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Abstract

We present a stepwise approach to estimate high dimensional Gaussian graph-
ical models. We exploit the relation between the partial correlation coefficients
and the prediction errors, and parametrize the model in terms of the Pearson
correlation coefficients between the prediction errors of the nodes’ best linear
predictors. We propose a novel stepwise algorithm for detecting pairs of con-
ditionally dependent variables. We compare the proposed algorithm with ex-
isting methods including graphical lasso (Glasso), constrained ℓ1-minimization
(CLIME) and equivalent partial correlation (EPC), via simulation studies and
real life applications. In our simulation study we consider several model settings
and report the results using different performance measures that look at desirable
features of the recovered graph.
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1. Introduction
High-dimensional Gaussian graphical models (GGM) are widely used in practice to
represent the linear dependency between variables. The underlying idea in GGM is to
measure linear dependencies by estimating partial correlations to infer whether there is
an association between a given pair of variables, conditionally on the remaining ones.
Moreover, there is a close relation between the nonzero partial correlation coefficients
and the nonzero entries in the inverse of the covariance matrix. Covariance selection
procedures take advantage of this fact to estimate the GGM conditional dependence
structure given a sample (Dempster 1972; Lauritzen 1996; Edwards 2000).
When the dimension p is larger than the number n of observations, the sample covari-
ance matrix S is not invertible and the maximum likehood estimate (MLE) of Σ does
not exist. When p/n ≤ 1, but close to 1, S is invertible but ill-conditioned, increas-
ing the estimation error (Ledoit and Wolf 2004). To deal with this problem, several
covariance selection procedures have been proposed based on the assumption that the
inverse of the covariance matrix, Ω, called precision matrix, is sparse.
We present an approach to perform covariance selection in a high dimensional GGM
based on a forward-backward algorithm, which we call StepGraph. Our procedure takes
advantage of the relation between the partial correlation and the Pearson correlation
coefficient of the residuals.
Existing methods to estimate the GGM can be classified in three classes: nodewise
regression methods, maximum likelihood methods and limited order partial correla-
tions methods. The nodewise regression method was proposed by Meinshausen and
Bühlmann (2006). This method estimates a lasso regression for each node in the
graph. See for example Peng et al. (2009), Yuan (2010), Liu and Wang (2012), Zhou
et al. (2011) and Ren et al. (2015). Penalized likelihood methods include Yuan and
Lin (2007), Banerjee et al. (2008), Friedman et al. (2008), Johnson et al. (2011) and
Ravikumar et al. (2011) among others. Cai et al. (2011) propose an estimator called
CLIME that estimates precision matrices by solving the dual of an ℓ1 penalized maxi-
mum likelihood problem. Limited order partial correlation procedures use lower order
partial correlations to test for conditional independence relations. See Spirtes et al.
(2000), Kalisch and Bühlmann (2007), Rütimann et al. (2009), Liang et al. (2015) and
Huang et al. (2016).
The rest of the article is organized as follows. Section 2 introduces the stepwise approach
along with some notation. Section 3 gives simulations results and a real data example.
Section 4 presents some concluding remarks. Appendix A reports detailed description
of the crossvalidation procedure used to determine the required parameters in our
StepGraph algorithm and Appendix B gives additional simulation results.

2. Stepwise Approach to Covariance Selection

2.1. Definitions and Notation
In this section we review some definitions and technical concepts needed later on. Let
G = (V,E) be a graph where V ̸= ∅ is the set of nodes or vertices and E ⊆ V ×V = V 2
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is the set of edges. For simplicity we assume that V = {1, . . . , p}. The graph G is
undirected, that is, (i, j) ∈ E if and only if (j, i) ∈ E. Two nodes i and j are called
connected, adjacent or neighbors if (i, j) ∈ E.
A graphical model (GM) is a graph such that V indexes a set of variables {X1, . . . , Xp}
and E is defined by:

(i, j) /∈ E if and only if Xi ⊥⊥ Xj | XV \{i,j}. (1)

Here ⊥⊥ denotes conditional independence.
Given a node i ∈ V , its neighborhood Ai is defined as

Ai = {l ∈ V \ {i} : (i, l) ∈ E}. (2)

Notice that Ai gives the nodes directly connected with i and therefore a GM can be
effectively described by giving the system of neighborhoods {Ai}p

i=1.
We further assume that (X1, . . . , Xp)⊤ ∼ N(0,Σ), where Σ = (σij)i,j=1...,p is a positive-
definite covariance matrix. In this case the graph is called a Gaussian graphical model
(GGM). The matrix Ω = (ωij)i,j=1...,p = Σ−1 is called precision matrix.
There exists an extensive literature on GM and GGM. For a detailed treatment of
the theory see for instance Lauritzen (1996), Edwards (2000), and Bühlmann and Van
De Geer (2011).

