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Abstract

Autoencoders, known for their capability to compress and reconstruct data,
play a pivotal role in unsupervised learning tasks. Deciphering the importance
of input features and encoded dimensions can enhance the interpretability of
the black-box nature of autoencoders. This paper introduces a permutation im-
portance method tailored to evaluating the importance of raw pixel values and
encoded dimensions in image data processed by autoencoders. We apply per-
mutation importance in two stages: first, on the original image data to assess
the impact of each pixel on the encoded representations; and second, on the en-
coded space to determine the importance of each dimension in the reconstruction
process for different image classes. Our approach reveals how variations in in-
put feature importance affect the encoded representations, shedding light on the
encoder’s focus and potential biases. Experimental results on benchmark image
datasets and on a larger case study, concerning audio samples, demonstrate the
efficacy of our method, providing a novel perspective on evaluating feature im-
portance in unsupervised learning scenarios and offering greater interpretability
of the inner workings of autoencoders. Our approach is implemented in the R
package aim (Autoencoder Importance Mapping).
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1. Introduction

Autoencoders (AEs) are a type of neural network (NN) which have gained popularity
due to their strong predictive power and flexibility across different types of data (Chen
and Guo 2023). They are widely used in fields such as financial modelling for detecting
anomalies and assessing risks (Nguyen et al. 2021), healthcare for analysing medical
images and predicting diseases (Chen et al. 2017), natural language processing (NLP)
(Dai and Le 2015), data denoising (Zhang et al. 2017), and image recognition (Pu
et al. 2016; Amiriparian et al. 2017). AEs have proven particularly effective in image
compression/dimension reduction and reconstruction (Theis et al. 2016), which are
the central topics of this study. Dimension reduction helps machines process lower-
dimensional data efficiently, which is crucial as handling high-dimensional data can be
resource-intensive (Yang et al. 2016).

Fundamentally, AEs consist of an encoder that compresses the input into a lower-
dimensional latent-space representation and a decoder that reconstructs the input from
this encoded form. In the context of image compression and reconstruction, the goal
is to closely match the original input by capturing essential data characteristics and
ignoring less significant features. Activation functions introduce non-linearity, enabling
the model to learn complex patterns. For image tasks, common choices are the Rectified
Linear Unit (ReLU) and sigmoid functions, with ReLLU outputting the input if positive
and zero otherwise, while the sigmoid function maps inputs to values between 0 and 1.
Performance is measured using loss functions that quantify the difference between the
original input and the reconstructed output. Common choices include Mean Squared
Error (MSE) and Binary Cross-Entropy (BCE). Optimisers, such as Adam (Adaptive
moment estimation) (Kingma and Ba 2014), adjust the model’s weights to minimise
the loss function, improving training efficiency and effectiveness. An example of the
basic architecture is shown in Figure 1. For more details on AE architecture, see Baldi
(2012).
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Figure 1: Basic autoencoder architecture. The process starts with an input image,
which undergoes compression by the encoder through layers L1 and L2 into a lower-
dimensional latent space representation, called the bottleneck. The decoder then re-
constructs the image from the latent space through layers 1.4 and L5, resulting in the
output that closely approximates the original input.
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Given the critical applications of autoencoders in sectors such as healthcare and finance,
ensuring their decisions are trustworthy is a key concern (Liu et al. 2022). However,
the interpretability of these models presents a significant challenge. AEs, like many
deep learning models, operate as black-box systems where the internal workings and
the logic behind decisions remain largely opaque. This opacity is primarily due to their
reliance on complex non-linear transformations, and the presence of numerous param-
eters, which complicate the tracing and understanding of how inputs are transformed
into outputs. Furthermore, the difficulty in interpreting these models also hinders
the ability to diagnose and rectify flaws in their architecture or training data (Molnar
2020). For example, biases embedded in the training data can inadvertently be learned
by the model, propagating these biases in its outputs. Without a clear understanding
of the model’s decision-making process, identifying and correcting these biases becomes
a complex challenge (Geman et al. 1992).

