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Abstract

We present an approach to the rank-based estimation of mixed effects models,
extending existing methods to random effects structures beyond random inter-
cepts. The estimates obtained from our procedure are insensitive to outlying
observations including leverage points, (almost) tuning-parameter free and can
be computed very efficiently. Furthermore, the resulting estimates allow for model
diagnostics, especially with respect to the identification of outlying observations
or groups in the data. The properties of the proposed estimators, in particular,
their robustness to different outlier types, are studied by means of simulation
studies. The methodology is illustrated with applications to the sleep study data
set and to data from accelerated aging experiments on photovoltaic (PV) mod-
ules.

Keywords: Non-parametric regression, mixed effects models, longitudinal data, rank-
based regression, robust statistics.

http://dx.doi.org/10.52933/jdssv.v4i7.112


2 Rank-Based Estimation of Mixed Effects Models

1. Introduction

The mixed effects model is a popular extension of the standard linear regression model.
It is able to deal with clustered error structures, e.g., in cases where multiple mea-
surements are made on the same subject. In this case, the error terms are no longer
independent and identically distributed.

In general, the model equation for a standard linear mixed effects model is given by

y = Xβ +Zb+ ε, (1)

where β are the so-called fixed effects, b are the individual- or group-specific random
effects, and ε are the independent errors. X and Z are matrices of predictors and y is
the response. If Z is the vector of ones, the associated random effect is called a random
intercept, otherwise we speak about random slopes. In the classical parametric setting,
it is assumed that both the errors and random effects are homoscedastic and follow a
normal distribution. Based on this assumption, the standard approaches of estimation
are maximum likelihood (ML) and restricted maximum likelihood (REML). Pinheiro
and Bates (2000) provide a comprehensive overview of both approaches.

In practice, we are often confronted with data that do not comply with the normality
assumption imposed by the standard estimation approaches mentioned above. The
data may contain measurement errors or unusual observations (so-called outliers) and
the error distributions might be non-symmetric or heavy-tailed. Such deviations can
cause the standard parametric estimation procedures to break down, resulting in heavily
distorted coefficient estimates. The contaminated estimates make it difficult to identify
the outlying observations which can be masked by wrong fits.

The fields of non-parametric and robust statistics aim to develop methodology that
does not rely (or relies far less) on distributional assumptions, and is not distorted by
the presence of unusual measurements. Different approaches to estimate mixed effects
models in a robust manner have been proposed in the literature. Various methods
are based on down-weighing observations, i.e., M- or S-estimation (see e.g., Copt and
Victoria-Feser 2006; Koller 2013; Agostinelli and Yohai 2016). These methods are often
computationally very expensive. Other methods replace the normality assumption for
the error term and the random effects with more heavy-tailed distributions such as
the t-distribution (Pinheiro et al. 2001). A further line of robust and non-parametric
estimation methods is provided in the framework of rank-based regression (see e.g.,
Kloke et al. 2009; Bilgic 2012; Jung and Ying 2003; Wang and Zhu 2006; Wang and
Zhao 2008). These methods have the advantage of being computationally cheap, robust
against outlying responses and efficient, even if the modeling assumptions for ML and
REML as mentioned above are violated.

There are two main shortcomings of the existing rank-based methods for the estimation
of linear mixed effects models: (1) In the setting of experiments that are not designed,
some of the predictors included in X or Z might be unusual or outlying (e.g., due
to measurement errors). Such leverage points can still distort the coefficient estimates
obtained from the existing models. (2) To the best of our knowledge, there does not
exist a rank-based estimation method that is able to deal with more complex random
effects structures: All rank-based methods are designed for random intercepts, but
cannot account for random slopes of any type. However, we often do not want to
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limit our model estimates to random intercepts. Instead, we might be interested in
the individual-specific response to a treatment, not only with regard to changes in the
average response, but also regarding the slope in a certain covariate.

The present work extends the rank-based estimation approaches presented in Kloke
et al. (2009) and Bilgic (2012) to allow for model structures that include random slopes.
Furthermore, a weighting procedure is introduced that protects the estimates against
the effects of leverage points. The results allow for model diagnostics both for the whole
sample and on group-level. Unusual groups and observations can be identified, aiding
interpretation and deeper understanding of the modeled data.

2. Preliminaries

2.1. Rank-based regression

Given a regular regression model

y = α1N +Xβ + e (2)

with y ∈ RN , X ∈ RN×p, intercept parameter α ∈ R, regression coefficients β ∈ Rp and
1N the N -dimensional all-ones vector, where N describes the number of observations.
The error term e ∈ RN is assumed to be generated by a continuous distribution with a
positive definite covariance matrix given by σ2

eIN with variance parameter 0 < σ2
e < ∞.

IN is the N -dimensional identity matrix.