2.2. Conditional Dependence in a GGM
In a GGM the set of edges E represents the conditional dependence structure of the
vector (X1, . . . , Xp). To represent this dependence structure as a statistical model it is
convenient to find a parametrization for E.
In this subsection we introduce a convenient parametrization of E using well known
results from classical multivariate analysis. For an exhaustive treatment of these results
see, for instance, Anderson (2003), Cramér (1999), Lauritzen (1996) and Eaton (2007).
Given a subset A of V , XA denotes the vector of variables with subscripts in A in
increasing order. For a given pair of nodes (i, l), set X⊤

1 = (Xi, Xl), X2 = XV \{i,l} and
X =

(
X⊤

1 ,X⊤
2

)⊤
. Note that X has multivariate normal distribution with mean 0 and

covariance matrix (
Σ11 Σ12
Σ21 Σ22

)
(3)

such that Σ11 has dimension 2×2, Σ12 has dimension 2× (p−2) and so on. The matrix
in (3) is a partition of a permutation of the original covariance matrix Σ, and will be
also denoted by Σ, after a small abuse of notation.
Moreover, we set

Ω =
(

Σ11 Σ12
Σ21 Σ22

)−1

=
(

Ω11 Ω12
Ω21 Ω22

)
.

Then, by (B.2) of Lauritzen (1996), the blocks Ωkj can be written explicitly in terms
of Σkj and Σ−1

kk with k, j = 1, 2. In particular
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Ω11 =
(
Σ11 − Σ12Σ−1

22 Σ21
)−1

where

Ω11 =
(
ωii ωil

ωli ωll

)

is the submatrix of Ω (with rows i and l and columns i and l). Hence,

cov (X1|X2) = Σ11 − Σ12Σ−1
22 Σ21 (4)

= Ω−1
11

= 1
ωiiωll − ωilωli

(
ωll −ωil

−ωli ωii

)

and, in consequence, the conditional correlation between Xi and Xl can be expressed
as

corr
(
Xi, Xl|XV \{i,l}

)
= − ωil√

ωiiωll

. (5)

This gives the standard parametrization of E in terms of the support of the precision
matrix

supp (Ω) = {(i, l) ∈ V 2 : i ̸= l, ωi,l ̸= 0}. (6)

We now introduce another parametrization of E, which we need to define and implement
our proposed method. We consider the regression error for the regression of X1 on X2,

ε = X1 − X̂1 = X1 − β⊤X2

where β is the matrix of regression coeficients and and let εi and εl denote the entries
of ε (i.e. ε⊤ = (εi, εl)). The regression error ε is independent of X̂1 and has normal
distribution with mean 0 and covariance matrix Ψ11 with elements denoted by

Ψ11 =
(
ψii ψil

ψli ψll

)
. (7)

A straightforward calculation shows that

Ψ11 = cov (X1) + cov
(
X̂1
)

− 2cov
(
X1, X̂1

)

= Σ11 + Σ12Σ−1
22 Σ22Σ−1

22 Σ21 − 2Σ12Σ−1
22 Σ21

= Σ11 − Σ12Σ−1
22 Σ21 = Ω−1

11 .

See Cramér (1999, Section 23.4).
Therefore, by this equality, (4) and (5), the partial correlation coefficient and the con-
ditional correlation are equal

ρil·V \{i,l} = corr
(
Xi, Xl|XV \{i,l}

)
= ψil√

ψiiψll

.
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Summarizing, the problem of determining the conditional dependence structure in a
GGM (represented by E) is equivalent to finding the pairs of nodes of V that belong
to the set

{(i, l) ∈ V 2 : i ̸= l, ψil ̸= 0} (8)

which is equal to the support of the precision matrix, supp (Ω), defined by (6).

Remark 1 As noticed above, under normality, partial and conditional correlation are
the same. However, in general they are different concepts (Lawrance 1976).

Remark 2 Let βi,l be the regression coefficient of Xl in the regression of Xi versus
XV \{i} and, similarly let βl,i be the regression coefficient of Xi in the regression of
Xl versus XV \{l}. Then it follows that ρil·V \{i,l} = sign (βl,i)

√
βl,iβi,l. This allows

for another popular parametrization for E. Moreover, let ϵi be the error term in the
regression of the ith variable on the remaining ones. Then by Lemma 1 in Peng et al.
(2009) we have that cov(ϵi, ϵl) = ωil/ωiiωll and var(ϵi) = 1/ωii.

