)) because of their interdependence. These iterations ensure
convergence within the VE-Step for each new observation incoming. In our simulation
studies, we found that setting the number of iterations (Fixed.Point) to 3 yielded good
results.

A.3. Details on the simulated experiment
The simulated change points for the parameters α, β and π, and the simulated value
of the intensity parameter Λ are shown in Figure 5.
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A.4. Algorithmic considerations
In this section, we provide detailed technical specifications of the neural networks used
in the M-Step of the inference algorithm. From t = 1 to t = Gd(t) we employed fully
connected neural networks with two hidden layers, consisting of 100 and 50 neurons,
respectively. The choice of two hidden layers allows for capturing complex patterns and
relationships within the data. When t > Gd(t) LSTM neural networks are employed, as
described in Section 3.3. The output of the LSTM is then reshaped and passed through
two fully connected layers. Sigmoid activation is then applied after the first linear layer
to introduce non-linearity, while softmax activation is applied after the second linear
layer to obtain the probability distribution over the output classes. We did not used
mini-batch training, opting for a full-batch approach where the training dataset used
in each iteration consists in the data within the moving window Gd(t). Within the
VEM algorithm, each iteration involved the optimization of the lower bound. The fully
connected neural networks have a learning rate of γ = 1e−5, while the LSTM networks
have a learning rate of γ = 1e−3.In the experiments, this update is implemented in
PyTorch via automatic differentiation (Paszke et al. 2017) and relies on stochastic
optimisation (ADAM, Kingma and Ba 2014). Once the neural nets are trained via
back-propagation (SGD) they provide us with the current ML estimates of α(t), β(t)
and π(t). All the experiments run on CPU on a MacBook Pro, 2020, with a processor
of 2,3 GHz Quad-Core Intel Core i7 and 16 GB of RAM.
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