In our work, we evaluate various aspects of an AE model by shedding a light on
the data’s underlying structure and the network’s learning processes through a dual
permutation-based interpretability framework. Our approach analyses both the input
data and the encoded latent space. By permuting input features and latent dimensions,
we uncover their respective roles in shaping latent representations and reconstruction
quality. Additionally, we visualise the importance of each input pixel within the latent
space and the importance of latent dimensions, providing intuitive insights into the
model’s behaviour. Furthermore, by incorporating regression-based directional impor-
tance analysis, our method provides deeper insights into how specific inputs influence
encoded representations. Our approach is divided into three distinct parts, which we
summarise here, but for an in-depth explanation see Section 3:

1. Input Pixel Importance Method: We measure the importance of input pixels
on the latent space by permuting the values of each pixel in the input data and
observing the impact on the AE’s performance. This allows us to gauge the rela-
tive importance of each pixel within the learned representation. Additionally, we
fit a regression model for each pixel against the encoded dimension to determine
the directional importance by examining the sign of the slope. Figure 2, steps 1
and 2 shows the basic workflow process.

2. Latent Space Importance Method: We apply permutation importance to
the latent space data to identify which latent dimensions are important for re-
constructing images of specific classes. Figure 2, step 3 shows the basic workflow
of this process.

3. Analysis and Visualisation: To enable a coherent picture of what the AE is
doing, we combine the findings from both input pixel importance and latent space
importance methods into a single visualisation. This combination allows us to
comprehensively understand how individual input pixels and latent dimensions
contribute to the AE’s performance and reconstruction accuracy.

We have developed an R package, called aim (Autoencoder Importance Mapping) that
includes our permutation methods and various plotting functions and can be found at
https://github.com/AlanInglis/AIM. This package also features a Shiny (Chang
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Figure 2: Workflow of our pixel and latent space importance methods using a hand-
written digit ‘1’ as an example. In Step 1, pixel importance is calculated by encoding
both original and pixel-permuted images and computing their difference using mean
square error (MSE), with the importance values visualised as a heatmap. In Step 2,
linear models are fitted to each input pixel using the encoded representations, where
the sign of each model’s coefficient determines the direction of pixel influence on the
encoding, shown as red-blue directional importance maps for each output dimension. In
Step 3, latent space importance is calculated by first decoding from the encoded latent
space to establish a baseline, then individually permuting each latent dimension and
decoding again, with the MSE between baseline and permuted decodings quantifying
each dimension’s importance, displayed as a bar plot of importance values.

et al. 2023) app that showcases both directional pixel importance and encoded dimen-
sion importance jointly. All plots in Sections 4 and 5 were generated using the aim
package. A demonstration of the Shiny app is shown in Figure 3, with a more detailed
explanation of the app available in Appendix B.

The layout of our paper is as follows. In Section 2 we discuss previous related work
with regard to interpreting AEs. In Section 3 we describe the permutation impor-
tance algorithm and our methods and visualisations. In Section 4, we examine two
benchmark image datasets and demonstrate our new techniques. In Section 5, we ap-
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ply our methods to a case study using more complex audio data. In Section 6 we
discuss some of the practical applications of our methods. Finally, in Section 7, we
provide some concluding remarks and discuss limitations of our proposed methods.
This study was performed using the keras (Allaire and Chollet 2023) and tensorflow
(Allaire and Tang 2023) packages in the R (R Core Team 2023) language environ-
ment. To reproduce the examples in this text, all the code has been made available at
https://github.com/AlanInglis/AutoEncoder_Paper.

2. Background

AEs have been widely studied for their flexibility and effectiveness in various tasks, yet
their interpretability and methodological advancements remain areas of active research.
Efforts to address the interpretability of AEs include methods that simplify their un-
derstanding or provide insights into their internal processes. For example, Aguilar et al.
(2022) introduced an AE based on decision trees for categorical data, eliminating the
need for transformation. Additionally, Shankaranarayana and Runje (2019) adapted
the Local Interpretable Model-Agnostic Explanations (LIME) framework (Ribeiro et al.
2016) to work with AEs. Traditionally, LIME generates explanations for individual in-
stances by creating a synthetic dataset through random sampling and perturbations
around a specific instance, followed by training a local, interpretable linear model. In
the adaptation by Shankaranarayana and Runje (2019), an AE is used to improve the
weighting function of the local model.