2.3. The Stepwise Algorithm
Conditionally on its neighbors, Xi is independent of all the other variables. Therefore,
given a system of neighborhoods {Ai}p

i=1 and l /∈ Ai (and so i /∈ Al), the partial
correlation between Xi and Xl can be obtained by the following procedure based on
Lemma 1 of Peng et al. (2009) described in Remark 2: (i) regress Xi on XAi

and
compute the regression residual εi; (ii) regress Xl on XAl

and compute the regression
residual εl; (iii) calculate the Pearson correlation between εi and εl.

This reasoning motivates the StepGraph algorithm. At each step k of StepGraph, we
have a working system of neighborhoods Âk

1, ..., Âk
p. Then, if l /∈ Âk

j one would expect,
under this working assumption, that the empirical partial correlation coefficient ρ̂

jl.Âk
j

is close to zero. If the maximum absolute partial correlation computed this way is large,
then we conclude that the working system of neighborhoods needs to be updated. We
then add the most likely new edge, the one with the largest partial correlation. This
constitutes the forward step. In the backward step, if the minimum absolute partial
correlation coefficient between presently connected nodes, j and l, is too small, then
this edge is removed.
A step by step description of StepGraph is given below:

Graphical Stepwise Algorithm

Input The (centered) data {x1, ..., xn} , and the forward and backward thresholds αf

and αb.

Initialization k = 0: set Â0
1 = Â0

2 = · · · = Â0
p = ϕ.

Iteration Step Given Âk
1, Âk

2, ..., Âk
p we compute Âk+1

1 , Ak+1
2 , ..., Âk+1

p as follows.

Forward For each j = 1, ..., p do the following.
For each l /∈ Âk

j calculate the partial correlations fk
jl as follows.
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(a) Regress the jth variable on the variables with subscript in the set Âk
j and

compute the regression residuals ek
j =

(
ek

1j , ek
2j , ..., ek

nj

)
.

(b) Regress the lth variables on the variables with subscript in the set Âk
l and

compute the regression residuals ek
l =

(
ek

1l, ek
2l, ..., ek

nl

)
.

(c) Obtain the partial correlation fk
jl by calculating the Pearson correlation be-

tween ek
j and ek

l .

If
max

l /∈Âk
j ,j∈V

∣∣∣fk
jl

∣∣∣ =
∣∣∣fk

j0l0

∣∣∣ ≥ αf

set Âk+1
j0

= Âk
j0 ∪ {l0} , Âk+1

l0
= Âk

l0
∪ {j0} , Âk+1

l = Âk
l for l ̸= j0, l0

If
max

∣∣∣fk
jl

∣∣∣ =
∣∣∣fk

j0l0

∣∣∣ < αf , stop.

Backward For each j = 1, ..., p do the following.
For each l ∈ Âk+1

j calculate the partial correlation bk
jl as follows.

(a) Regress the jth variables on the variables with subscript in the set Âk+1
j \ {l}

and compute the regression residuals rk
j =

(
rk

1j , rk
2j , ..., rk

nj

)
.

(b) Regress the lth variable on the variables with subscript in the set Âk+1
l \ {j}

and compute the regression residuals rk
l =

(
rk

1l, rk
2l, ..., rk

nl

)
.

(c) Compute the partial correlation bk
jl by calculating the Pearson correlation

between rk
j and rk

l .

If
min

l∈Âk
j ,j∈V

∣∣∣bk
jl

∣∣∣ =
∣∣∣bk

j0l0

∣∣∣ ≤ αb

set Âk+1
j0

→ Âk+1
j0

\ {l0} , Âk+1
l0

→ Âk+1
l0

\ {j0}.

Output

1. A collection of estimated neighborhoods Âj , j = 1, . . . , p.

2. The set of estimated edges Ê =
{

(i, l) ∈ V 2 : i ∈ Âl

}
.

3. An estimate of Ω, Ω̂ = (ω̂il)p
i,l=1 with ω̂il defined as follow: in the case i = l,

ω̂ii = n/(eT
i ei) for i = 1, ..., p, where ei is the vector of the prediction errors in

the regression of the ith variable on XÂi
. In the case i ̸= l we must distinguish

two cases, if l /∈ Âi then ω̂il = 0, otherwise ω̂il = n
(
eT

i el

)
/
[(

eT
i ei

) (
eT

l el

)]
(see

Remark 2).

2.4. Thresholds Selection by Cross-Validation
Let X be the n× p matrix with rows xi = (xi1, . . . , xip), i = 1, . . . , n, corresponding to
n observations. We randomly partition the dataset {xi}1≤i≤n into K disjoint subsets of
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approximately equal sizes, the tth subset being of size nt ≥ 2 and
K∑

t=1
nt = n. For every

t, let {x(t)
i }1≤i≤nt be the tth validation subset, and its complement {x̃(t)

i }1≤i≤n−nt , the
tth training subset. For every t and for every pair (αf , αb) of threshold parameters let
Â(t)

1 , . . . , Â(t)
p be the estimated neighborhoods given by StepGraph using the tth training

subset. For every j = 1, . . . , p let β̂Â(t)
j

be the estimated coefficient of the regression of

the variable Xj on the neighborhood Â(t)
j .