A robust rank-based estimate of the regression coefficients β can be obtained by mini-
mizing a pseudo norm of the form

||r||φ =
N∑
j=1

a[R(rj)]rj (3)

in the residuals r = y−α1N −Xβ ∈ RN . Here, R(rj) denotes the rank of the residual
rj among the components r1, . . . , rN of the residual vector r. The scores are given by
a[t] = φ(t/(N + 1)) where φ(u) is a non-decreasing, bounded and square-integrable
function such that

∑
t a[t] = 0. Proposed in Jureckova (1971), the pseudo norm (3) is

also called Jaeckel’s dispersion function after Jaeckel (1972). The score function φ(·)
can be specified in various ways. We use the Wilcoxon score

φ(u) =
√
12

[
u− 1

2

]
, (4)

which provides a good trade-off between efficiency and robustness, if the error term e
is not normally distributed (McKean 2004). With this score function, the norm can be
written equivalently as a scaled sum of pairwise differences (see McKean 2004):

||r||φ =

√
3(N + 1)

2

N∑
j=1

N∑
k=1

|rj − rk|. (5)
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The ordinary rank-based regression estimate is then given by

β̂φ = argmin
β

||y −Xβ||φ. (6)

The criterion (6) does not allow to estimate the intercept parameter α directly, because
the ranks of the residuals are invariant to shifts by a constant. The intercept can be
estimated by applying a robust estimator of location T : RN → R to the vector of
residuals r̃ = y −Xβ̂φ:

α̂ = T(y −Xβ̂φ) = T(r̃). (7)

The error variance σ2
e is estimated by applying a robust scale estimator, denoted by

S : RN → R+, to the resulting vector of residuals r = y−Xβ̂φ− α̂. We suggest using
the one-sample Hodges-Lehmann estimator (Hodges and Lehmann 1963) for intercept
estimation, and the Qn estimator of scale (Rousseeuw and Croux 1993) to estimate the
error variance. These two estimators provide a good trade-off between robustness and
efficiency. Other possible choices for T (·) and S(·) are e.g., the sample median and the
median absolute deviation (MAD).

There is no closed form solution for the minimizer β̂φ in (6). However, the optimization
problem is convex and can be solved efficiently using numerical optimization techniques.
Useful starting values for the optimization can be obtained from an initial ordinary least
squares (OLS) fit or, if we suspect outlying values, from least trimmed squares (LTS,
Rousseeuw and Van Driessen 2006).

A thorough overview of the theory regarding the rank-based regression model may be
found in Chapter 3 of Hettmansperger and McKean (2011).

2.2. Terminology of mixed effects models

Given are multiple measurements from g independent groups. Then, for the ni-
dimensional response vector yi from group i, i = 1, . . . , g, we aim to fit a model of
the form

yi = α1ni
+X iβ + ai1ni

+Zibi + εi, (8)

where N =
∑g

i=1 ni is the total sample size.

We call the coefficients α and β that are shared by all groups the fixed effects. X i ∈
Rni×(p−1) contains the predictors associated with the fixed effects.

The group-specific random effects ai ∈ R and bi ∈ Rk−1 are treated as realizations
of a centered random variable (a, b′)′ ∈ Rk with positive definite covariance matrix
Σ(θ) ∈ Rk×k that is parametrized by a coefficient vector θ. We assume Σ(θ) is a
diagonal matrix, and θ ∈ Rk contains the random effects’ standard deviations. More
generally, Σ(θ) could also be specified as compound symmetric or unstructured with
a θ of suitable length. Zi ∈ Rni×(k−1) is a matrix of predictors corresponding to the
random slope(s) bi. The matrices Zi can be subsets of the columns of the matrices X i,
but also contain further external predictors.

The errors εi are assumed to follow a distribution with finite second moment and
covariance matrix σ2

εIni
. In addition, the errors and the random effects are independent

from each other. The coefficients σε and θ are also referred to as variance components.
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Given estimators α̂, β̂ and âi, b̂i, i = 1, . . . , g, respectively, we denote the marginal
and conditional residuals by

ri,marg = yi − 1ni
α̂−X iβ̂, and (9)

ri,cond = yi − 1ni
α̂−X iβ̂ − 1ni

âi −Zib̂i, (10)

accordingly. For ML and REML estimation (Pinheiro and Bates 2000), the random
effects and the errors are assumed to be centered, independent and normally distributed.

2.3. Rank-based regression for dependent data

Kloke et al. (2009) extend the methodology of rank-based regression with independent
errors to estimate simple mixed effects models with random intercept terms. Their
methodology is further extended by Bilgic (2012) to allow for nested random intercepts
of arbitrary depth. Both methods rely on a two-step estimation procedure, where the
fixed effects are estimated in the first step. The residuals from this first regression are
then used to derive the random effects and the variance components. The authors give
asymptotic properties of their estimators and use them to draw inference on the fixed
effects.

Other rank-based estimation methods for repeated measurements data include the
method proposed in Jung and Ying (2003), and its extensions in Wang and Zhu (2006)
and Wang and Zhao (2008). Those methods follow a different model formulation and
do not explicitly specify the dependency structure of the data beforehand. The authors
consider a simple linear regression model for repeated measurements data, and propose
estimation methods that are able to deal with possible dependencies and heteroscedas-
ticity. Similarly, Abebe et al. (2016) present rank-based fits for generalized estimating
equations.

All of the above mentioned papers focus on drawing inference on the fixed effects in the
model. Contrarily, we focus on the accurate estimation of fixed and random effects in
the presence of outliers. This especially allows for model diagnostics and identification
of unusual (groups of) observations as well as interpretation of the realizations of the
random effects. We do not consider inference for the parameters.

3. Methodology

In the following, we use the formulation of the mixed effects model as presented in
Section 2.2. The proposed estimation procedure relies on the rank-based regression
presented in Section 2.1.