The selection of latent space dimensionality is an important aspect of AE design.
Mai Ngoc and Hwang (2020) proposed methods to determine the optimal dimension-
ality by balancing reconstruction accuracy with compression. Similarly, Gadirov et al.
(2021) assessed different AE architectures for spatial ensemble dimensionality reduc-
tion, focusing on reconstruction quality and feature preservation. In the broader context
of unsupervised representation learning, Cavallari et al. (2018) explored convolutional
and stacked AEs, analysing feature spaces in domain and cross-domain contexts. Their
work highlighted the role of architectural components, such as dense and convolutional
layers, in determining learned representations. Variational Autoencoders (VAEs), in-
troduced by Kingma and Welling (2013), advanced the field by integrating probabilistic
modelling into AEs, enabling them to learn meaningful latent representations. Building
on this, Burda et al. (2015) proposed the Importance Weighted Autoencoder (IWAE),
which uses a stricter log-likelihood lower bound. This enhancement allows the recogni-
tion network to better model complex posteriors, resulting in richer and more expressive
latent space representations compared to traditional VAEs. Extensions of VAEs to spe-
cialised domains have also emerged, such as the permutation-invariant VAE proposed by
Winter et al. (2021) for graph-level unsupervised representation learning. This model
addresses the high complexity of graph representations by indirectly matching node
orderings in input and output graphs, enabling effective graph-level reconstruction and
representation learning.

Visualisation techniques have also been pivotal in interpreting AEs. Dimensionality
reduction methods such as t-SNE (van der Maaten and Hinton 2008) and UMAP
(McInnes et al. 2018) project high-dimensional latent spaces into two or three dimen-
sions, revealing clustering and structure within the encoded data. Two key approaches
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for understanding AEs, especially in image recognition, are feature visualisation and
pixel attribution. Feature visualisation aims to understand what features the network
has learned by finding inputs that maximise the activation of specific network com-
ponents, such as neurons, channels, or layers (Olah et al. 2017). Pixel attribution
determines how much each input pixel contributes to the network’s output, commonly
visualised through saliency maps (Simonyan et al. 2013) that highlight important pixels,
and can be categorised into two main approaches: gradient-based and perturbation-
based methods (Molnar 2020).

Gradient-based methods compute the influence of input features by analysing gradients
of the outputs with respect to the inputs. Several techniques have been developed to
enhance these gradient-based interpretations, notably Integrated Gradients (Sundarara-
jan et al. 2017), which provides a path-integral-based measure of feature importance,
and SmoothGrad (Smilkov et al. 2017), which improves interpretability by reducing
noise in saliency maps through gradient smoothing. Perturbation-based methods, such
as LIME, take a different approach by systematically modifying input values (for ex-
ample, by masking or adding noise to image regions, distinct from permutation which
involves reordering values) to understand how these alterations affect the output. These
interpretation methods have been successfully applied to AEs in various domains. For
example, in Uzunova et al. (2019), the authors use a perturbation approach in medical
image classification where an AE is trained to differentiate between different images of
unhealthy and healthy tissues. Additionally, Krishnan et al. (2022) use a perturbation
approach to explore the latent space of a VAE used in molecular design of protein
inhibitors. For more information on AE and NN interpretability in general, see Zhang
et al. (2021), Fan et al. (2021), or Zeiler and Fergus (2014). For image recognition,
see Zhang et al. (2018), in which the authors propose a general method to modify
convolutional NNs to increase interpretability. Finally, in Agarwal et al. (2021) the
authors propose a neural additive model which joins the interpretability of GAMs with
the complexity of NN.