Consider now the tth validation subset. So, for every j, using β̂(t)
A(t)

j

, we obtain the vector

of predicted values X̂(t)
j (αf , αb). If A(t)

j = ∅ we predict each observation of Xj by the
sample mean of the observations in the tth dataset of this variable.

Then, we define the K–fold cross–validation function as

CV (αf , αb) = 1
n

K∑
t=1

p∑
j=1

∥∥∥X(t)
j − X̂(t)

j (αf , αb)
∥∥∥2

(9)

where ∥·∥ denotes the L2-norm or euclidean distance in Rp. Hence the K–fold cross–
validation forward–backward thresholds α̂f , α̂b is

(α̂f , α̂b) =: argmin
(αf ,αb)∈H

CV (αf , αb)

where H is a grid of ordered pairs (αf , αb) in [0, 1] × [0, 1] over which we perform the
search. For a detailed description see Appendix A.

2.5. Example

To illustrate the algorithm we consider the GGM with 16 edges given in the first panel
of Figure 1. We draw n = 1000 independent observations from this model (see the next
section for details). The values for the threshold parameters αf = 0.17 and αb = 0.09
are determined by 5-fold cross-validation. The figure also displays the selected pairs of
edges at each step in a sequence of successive updates of Âk

j , for k = 1, 4, 9, 12 and the
final step k = 16, showing that the estimated graph is identical to the true graph.
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Figure 1: True graph and sequence of successive updates of Âk
j , for k = 1, 4, 9, 12, 16 of

StepGraph.

3. Numerical Results and Real Data Example
We conducted extensive Monte Carlo simulations to investigate the performance of
StepGraph. In this section we report some results from this study and a numerical
experiment using real data.

3.1. Monte Carlo Simulation Study
Simulated Models
We consider three dimension values p = 50, 100, 150 and three different models for Ω:

Model 1 Autoregressive model of orden 1, denoted AR(1). In this case Σij =
0.4|i−j| for i, j = 1, . . . p.

Model 2 Nearest neighbors model of order 2, denoted NN(2). For each node we
randomly select two neighbors and choose a pair of symmetric entries of Ω using
the NeighborOmega function of the R package Tlasso.

Model 3 Block diagonal matrix model with q blocks of size p/q, denoted BG. For
p = 50, 100 and 150, we use q = 10, 20 and 30 blocks, respectively. Each block,
of size p/q = 5, has diagonal elements equal to 1 and off-diagonal elements equal
to 0.5.
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For each p and each model we generate R = 50 random samples of size n = 100. These
graph models are widely used in the genetic literature to model gene expression data.
See for example Lee and Liu (2015) and Lee and Ghi (2006). Figure 2 displays graphs
from Models 1-3 with p = 100 nodes.
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Figure 2: Graphs of AR(1), NN(2) and BG graphical models for p = 100 nodes.

Methods
We compare the performance of StepGraph with graphical lasso (Glasso), constrained
l1-minimization for inverse matrix estimation (CLIME) and equivalent partial corre-
lation (EPC) proposed by Friedman et al. (2008), Cai et al. (2011) and Liang et al.
(2015) respectively. More precisely, the methods compared in our simulation study are:

1. The Glasso estimate obtained by solving the ℓ1 penalized-likelihood problem:

min
Ω≻0

(
−log{det[Ω]} + tr{ΩX⊤X} + λ ∥ Ω ∥1

)
. (10)

In our simulations and examples we use the R-package CVglasso with the tuning
parameter λ selected by 5−fold crossvalidation (the package default).

2. The CLIME estimate obtained by symmetrization of the solution of

min{∥ Ω ∥1 subject to |SΩ − I|∞ ≤ λ}, (11)

where S is the sample covariance, I is the identity matrix, |·|∞ is the elementwise
l∞ norm, and λ is a tuning parameter. For computations, we use the R-package
clime with the tuning parameter λ selected by 5−fold crossvalidation (the pack-
age default).

3. The EPC method, which performs multiple hypothesis tests based on an equiv-
alent measure to the partial correlation coefficient. This method starts by con-
structing a reduced system of neighboorhoods based on correlation screening step,
which identifies correlation coefficients that are significantly different for zero. We
use the R-package equSA with default choice of parameters.

4. The proposed method StepGraph with the forward and backward thresholds,
αf > αb, determined by 5-fold crossvalidation, as described in Appendix A. A
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slight modification of StepGraph, called StepGraph2, uses a reduced sytem of
neighborhoods as in EPC. This version is available as an option in our implemen-
tation.