3.1. Rank-based estimation of mixed effects models with random slopes

For simplicity of the exposition and without loss of generality, we drop the intercept
terms α and ai, i = 1, . . . , g, from model (8). Details for the estimation with intercept
can be found in Algorithm A.1.
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By ignoring the dependency structure induced by the random effects, we can obtain an

initial estimate β̂
(0)

of β from a rank-based regression of the stacked models (8)y1
...
yg

 =

X1
...

Xg

β + ẽ. (11)

The random effect structure is absorbed into the error term ẽ ∈ RN . Then, we calculate
the marginal residuals as

r
(0)
i,marg = yi −X iβ̂

(0)
≈ Zibi + εi. (12)

for each i = 1, . . . , g, This gives us g further regression problems that can be solved for
the most likely realizations of the random effects bi:

b̂
(0)

i = argmin
b

||r(0)
i,marg −Zib||φ. (13)

We obtain estimates of the variance components as σ̂
(0)
ε and θ̂

(0)
by applying the Qn

estimator to the conditional residuals

r
(0)
i,cond = yi −X iβ̂

(0)
−Zib̂

(0)

i , (14)

and the estimated random effects b̂
(0)

i .

This set of initial estimates β̂
(0)
, b̂

(0)

i , σ̂
(0)
ε and θ̂

(0)
can now be improved using a

reweighting scheme in the manner of iteratively reweighted least squares. Similar
methodology for the random intercept model is proposed as the generalized rank pro-
cedure in Bilgic (2012).

The basic idea is the following: From the model equation (8), we can directly obtain
the covariance of each vector yi, i = 1, . . . , g. It is given by

Σyi
=Σyi

(σε,θ) = Cov(yi |X i,Zi) = σ2
εIni

+ZiΣ(θ)Z ′
i (15)

and can be robustly estimated by plugging in the variance component estimates:

Σ̂
(0)

yi
= Σyi

(σ̂(0)
ε , θ̂

(0)
). (16)

By multiplying the system of regression equations (11) with Σ−1/2
yi

, the errors ẽ are
transformed to be homoscedastic and uncorrelated. One can then solve the rescaled
equation system(s)

Σ̂
(0)

yi

−1/2yi = Σ̂
(0)

yi

−1/2X iβ + Σ̂
(0)

yi

−1/2ẽi (17)

to achieve a better, more efficient estimate of β.

However, this rescaling step can impose problems in the presence of outlying predictors
or responses. If observations do not follow the regression line, the rotation (17) can
amplify their influence: Due to the linear combinations built in the multiplication with
the estimated covariance matrix, one outlying observation or predictor in group i is
able to contaminate the whole group.
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This can be circumvented by a preceding reweighting step: Based on the conditional
residuals (14), we define outlyingness weights

ν
(0)
ij = min

{
1,

c · σ̂(0)
ε

|r(0)ij,cond|

}
, (18)

for i = 1, . . . , g, j = 1, . . . , ni, where r
(0)
ij,cond are the elements of the conditional residuals

in (14). The tuning parameter c is the cutoff value that is used to classify the residuals
as outlying. As it is a common choice in the literature we set c = 2. We reweigh the
regression equations as follows,

diag
(
ν(0)

)y1
...
yg

 = diag
(
ν(0)

)X1
...

Xg

β + ˜̃e, (19)

where ν(0) = (ν
(0)
11 , . . . , ν

(0)
gng)

′ are the stacked weights. We then proceed with the rescal-
ing step as described in Equation (17) and re-estimate β. The new estimate can then
be used to recalculate the residuals ri,marg as in (12), and improve the random effects

estimates b̂i as in (13). We iterate between these steps until the estimates stabilize.

For error variance estimation, we suggest correcting for the degrees of freedom lost
through the separate fitting of the g regression models that estimate the random effects.
Thus, we apply the following finite-sample correction to the Qn estimator of scale:

Qn,corr(r) =

√
N

N − (p+ g)
Qn(r). (20)

This correction gives good results in simulation studies.

The model fitting procedure is summarized in Algorithm A.1 in the appendix. In all
our simulation experiments, the algorithm converged in less than 5 iterations.

3.2. Further robustification against leverage points

The proposed method is robust against outlying values in the response space (y-
outliers), but can be heavily affected by outliers in the predictor space (X-outliers,
leverage points).

McKean (2004) suggests a method that additionally robustifies the rank-based regres-
sion against leverage points. This is achieved by introducing robustness weights to
the Wilcoxon norm as given in (5). The weights are determined such that influential
and outlying observations, either in terms of leverage (predictor space) or in terms of
unusual responses, are downweighted.

To estimate mixed effects model (8) with a rank-based approach that is robust against
both outliers in response and predictor space, we replace the two regression steps in
Algorithm A.1 points 1. and 3. by weighted versions. A weighted estimator for the
fixed effects β is given by

β̂w = argmin
β

||W (y −Xβ)||φ, (21)
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where W = diag(w11, . . . ., wgng) ∈ RN×N is a diagonal matrix of weights wij, i =
1, . . . , g, j = 1, . . . , ni. Analogously, the weighted estimates of the random effects are
given by

b̂i,w = argmin
b

||W̃ i(ri,marg −Zib)||φ, (22)

where W̃ i = diag(w̃i1, . . . , w̃ini
) is a matrix of group specific robustness weights.