3. Visualising Feature Importance in Autoencoders

In our work, we apply the permutation feature importance technique to both the input
pixels and the encoded representations of the AE. Specifically, we assess the impor-
tance of each input pixel, denoted as X; for pixel ¢, on the encoded dimensions Z;
(j=1,...,d), as well as assessing the importance of each encoding dimension d in the
encoded space Z, and visualise the results. These visualisations not only enhance under-
standing of the model’s performance across various processing stages but also provide
insights into the influence of specific features and dimensions on image reconstruction,
enabling a deeper exploration of the model’s behaviour. In this section, we describe our
methods to obtain the importance scores and demonstrate our visualisations using an
AE specifically fit on the digits zero and one from the MNIST data (Yann 1998) for the
purpose of illustration and simplicity, with the encoding dimensions, d, set to a size of
12. This approach was chosen to highlight the methods under discussion. The results
are shown in Figure 3 via the use of our Shiny app (see Appendix B for a demonstration
of the app’s features) and are discussed in more detail in the subsequent subsections.
For the full algorithm of our methods, see Algorithm 1. To start, we provide a brief
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overview of permutation importance, as understanding this will help the reader grasp
our approach.

3.1. Permutation importance

Permutation importance, first proposed by Breiman (2001), is a technique used to
determine which input variables X = {x,...,x,} have the greatest effect on the
predicted outcome of a machine learning model. The permutation algorithm begins by
measuring the model’s predictive accuracy using the baseline data. For each variable
x;, the algorithm shuffles the variable’s values across the dataset, creating a permuted
dataset X = {x;,...,shuffle(x;),...x,}. The predictive accuracy is then updated using
this revised dataset. This shuffling breaks any relationship between x; and the response
variable, allowing us to assess how much the model depends on x;. The difference
between the performance of the permuted model and the baseline model (e.g., via the
increase in MSE) constitutes the permutation-variable importance score, V; for x;. In
practice the permutation is performed repeatedly for each variable to ensure robustness,
thus creating multiple X*) data sets where k =1, . .. s Mperm -

3.2. Importance in encoded representations

To assess the importance of the encoded representations Z, we apply the permutation
feature importance method to the encoder component of the AE by permuting each of
the input pixels X; (see Figure 2). This approach allows us to identify which pixels
significantly influence the encoded representations and, consequently, the quality of
the reconstructed images. Using the encoder model E, we first encode the original
unaltered test images to obtain the baseline encoded representations, Z = F(X). For
each pixel ¢, we perform 7, permutations, generating permuted datasets X® and
their corresponding encoded representations, Z*) = E(X®)). We then compute the
MSE between the original and permuted encodings for each latent dimension j:

> (k
Vi,j = Vi,j + M (Z[I:n],j7 Zfl;)n},j) 3

where n is the number of input images, M is the error metric (that is, MSE) and V, ;
is the resulting variable importance for pixel ¢ in dimension j. We then average over
the number of permutations to obtain the importance scores matrix V.

To further refine our understanding, we adjust these scores by determining the direction
of each pixel’s influence on the encoded dimensions. This is achieved by fitting a linear
regression model for each pixel X; against each encoded dimension Z;:

Zivayg = 857+ B K + €.

We extract the sign of the regression coefficient ﬁ{i’j) to classify the importance as
negative, neutral, or positive. Neutral values correspond to §; = 0 and are common
when that pixel plays no role in the latent dimension, for example if it is constant.
These directional signs are then combined with the permutation importance scores
to produce the adjusted importance matrix IP, revealing both the importance and
direction of each pixel’s impact. The IP values are then visualised as heatmaps, as
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Figure 3: Shiny application permutation importance plot from the aim package, using
the digits 0 and 1 from the MNIST data. Panel (a) shows, for the digit 0, the sorted
importance of each encoded dimension in the image reconstruction in the left-hand
barplot and the directional importance of the input pixels in the right-hand heatmaps.
Panel (b) shows the importance for the same metrics for digit 1. In panel (a) we can
see that latent dimension 1 has the most importance, which corresponds to a circular
structure representing a zero in the right hand heat maps. In panel (b) we can see that
latent dimensions 6, 11 and 3 are the most important, all of which represent different
version of drawing a 1 in the right hand heat maps. Images can be rotated or flipped
to allow for the correct orientation to be displayed.
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seen in Figures 3a and 3b. An example of how this process aids in highlighting the
patterns learned in the encoded dimensions is also shown in Appendix A.