To evaluate the graph recovery we compute the Matthews correlation coefficient (Matthews
1975)

MCC = TP × TN − FP × FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

, (12)

the Specificity = TN/(TN + FP) and the Sensitivity = TP/(TP + FN). Here TP,
TN, FP and FN are the number of true positives, true negatives, false positives and
false negatives, respectively. Larger values of MCC, Sensitivity and Specificity indicate
better performances (Fan et al. 2009; Baldi et al. 2000).
The performance of Ω̂ as an estimate for Ω is measured by mF = ||Ω̂ − Ω||F (where
|| · ||F denotes the Frobenius norm) and by the normalized Kullback-Leibler divergence
defined by mNKL = DKL/(1 +DKL) where

DKL = 1
2
(
tr
{
Ω̂Ω−1

}
− log

{
det

[
Ω̂Ω−1

]}
− p

)

is the the Kullback-Leibler divergence between Ω̂ and Ω.

Results
Table 1 shows the MCC performance for the three methods under Models 1-3. For
models 1 and 2, StepGraph and EPC clearly outperforms the other two methods, with
CLIME being only slightly better than Glasso. EPC is slightly better than StepGraph
and worse than StepGraph2. Moreover, the equSA package often crashes in the case
of model 3 (NA values reported in the table). Cai et al. (2011) pointed out that a
procedure yielding a more sparse Ω̂ is preferable because this facilitates interpretation
of the data. The sensitivity and specificity results, reported in Table 5 in Appendix B,
show that in general StepGraph, StepGraph2 and EPC estimate more sparse graphs
than the CLIME and Glasso, yielding fewer false positives (more specificity) but a
few more false negatives (less sensitivity). Table 2 shows that all the methods are
roughly comparable under AR(1) and show equally poor performances under NN(2).
StepGraph and StepGraph2 outperform the competitors under model BG.
The axes in the panels in Figure 3 display the graph p-nodes in a given order. Each
cell displays a gray level proportional to the frequency with which the corresponding
pair of nodes appear in the estimated graph from the R = 50 simulation runs. Hence
a white color in a given cell (i, j) means that nodes i and j are never adjacent in the
graph. On the other hand, a pair of nodes that are always adjacent in the graph are
given a black color. Notice that the sparsity patterns estimated by StepGraph and
StepGraph2 best match those of the true models. As noticed before, EPC results are
missing for the case of BG. Figures 1 -3 in Appendix B display similar heatmaps and
conclusions for 100 and 150 nodes.
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Table 1: Comparison of means and standard errors (in brackets) of MCC over R = 50
replicates.

Model p StepGraph StepGraph2 Glasso CLIME EPC
50 0.741 (0.009) 0.863 (0.005) 0.419 (0.016) 0.492 (0.006) 0.831 (0.005)

AR(1) 100 0.751 (0.004) 0.847 (0.005) 0.433 (0.020) 0.464 (0.004) 0.803 (0.005)
150 0.730 (0.004) 0.837 (0.004) 0.474 (0.017) 0.499 (0.003) 0.778 (0.004)
50 0.751 (0.004) 0.857 (0.006) 0.404 (0.014) 0.401 (0.007) 0.870 (0.004)

NN(2) 100 0.802 (0.005) 0.875 (0.005) 0.382 (0.006) 0.407 (0.005) 0.862 (0.000)
150 0.695 (0.007) 0.799 (0.004) 0.337 (0.008) 0.425 (0.003) 0.762 (0.004)
50 0.898 (0.005) 0.832 (0.028) 0.356 (0.009) 0.482 (0.005) NA NA

BG 100 0.857 (0.005) 0.857 (0.005) 0.348 (0.004) 0.461 (0.002) NA NA
150 0.780 (0.008) 0.780 (0.008) 0.314 (0.003) 0.408 (0.003) NA NA

Table 2: Comparison of means and standard errors (in brackets) of mF and mNKL over
R = 50 replicates.

StepGraph StepGraph_2 Glasso CLIME EPC
Model p mNKL mF mNKL mF mNKL mF mNKL mF mNKL mF

50 0.70 3.82 0.66 3.59 0.64 3.90 0.63 3.91 0.67 3.75
(0.00) (0.00) (0.00) (0.03) (0.00) (0.02) (0.00) (0.01) (0.00) (0.03)

AR(1) 100 0.83 5.73 0.81 5.24 0.80 5.72 0.79 5.75 0.82 5.56
(0.00) (0.00) (0.00) (0.03) (0.00) (0.02) (0.00) (0.01) (0.00) (0.03)