The weights wij can be specified in different ways. We robustify the estimates against
leverage points and downweigh observations that are associated with influential predic-
tors. The weights are determined based on a robust estimate of leverage. Let

wik = min

{
1,

cp
νik

}
, where νik = (xik − vc)

′V −1(xik − vc), (23)

for i = 1, . . . , g and k = 1, . . . , ni. The cutoff cp is selected as the 95%-quantile of the
χ2(p−1)-distribution, where p−1 is the number of columns of X. V and vc are robust
estimates of the covariance and mean of the predictor matrix X. We use the (fast)
minimum covariance determinant estimator (MCD, Hubert et al. 2018). The robustifi-
cation against leverage points using the MCD estimator assumes that the predictors are
continuous and roughly elliptically distributed. In the case that the predictor matrices
include dummy variables, an alternative way to construct weights is offered based on
the hat matrix, see e.g., Cantoni and Ronchetti (2001). A short discussion can be found
in Section S5 of the supplement.

For the group-specific weights in (22), we proceed analogously, and calculate the lever-
age based on the matrices Zi. Note that the matrix W needs to be recalculated based
on the rescaled observations in every iteration. The group-specific weights in W̃ i only
need to be determined once, as the matrices Zi are not modified in the iteration steps.
The detailed estimation procedure is given in Algorithm A.2 in the appendix.

The approach of downweighting data points with high leverage can cause a loss of
efficiency, as “good” leverage points might receive the same weights as “bad” leverage
points. To further improve estimation, McKean (2004) suggests using the so-called
Wilcoxon high-breakdown (HBR) estimator as an alternative. Based on an initial least
trimmed squares (LTS) fit, it determines weights that account for outlyingness in both
predictor- and response space. The extension of our methodology to this estimator is
straightforward.

4. Simulation

In the following, we assess the statistical properties and robustness of our two rank-
based procedures in simulation studies. We refer to the estimator without additional
leverage weights (Algorithm A.1) as Rank, and to the estimator with leverage weights
(Algorithm A.2) as Weighted Rank. The proposed procedures are implemented in the
package rankLME which is available on GitHub (Brune 2024). For comparison, we
consider the classic REML estimator as implemented in the R-package lme4 (Bates et al.
2015). Also, we compare with the estimator proposed by Koller (2013). This estimator
is based on a different robustness concept, namely MM-estimation, and implemented
in the R-package robustlmm (Koller 2016). It is denoted by SMDM in the following.
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All simulations are carried out on a Linux server using R, version 3.6.3 (R Core Team
2020). Replication files for the simulation studies can be found in the GitHub repository
(Brune 2024).

For the simulation study, we start by generating an uncontaminated data set according
to model equation (8). The entries of the predictor matrices X i ∈ Rni×(p−1) are drawn
from the N (0, 4) distribution, and the random slope matrices Zi ∈ Rni×(k−1) contain
the first (k − 1) columns of X i. We add a fixed intercept α and set (α,β′)′ = 1p; also
random intercepts ai, i = 1, . . . , g are included. The random effects are distributed
as (a, b′)′ ∼ N (0, 0.52Ik). We limit the analysis to p = 4 and k = 2. Thus, we have
regression coefficients (α,β′)′ = (α, β1, β2, β3) and random effects (a, b1) with scale
parameters θ = (θ0, θ1). The errors are drawn as εi ∼ N (0, Ini

).

In the next step, up to 50% of the observations are contaminated with one of the
following outlier types:

� y- or response outliers : Observations yij are modified as either yij + s (additive)
or yij · s (multiplicative) for different outlier sizes s

� leverage points or outlying predictors : Rows of the predictor matrices are modified
as xij+ℓ (additive) or xij ·ℓ (multiplicative) where xij = (xij,1, . . . , xij,p−1) ∈ Rp−1

denotes the j’th row of the matrix X i, and ℓ is the leverage coefficient. The
corresponding rows of the matrices Zi are adjusted accordingly.

The outlying observations can either be spread randomly over the g groups, or be
located sequentially. In the sequential case, one observation at a time is replaced and
we achieve groupwise contamination.

Each setting is repeated for R = 200 replications. We report the MSE of the estimates:

MSE(β̂i) =
1

R

R∑
r=1

(β̂
(r)
i − 1)2, (24)

where β
(r)
i is the the estimate of the i’th component of the coefficient vector β, i =

0, . . . , p − 1, obtained in the r’th simulation run, r = 1, . . . , R. β0 corresponds to the
intercept parameter α.

In the interest of clarity, we only report results for randomly located multiplicative
y-outliers and leverage points. Further simulation results for additive and sequentially
located outliers can be found in the supplemental material.

4.1. Bias of the estimates

To explore the bias of the proposed estimators, we repeatedly draw data sets from
the null model (i.e., without outliers), and fit the rank-based mixed effects model as
described in Section 3.