150 0.89 7.16 0.87 6.53 0.86 7.21 0.86 7.25 0.88 7.03
(0.00) (0.00) (0.00) (0.03) (0.02) (0.02) (0.01) (0.01) (0.00) (0.02)

50 0.99 6.98 0.99 6.88 0.99 6.65 0.99 6.64 1.00 6.39
(0.00) (0.00) (0.00) (0.01) (0.00) (0.01) (0.00) (0.00) (0.00) (0.00)

NN(2) 100 1.00 10.11 1.00 10.09 1.00 9.64 1.00 9.60 1.00 9.30
(0.00) (0.00) (0.00) (0.01) (0.00) (0.01) (0.00) (0.01) (0.00) (0.00)

150 1.00 12.37 1.00 12.34 1.00 11.90 1.00 11.79 1.00 11.51
(0.00) (0.00) (0.00) (0.01) (0.00) (0.01) (0.00) (0.00) (0.00) (0.00)

50 0.46 1.44 0.50 1.97 0.85 5.45 0.82 5.03 NA NA
(0.00) (0.00) (0.02) (0.23) (0.00) (0.10) (0.00) (0.05) NA NA

BG 100 0.71 2.94 0.71 2.94 0.93 9.16 0.92 8.71 NA NA
(0.00) (0.00) (0.00) (0.00) (0.00) (0.07) (0.00) (0.02) NA NA

150 0.88 6.10 0.88 6.10 0.96 11.59 0.96 11.42 NA NA
(0.00) (0.00) (0.00) (0.00) (0.00) (0.06) (0.00) (0.02) NA NA

Table 3 compares the average running time, in seconds, for each method under model
AR(1) with p = 50 nodes and R = 50 replications. The times were obtained using the
R-package tictoc.

Table 3: Comparison of average running time, in seconds, for each method under model
AR(1) with p = 50 nodes and R = 50 replications.

Mean Standard Error
StepGraph 444.50 16.83
StepGraph2 130.81 0.75
Glasso 0.28 0.01
CLIME 122.48 0.11
EPC 2.27 0.01

In Appendix C we compare the performance of StepGraph using cross–validation and
extended Bayesian criterion (EBIC). The results show that StepGraph based on EBIC
trades–off a moderate decrease in sensitivity and increase the considered distances in
exchange for a considerable decrease in average computing time.
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True StepGraph StepGraph_2 Glasso CLIME EPC
AR(1)

True StepGraph StepGraph_2 Glasso CLIME EPC
NN(2)

True StepGraph StepGraph_2 Glasso CLIME EPC
BG

Figure 3: Models heatmaps for the frequency of adjancency for each pair of nodes, for
models AR(1), NN(2) and BG, with p = 50 nodes. The axes display the graph p-nodes
in a given order.

3.2. Analysis of Breast Cancer Data
In preoperative chemoterapy, the complete eradication of all invasive cancer cells is re-
ferred to as pathological complete response, abbreviated as pCR. It is known in medicine
that pCR is associated with the long-term cancer-free survival of a patient. Gene ex-
pression profiling (GEP) – the measurement of the activity (expression level) of genes
in a patient – could in principle be a useful predictor for the patient’s pCR.
Using normalized gene expression data of patients in stages I-III of breast cancer,
Hess et al. (2006) aim to identify patients that may achieve pCR under sequential
anthracycline paclitaxel preoperative chemotherapy. When a patient does not achieve
pCR state, he is classified in the group of residual disease (RD), indicating that cancer
still remains. Their data consist of 22283 gene expression levels for 133 patients, with
34 pCR and 99 RD. Following Fan et al. (2009) and Cai et al. (2011) we randomly split
the data into a training set and a testing set. The testing set is formed by randomly
selecting 5 pCR patients and 16 RD patients (roughly 1/6 of the subjects) and the
remaining patients form the training set. From the training set, a two sample t-test is
performed to select the 50 most significant genes. The data is then standardized using
the standard deviation estimated from the training set.
We apply a linear discriminant analysis (LDA) to predict whether a patient may achieve
pathological complete response (pCR), based on the estimated inverse covariance ma-
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trix of the gene expression levels. We label with r = 1 the pCR group and r = 2 the
RD group and assume that data are normally distributed, with common covariance
matrix Σ and different means µr. From the training set, we obtain µ̂r, Ω̂ and for the
test data compute the linear discriminant score as follows

δr(x) = x⊤Ω̂µ̂r − 1
2µ⊤

r Ω̂µr + logπ̂r for i = 1, . . . , n, (13)

where π̂r is the proportion of group r subjects in the training set. The classification
rule is

r̂(x) = argmax δr(x) for r = 1, 2. (14)

For every method we use 5-fold cross validation on the training data to select the tuning
constants. We repeat this scheme 100 times.
Table 4 displays the means and standard errors (in brackets) of Sensitivity, Specificity,
MCC and Number of selected Edges using Ω̂ over the 100 replications. As measured
by MCC, the performance of StepGraph and CLIME are similar. However notice that
StepGraph is preferable because the recovered graph is much more sparse. On the
other hand, the performances of Glasso and EPC are similarly poor. The results of
StepGraph2 are similar to those of StepGraph and therefore omited.