The top row of Figure 1 shows boxplots of the coefficient estimates for different group
sizes ni = ñ, i = 1, . . . , g, and numbers of groups g. The boxplots are symmetrical and
centered around the true values of the coefficients α = β1 = β2 = β3 = 1. Even for
small total sample sizes, the estimates give no evidence for a bias, the median estimate
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resembles the true value. Increasing the number of groups g causes a decrease in the
estimates’ variance. The effect of increasing group sizes ni is less pronounced. Having
many groups seems to be more important than large groups. We observe a higher
variance for the coefficients that are associated with random effects (α and β1). This
is the case as the same predictors are used for estimation of both the fixed and the
random effects. Therefore, higher uncertainty is introduced to the estimation.
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Figure 1: Boxplots of regression coefficient and variance component estimates obtained
from the rank-based estimator for different combinations of group sizes ni and number
of groups g (total sample size: N = g · ni).

The respective estimates of the variance coefficients (or rather standard deviations) are
displayed in the bottom row of Figure 1. The number of groups g and the number of
observations per group ni both have strong influence on the accuracy of the estimates.
The number of groups g, guides the variation of the coefficient estimates. The larger
g, the more random effects are available for variance estimation, and thus the variation
of the estimates decreases. Our method overestimates θ0 and θ1 if the group sizes ni

are small. Due to the two-stage approach for estimation, our method cannot make use
of the self-regularizing properties that evolve from direct likelihood-based estimation
of the variance parameters (with REML). Especially for small groups, the ratio of
observations to parameters for the regression is comparably small. Thus, we tend to
overfit the groups and the variance of the estimated random effects bi, i = 1, . . . , g,
is overestimated. The contrary effect can be observed for the scale parameter of the
errors, σ, which tends to be underestimated: The good fit in each group can reduce
the variance of the conditional residuals. The larger the groups, the more degrees of
freedom remain, and thus the better the variance is conserved.
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However, our methodology yields accurate estimates of the random effects. These can
help with the interpretation of the model and the identification of unusual observa-
tions. This is especially helpful if we want to run model diagnostics and interpret the
realizations of the random effects (also see the applications in Section 5). As soon as
ni is large enough (this study indicates ni ≥ 20), all estimates seem to be consistent,
regardless of the number of groups g.

The results for the weighted rank-based estimator are similar and provided in the
supplemental material.

4.2. Validity of the updating step and efficiency

It is well-known that non-parametric methods are outperformed by parametric methods
if the sample sizes are very small and the assumptions of the parametric approaches
are valid.

Table 1 reports the relative efficiency (Serfling 1980) of our rank-based estimator as
opposed to the baseline REML, the SMDM and the weighted rank-based estimator, as
well as the efficiency of the rank-based estimator to that of its initial value (i.e., the
estimate β(0) obtained before iteration).

Table 1: Efficiency of the rank-based estimator vs. the initial value, REML, SMDM
and Weighted Rank for g, ni ∈ {5, 20, 50}.

g ni initial value REML SMDM Weighted Rank

5 5 0.858 1.159 1.112 0.978

5 20 0.730 1.048 1.046 0.994

5 50 0.712 1.085 1.048 1.003

20 5 0.821 1.134 1.084 0.966

20 20 0.728 1.041 1.017 0.987

20 50 0.726 1.080 1.013 0.988

50 5 0.796 1.163 1.097 0.969

50 20 0.718 1.068 1.031 0.985

50 50 0.768 1.084 1.021 1.000

The rank-based estimator is slightly less efficient than REML and SMDM, but its ef-
ficiency approaches that of REML (and SMDM) with increasing total sample size N .
The weighted version of our estimator is slightly less efficient due to possible down-
weighting of useful observations / leverage points. The updating procedure yields a
considerable improvement over the initial value. Further simulation studies shown in
the supplemental material confirm that the improvement induced by the updating step
is even more pronounced in the presence of outliers.
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Figure 2: MSE (log-scale) of the SMDM, REML, Rank and Weighted Rank estimators
for a 10% proportion of multiplicative response outliers of increasing size, ni = g = 20.
The curves for Rank and Weighted Rank are overplotted.

4.3. Behavior in the presence of outliers

In the following, we examine the behavior of the estimates under contamination with
randomly located multiplicative response outliers and leverage points. We limit our
analyses to the setting with g = 20 and ni = 20. Further simulation results are
reported in the supplemental material.

Response outliers

Figure 2 shows the MSEs of the four estimators for the situation of 10% response outliers
of increasing size s. The MSEs of the two rank-based estimators and SMDM are fairly
constant with increasing outlier size. However, SMDM seems to require a certain outlier
size to make sure they are recognized and accounted for by the algorithm (explaining
the higher error at medium outlier sizes. At the same time, the REML estimates are
severely affected by even small contaminations. Thus, as soon as we suspect outliers to
be present in the samples, it is definitely worth applying a robust estimator.

Figure S3 in the supplemental material examines how the estimator reacts to an increas-
ing proportion of response outliers of size s = 1000. The estimates of α and β provided
by the SMDM estimator break down at an outlier proportion larger than 20%. The
estimates from the rank-based and weighted rank-based estimator stay stable longer
(up to 30% contamination).

Outlying predictors

The MSEs for the coefficient estimates under 10% contamination with leverage points
are reported in Figure 3. This setting clearly shows the advantage of the leverage
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Figure 3: MSE of the SMDM, REML, Rank and Weighted Rank estimators for a 10%
proportion of multiplicative leverage points of increasing size, g = ni = 20

weighted rank-based estimator: While REML, SMDM and the non-weighted rank-
estimator are severely distorted by the leverage points, the weighted rank-based estima-
tor remains largely unaffected. Its coefficient estimates remain constant with increasing
outlier size ℓ.

Figure S7 in the supplemental material examines how the estimator reacts to an in-
creasing proportion of leverage points with ℓ = 100. The estimates of the leverage
weighted estimator are stable up to an outlier proportion of at least 20%, while the
other three estimators are distorted even for small outlier proportions.

5. Applications

In the following section we illustrate the performance of the (weighted) rank-based
estimation method in three different applications, parts of which are mixtures of real
data analysis and introduction of artificial outliers. Especially, we illustrate different
diagnostic tools that may help with identifying outliers or outlying / unusual groups in
the data. Replication files for the data analyses can be found in the GitHub repository
(Brune 2024).

5.1. Sleep study data

We analyze the sleepstudy dataset (Belenky et al. 2003) as included in the lme4 R-
package (Bates et al. 2015). It consists of data from 18 subjects that were exposed to
sleep deprivation and had to complete a reaction test each day. Thus, we expect the
average reaction time to decrease throughout the experiment, but each subject might
react differently to the sleep deprivation.

We fit a mixed effects model with both random and fixed intercept and slope in time.
The model equation for the reaction time of subject i (i = 1, . . . , 18) after t (t = 0, . . . , 9)
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days of sleep deprivation is given by

Reactioni,t = α + β1 · t+ ai + bi · t+ εi,t. (25)

We contaminate the data set in two different ways:

1. Modify the third observation of each individual by multiplying the reaction times
by three (outlying observations). Outliers like this could, e.g., be caused by an
error in the measurement instrument that was used on that day.

2. Modify the first group (individual ‘308’) by multiplying the reaction times by
three (outlying group). The subject here could happen to be very slow, but this
fact should not affect the population average (i.e., fixed effects) too strongly.

Since the predictor in model (25) is exposure time, we do not expect leverage points.
Thus, we compare the estimates from our procedure without leverage weights (rank,
Algorithm A.1) to the standard REML estimator. The original coefficient estimates
and their ratios to the estimates from the two contamination settings are displayed
in Table 2. For the rank-based model, the estimates of α and β1 remain stable in all
contamination settings, they deviate by at most 2% from the baseline estimates.

Table 2: Coefficients estimated by REML and the rank-based estimator for the unmod-
ified sleep study data and the ratio to coefficient estimates for the two outlier settings;
boldface numbers indicate a relative change of more than 10%.

Setting Method α β1 θ0 θ1 σ

baseline
rank 252.10 10.63 31.28 6.56 16.56

REML 251.41 10.47 25.05 5.99 25.57

1.
rank 1.02 0.99 1.07 1.23 1.26

REML 1.29 0.67 - - 7.14

2.
rank 1.01 1.01 1.20 1.00 1.06

REML 1.11 1.23 4.78 2.39 1.59

REML returns a singular fit in the outlying observations setting, the imposed random
effects structure cannot be fitted with lme4. As a consequence, the error variance
σ is overestimated. The estimate returned by the rank-based method remains more
stable. The residuals from REML are strongly skewed (see Figure 4). Due to the
outlying observations in each group, the REML regression lines are shifted upwards
and a majority of the residuals is less than zero. Two of the outlying values are not
recognized as such and fall within the cutoff of 2. For the rank-based method, the
residuals are still centered around zero. The outlying values are recognized correctly. A
few more observations are marked as conspicuous and could require further attention.
However, they already fell outside of the cutoff area without the artificial outliers.

In the outlying group setting, we observe problems with the variance structure imposed
by the model: REML severely overestimates the variance components due to the out-
lying random effect. As an indicator whether the imposed variance structure, i.e., the
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Figure 4: Conditional residuals for the sleep study example in the outlying observations
setting; REML and rank-based estimator.

random effects structure, is reasonable, Lesaffre and Verbeke (1998) suggest reporting
the following norm

di =
∣∣∣∣Ini

− Σ̂
−1/2

yi
ri,margr

′
i,margΣ̂

−1/2

yi

∣∣∣∣2 (26)

for i = 1, . . . , g. di may be interpreted as a residual which measures how well the
covariance structure of the observations yi is captured by the model. Thus, di should
be small if the variance structure is captured well, and should produce large values
if the variance structure in one of the groups does not match that imposed by the
model. A plot of the group index against the variance diagnostic (26) yields Figure 5.
The outlying group cannot be recognized in the case of REML, the magnitudes of the
di’s are all fairly similar. The outlying individual (308) does not stand out. The di’s
calculated from the rank-based fit clearly capture the outlying group.

The examples of contamination here show that outlying values can be masked by the
outcome of the standard REML estimation approach. The standard diagnostic methods
fail in this case. We cannot reliably detect the outlying observations or groups. Opposed
to this, our robust rank-based estimation method allows to clearly identify the unusual
observations and thus enables further analysis.

5.2. Accelerated aging experiments for photovolatic module data

The ADVANCE! project analyzes the aging behavior of photovoltaic (PV) modules
(Berger et al. 2021). Different modules were exposed to various climatic conditions in
accelerated aging experiments. Such experiments are used as the real-time assessment of
material degradation is not possible due to the long time frames in real life. Throughout
the experiments, chemical and electric measurements were taken. We are especially
interested in modeling the power at maximum power point (PMPP) over time, and as a
function of other degradation indicators. The goal is to identify degradation pathways
and understand the influence of treatment with different climatic settings on changes
in material and power loss. The data is available as Knoebl et al. (2024).
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Figure 5: Variance diagnostic (26) for the sleep study example in the outlying group
setting; REML and rank-based estimator.