Table 4: Comparison of means and standard errors (in brackets) of Sensitivity, Speci-
ficity, MCC and Number of selected edges over 100 replications.

StepGraph Glasso CLIME EPC
Sensitivity 0.798 (0.020) 0.612 (0.021) 0.786 (0.020) 0.682 (0.021)
Specificity 0.784 (0.010) 0.754 (0.011) 0.788 (0.010) 0.712 (0.007)
MCC 0.520 (0.020) 0.342 (0.021) 0.516 (0.020) 0.346 (0.017)
Number of Edges 54 (2) 1712 (63) 4823 (8) 13 (0)

4. Concluding Remarks
This paper introduces a stepwise procedure, called StepGraph, to perform covariance
selection in high dimensional Gaussian graphical models. StepGraph uses a different
parametrization of the Gaussian graphical model based on Pearson correlations between
the best-linear-predictors prediction errors. The algorithm begins with a family of
empty neighborhoods and using basic steps, forward and backward, adds or delete
edges until appropriate thresholds are reached. These thresholds are automatically
determined by cross–validation.
StepGraph is compared with Glasso, CLIME and EPC under different Gaussian graph-
ical models (AR(1), NN(2) and BG) and using different performance measures regard-
ing network recovery and sparse estimation of the precision matrix Ω. StepGraph is
shown to have good support recovery performance and to produce more sparse mod-
els than Glasso and CLIME (i.e. StepGraph is a parsimonious estimation procedure).
StepGraph and StepGraph2 (a variant including a pre-processing correlation screen-
ing step) compare well with standard procedures including Glasso, CLIME and EPC.
Particularly good simulation results are obtained under block models where the other
approaches face some difficulties.



14 A Stepwise Approach for High-Dimensional Gaussian Graphical Models

We apply StepGraph for the analysis of breast cancer data and show that our method
is a useful tool for applications in medicine and other fields.
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A. Selection of the Thresholds Parameters by Cross-Validation
In this section we describe the selection of the forward and backward thresholds for
StepGraph.
Let X be the n× p matrix with rows xi = (xi1, . . . , xip), i = 1, . . . , n, corresponding to
n observations. For each j = 1, . . . , p, let Xj = (x1j, . . . , xnj)⊤ denote the jth–column
of the matrix X.
We randomly partition the dataset {xi}1≤i≤n into K disjoint subsets of approximately

equal size, the tth subset being of size nt ≥ 2 and
K∑

t=1
nt = n. For every t, let {x(t)

i }1≤i≤nt

be the tth validation subset, and its complement {x̃(t)
i }1≤i≤n−nt , the tth training subset.

For every t = 1, . . . , K and threshold parameters (αf , αb) ∈ [0, 1]×[0, 1] let Â(t)
1 , . . . , Â(t)

p

be the estimated neighborhoods given by StepGraph using the tth training subset
{x̃(t)

i }1≤i≤n−nt with x̃(t)
i = (x̃(t)

i1 , . . . , x̃
(t)
ip ), 1 ≤ i ≤ n − nt. Consider for every node

j the estimated neighborhood Â(t)
j = {l1, . . . , lq} and let β̂Â(t)

j
be the estimated coeffi-

cient of the regression of X̃j = (x̃(t)
1j , . . . , x̃

(t)
n−ntj)⊤ on Xl1 , . . . , Xlq , represented in (16)

(red colour).
Consider the tth validation subset {x(t)

i }1≤i≤nt with x(t)
i = (x(t)

i1 , . . . , x
(t)
ip ), 1 ≤ i ≤ nt

and for every j let X(t)
j =

(
x

(t)
1j , . . . , x

(t)
ntj

)⊤
and define the vector of predicted values

X̂(t)
j (αf , αb) = XÂ(t)

j
β̂

(t)
A(t)

j

,

where XÂ(t)
j

is the matrix with rows (x(t)
il1 , . . . , x

(t)
ilq

), 1 ≤ i ≤ nt represented in (16) (in

blue colour). If the neighborhood A(t)
j = ∅ we define

X̂(t)
j (αf , αb) = (x̄(t)

j , . . . , x̄
(t)
j )⊤

where x̄(t)
j is the mean of the sample of observations x(t)

1j , . . . , x
(t)
ntj.