Pairwise comparison of degradation rates

We compare the results from the two climatic settings Moderate 2 and Moderate 5. In
both settings three modules were treated with damp-heat (i.e., high temperature and
humidity) and irradiance for 1,200 hours. The modules in the Moderate 5-group were
additionally exposed to temperature cycles. We fit the following model:

(PMPP)it = 1 + β1 · Ramp(t) + β2 · t2 + β3 · t2 · 1{Moderate 5}+ bi · t2 + εi,t. (27)

β1 captures an initial power increase, β2 the overall aging, and β3 the additional aging
induced by the treatment with temperature cycles. The intercept / initial power is
fixed at 1. The random effects bi account for the module specific degradation rates over
time.

As can be seen from Figure 6, one module broke during the aging procedure. Thus,
we expect the REML estimate of β3 to be biased downwards trying to account for
the strong power loss of the faulty module. Since we are interested in modeling the
continuous material wear, and not the abrupt degradation caused by material failures,
the robust estimate gives a more reliable characterization of the degradation rate.

The resulting estimates for (β1, β2, β3)
′ are (0.022,−0.014,−0.022)′ for the rank-based

method, and (0.022,−0.013,−0.031)′ for REML. Thus, the degradation for Moderate 5
captured in β3 is estimated to be about 40% larger by REML than by the rank-based
method.

Degradation modeling with spectral measurements

In this analysis, we connect the power loss in PMPP with the material aging measured
using fitted spectra obtained from Fourier-transform infrared (FTIR) spectroscopy. The
changes in the spectra over time indicate changes in the chemical composition of the
materials. The spectral measurements are observed as functions which are fitted au-
tomatically to locate peaks and calculate their area. These fits can go wrong, causing
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Figure 6: Data and fitted values for pairwise comparison of the Moderate 2 and Mod-
erate 5 aging settings.

outlying predictors / leverage points in the resulting data points. We model the degra-
dation for two different climatic settings: Tropical 1 and Tropical 2 treated with 85°C
/ 90°C and 85% / 90% humidity respectively. We aim to explain the power loss over
time caused by the treatment with higher temperature and humidity for the Tropi-
cal 2-modules through the changes in three peaks areas extracted from the spectral
measurements, namely those at wavenumbers (WN) 795, 872 and 3426 cm−1. The
standardized peaks and PMPP are shown in Figure 7. As can be seen, the peak areas
tend to increase with increasing exposition time. Thus, their influence on the decreasing
PMPP should be negative. We fit the model

(PMPP)it = 1 + β1 · Ramp(t) + β2 ·WN 795it + β3 ·WN 872it

+β4 ·WN 3426it + bi · t2 + εit

using REML and our two rank-based methods. The observations that are downweighted
by the weighted rank-based estimator are marked as crosses in Figure 7. Hence, the
algorithm successfully recognizes the outlying predictors, especially for the peak area
at wavenumber 3,426 cm−1.

The fitted coefficients (β1, β2, β3, β4)
′ are (0.0428, 0.0006,−0.0051, 0.0007)′ for REML

and (0.0324,−0.0004,−0.0028,−0.0023)′ for the weighted rank-based method. The
signs of the estimates for β2 and β4 differ between the two estimation methods. The
sign is positive for REML, but negative for our weighted rank-based method. As noticed
before, the shapes of the curves indicate that a negative sign might be more realistic.
For β4, this change in sign is probably caused by the module marked by dashed lines
in the WN 3,426 cm−1 series. The large leverage points lead the non-robust model to
believe the peak has positive influence on the degradation. Accounting for the leverage
points with additional weights as we propose for the weighted rank-based procedure is
essential. Our rank-based procedure without weights has similar problems as REML.
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Figure 7: Peaks from FTIR spectra and PMPP for aging settings Tropical 1 and Tropical
2; points with leverage weight (23) < 1 are marked by ×.

6. Summary and Outlook

The present work proposes a new approach to the rank-based estimation of mixed ef-
fects models. It extends existing methodology for mixed effects models with random
intercepts with the possibility to model random slopes. The estimates obtained from
the rank-based method are insensitive against outlying response values. In addition, the
proposed method yields robustness in the presence of leverage points in the fixed or ran-
dom effects predictor matrices. Our algorithm converges fast and can be implemented
efficiently. An implementation in R is available on GitHub (Brune 2024).

The results of our simulation studies indicate that the bias of the estimates is insignif-
icant: The estimates of the regression coefficients show no evidence of being biased.
For small sample sizes, the variance of the random effects, especially of the random
intercepts, tends to be slightly overestimated. This is inherent to the iterative nature
of the algorithm. A possible mitigation is the derivation of correction factors for the
estimation of the random intercepts. We plan to explore this in detail in future research.

Under normality, the estimates obtained from our methodology compare well with
those obtained from the classic REML estimation. At the same time, the rank-based
approach has advantages in situations where the error- or random effects distributions
deviate from normality. Although we fit more parameters than for the standard es-
timation approaches based on REML, we still gain in efficiency due to our updating
procedure. Accounting for the covariance structure reduces the variance of the fixed
effects estimator β̂. The applications show that the resulting estimates enable model
diagnostics and help with the identification of unusual observations or groups in the
data.

There are different lines of research that can be pursued from this point. One is to
explore the consistency and asymptotic distribution of our estimators in theory. This
would allow for formal inference on the fixed effects estimates. As the methodology
is not yet able to estimate more complex random effects structures such as nested
and crossed effects, it would be interesting to extend the model in this direction. An
alternative to the rank-based estimators based on Jaeckel’s dispersion function applied
in this work could be offered by maximum rank correlation estimators, first proposed
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by Han (1987). The robustness properties of these estimators have been examined in
detail in Alfons et al. (2017).
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If the model has an intercept α, estimate
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Otherwise, α̂(l) = 0.

2. Calculate the marginal residuals

r
(l)
i,marg = yi −X iβ̂

(l)
− α̂(l)1ni

.

3. Use r
(l)
i,marg to obtain predictions b̂

(l)

i for the random effects bi from (13).

If the model has random intercepts ai, estimate

â
(l)
i = T (r

(l)
i,marg −Zb̂

(l)

i ).

Otherwise, â
(l)
i = 0.

4. Obtain conditional residuals

r
(l)
i,cond = yi − α̂(l)1ni

−X iβ̂
(l)

− â
(l)
i 1ni

−Zib̂
(l)

i .

5. Use the r
(l)
i,cond and the realizations â

(l)
i , b̂

(l)

i to estimate the variance components

θ(l) and σ
(l)
ε with the Qn estimator (see Rousseeuw and Croux 1993).

6. Determine the outlyingness weights ν
(l)
ij from the conditional residuals using (18).

7. If l > 0, check for convergence using the criteria

||β̂
(l)

− β̂
(l−1)

||2
||β̂

(l−1)
||2

< tol, and
||(σ̂(l)

ε , θ̂
(l)

b )′ − (σ̂
(l−1)
ε , θ̂

(l−1)

b )′||2
||(σ̂(l−1)

ε , θ̂
(l−1)

b )′||2
< tol

for a prescribed tolerance tol.

If above criteria are not fulfilled or l = 0, increase l by one and return to step 1.

Algorithm A.2 Rank-based fitting of mixed effects models with random slopes and
leverage weights.

Starting with l = 0, the l’th iteration of the algorithm is the following:

1. Calculate the group-specific matrices of robustness weights

W̃ i = diag(w̃i1, . . . , w̃ini
)

by applying (23) to the matrices Zi, i = 1, . . . , g. These weights only need to be
determined once.
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2. Let

Σ̂
(l)

yi
=

{
Ini

, if l = 0

Σyi
(σ̂

(l−1)
ε , θ̂

(l−1)

b ), else,

and

ν(l) =

{
1N , if l = 0

(ν
(l−1)
11 , . . . , ν

(l−1)
gng )′, else.

Determine the matrix of weights W (l) as in (23) based on the rescaled matrix of
covariates

X(l)
∗ = (Σ̂

(l)

yi
)−1/2 diag

(
ν(l)

)
X.

Obtain β̂
(l)

w as a solution to the rank-based regression of

y(l)
∗,w = W (l)(Σ̂

(l)

yi
)−1/2 diag

(
ν(l)

)
y

on

X(l)
∗,w = W (l)(Σ̂

(l)

yi
)−1/2 diag

(
ν(l)

)
X.

If the model has an intercept α, estimate

α̂(l) = T (y −Xβ̂
(l)

w ).

otherwise, α̂(l) = 0.

3. Calculate the marginal residuals

r
(l)
i,marg = yi −X iβ̂

(l)

w − α̂(l)1ni
.

4. Use r
(l)
i,marg to obtain predictions b̂

(l)

i,w for the random effects bi from (22) using the

weight matrices W̃ i.

If the model has intercepts ai, estimate

â
(l)
i = T (r

(l)
i,marg −Zb̂

(l)

i,w).

otherwise, â
(l)
i = 0

5. Obtain the final (conditional) residuals

r
(l)
i,cond = yi − α̂(l)1ni

−X iβ̂
(l)

w − â
(l)
i 1ni

−Zib̂
(l)

i,w.

6. Use the r
(l)
i,cond and the realizations b̂

(l)

i to estimate the variance components θ(l)

and σ
(l)
ε with the Qn estimator (see Rousseeuw and Croux 1993).

7. Determine the outlyingness weights ν
(l)
ij from the conditional residuals using (18).
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8. If l > 0, check for convergence using the criteria

||β̂
(l)

w − β̂
(l−1)

w ||2
||β̂

(l−1)

w ||2
< tol, and

||(σ̂(l)
ε , θ̂

(l)

b )′ − (σ̂
(l−1)
ε , θ̂

(l−1)

b )′||2
||(σ̂(l−1)

ε , θ̂
(l−1)

b )′||2
< tol

for a prescribed tolerance tol.

If above criteria are not fulfilled or l = 0, increase l by one and return to step 2.

9. Given the final estimates β̂w and b̂i,w, i = 1, . . . , g, and if Zi is a subset of X i,
perform the adjustment step.
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