We define the K–fold cross–validation function as

CV (αf , αb) = 1
n

K∑
t=1

p∑
j=1

∥∥∥X(t)
j − X̂(t)

j (αf , αb)
∥∥∥2

where ∥·∥ the L2-norm or euclidean distance in Rp. Hence the K–fold cross–validation
forward–backward thresholds α̂f , α̂b is

(α̂f , α̂b) =: argmin
(αf ,αb)∈H

CV (αf , αb) (15)

where H is a grid of ordered pairs (αf , αb) in [0, 1] × [0, 1] over which we perform the
search.
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tth training subset
· · · x̃

(t)
1j · · · x̃

(t)
1l1

· · · x̃
(t)
1lq

· · ·
...

...
...

...
...

...
...

· · · x̃
(t)
n−ntj · · · x̃

(t)
n−ntl1

· · · x̃
(t)
n−ntlq

· · ·

tth validation subset
· · · x

(t)
1j · · · x

(t)
1l1

· · · x
(t)
1lq

· · ·
...

...
...

...
...

...
...

· · · x
(t)
ntj · · · x

(t)
ntl1

· · · x
(t)
ntlq

· · ·



(16)

Remark 3 Matrix (16) represents, for every node j the comparison between estimated
and predicted values for cross-validation. β̂Â(t)

j
is computed using the observations X̃j =

(x̃(t)
1j , . . . , x̃

(t)
n−ntj)⊤ and the matrix X̃Â(t)

j
with rows (x̃(t)

il1 , . . . , x̃
(t)
ilq

), i = 1, . . . , n − nt in

the tth training subset (red colour). Based on the tth validation set X̂(t)
j is computed

using XÂ(t)
j

and compared with Xj (in blue color).

B. Additional Simulation Results
In this section we give aditional simulation results. Table 5 reports additional Specificity
and Sensitivity results from our simulation study. Figures 3 - 6 display the heatmaps
for the three considered models and p equal to 50, 100 and 150.
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C. Comparison of Cross-Validation and EBIC
Let (X1, . . . , Xp)⊤ ∼ N(0,Σ) with Ω = (ωij)i,j=1...,p = Σ−1 the precision matrix. Let
G = (V,E) denote the associated Gaussian graphical model (GGM) where V is the set
of nodes and E is the set of edges.
For every pair of forward-backward thresholds (αf , αb) and based in a n×p data matrix
X, let Ω̂ = Ω̂(αf ,αb) and Ê = Ê(αf ,αb) be the estimated precision matrix and the set of
edges, respectively, computed by the StepGraph algorithm.
The EBIC criterion, see (1) of Foygel and Drton (2010), is defined as

EBICγ(αf , αb) = −2ln(Ω̂) + |Ê|log(n) + 4|Ê|γlog(p) (17)

where ln(Ω̂) denotes the log-likehood function based on the estimated model Ω̂, |Ê|
is the cardinal of Ê and γ is a parameter that controls the consistency when p and n
increase. If γ = 0, EBIC is the classical Bayesian information criterion. Usual values
of γ are 1/2 and 1.
So, given a value of γ, the optimal forward–backward thresholds (α̂f , α̂b) based on
EBICγ is defined as

(α̂f , α̂b) = argmin
(αf ,αb)∈H

EBICγ(αf , αb)

where H ⊆ [0, 1] × [0, 1] is a grid over which we perform the search.
We performed a new simulation experiment comparing the performance of StepGraph
using the cross-validation function and EBIC, denoted by StepGraph (CV) and Step-
Graph (EBIC) with γ = 1/2 as recommended by Foygel and Drton (2010), respectively.
For the GGM AR(1) we generate R = 50 random samples of size n = 100.
Tables 6, 7 and 8 show that StepGraph (EBIC) trades–off a moderate decrease in
sensitivity and increase the considered distances in exchange for a considerable decrease
in average computing time.

Table 6: Comparison of means and standard errors (in brackets) of Specificity (TN%),
Sensitivity (TP%) and MCC over R = 50 replicates.

Sensitivity Specificity MCC
StepGraph (CV) 0.77 (0.02) 0.99 (0.00) 0.75 (0.01)
StepGraph (EBIC) 0.63 (0.01) 1.00 (0.00) 0.77 (0.01)

Table 7: Comparison of means and standard errors (in brackets) of mF and mNKL over
R = 50 replicates.

mF mNKL

StepGraph (CV) 0.685 (0.004) 3.771 (0.033)
StepGraph (EBIC) 0.708 (0.003) 4.011 (0.024)

Table 8: Comparison ot (CPU) times, in seconds, to estimate the precision matrix
using StepGraph (CV) and StepGraph (EBIC) over R = 50 resplicates.

Mean Standard Error
StepGraph (CV) 444.50 16.83
StepGraph (EBIC) 89.59 4.26
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