3.3. Encoded dimension importance in image reconstruction

To assess the importance of individual encoded dimensions on image reconstruction
quality, we apply the permutation feature importance method to the decoder compo-
nent D, as outlined in Algorithm 1. For each class ¢ € C, we extract the class-specific
samples X, and obtain their encoded representations Z. = F(X.). The baseline re-
construction X, = D(Z,) is then generated. Next, for each encoded dimension j, we
perform npe, permutations by shuffling the values of Zj;.,,) ; across all samples to cre-
ate permuted representations Zg"’). These permuted representations are then decoded
to produce ng), and the MSE between X, and Xg’“) is computed. Averaging these
MSEs over all permutations yields the importance score IE.; for each dimension j.
The resulting importance scores are visualised as barplots, as seen in Figures 3a and

3b.

3.4. Visualising feature and dimension importance

To visualise the encoded dimension importance in image reconstruction, we use a bar
chart to depict the importance scores across different encoded dimensions. The barplots
in Figure 3a and 3b show examples for the digits zero and one, respectively, with the x-
axis displaying the importance scores and the y-axis displaying the encoded dimensions,
sorted by importance. The importance of encoded dimension representations is further
visualised in Figures 3a and 3b as heatmaps for each of the 12 encoding dimensions of
our AE, also for the digits zero and one, respectively. These heatmaps are constructed
by reshaping the importance scores of each pixel into the original image dimensions.
Each panel of the heatmaps represent one dimension of the encoded space. For a
direct comparison, the heatmaps are sorted according to the most important encoded
dimensions. Each pixel is coloured on a diverging colour scale where blue represents
negative values, red represents positive values, and the intensity of each colour indicates
the importance. The mid-point is displayed as white and this represents when a pixel
has a constant value and has no bearing on the latent dimension.

In Figure 3, we observe that the top three most important encoded dimensions for the
digit zero are dimensions 1, 6, and 8, while for the digit one, they are dimensions 6,
11, and 3. This suggests that these specific encoded dimensions capture critical fea-
tures necessary for accurate reconstruction. Further analysis of the heatmaps support
this, showing varied patterns of importance across different dimensions. Specifically, in
encoding dimension 1, the red-coloured pixels distinctly outline the shape of the digit
zero, indicating its crucial role in recognising and reconstructing zeros. In contrast, in
dimension 11, the red pixels form the straight line characteristic of the digit one, high-
lighting its importance for identifying and reconstructing ones. It is noteworthy that
dimension 6 is among the top three most important encoded dimensions for both digits
zero and one. This suggests that dimension 6 captures fundamental features that are
important for the reconstruction of both digits. The shared importance of this dimen-
sion indicates that it may be encoding common structural elements or characteristics
essential for distinguishing and reconstructing these digits accurately.
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Algorithm 1: Permutation Importance for Encoded and Decoded Dimensions

Input: Encoder model E; Decoder model D; Test labels Y; Set of classes C
Test data matrix X(,xp), where n is the number of input images and p

1 Step 1: Permutation Pixel Importance
2 Initialise matrix of importance scores V ,xq) to zero.
3 Get original encoded representation: Z,xq) = E(X).
4 fori=1topdo
5 for k =1 to nyerm do
6 Create permuted data X*) by shuffling pixel ¢ values across samples.
7 Cet permuted encoded representation: Z*) = E(X®)).
8 for j =1 toddo
9 Calculate MSE between original and permuted encodings:
_ 7 (k)
Vig = Vig + M (Zuayg, Zigy,)-
10 Average importance over permutations: V.=V /nyem.
11 Step 2: Direction Adjustment
12 for j =1 to d do
13 for i =1 topdo
14 Fit linear regression between pixel ¢ and encoded dimension j:
15 i),y = 5(()20) + 51%]) X(1:n),i + €.
16 Extract sign of regression coefficient: S;; = sign (ﬁf” )).
17 Adjust importance by direction sign: IP = V o S (where o is the Hadamard
product).
18 Step 3: Encoded Dimension Importance
19 for c € C' do
20 Extract class-specific samples: X, = {x; € X | Y; = ¢}.
21 Get encoded representation: Z. = E(X,.).
22 Cet decoded reconstruction: X, = D(Z.).
23 Initialise matrix of importance scores IEcy 4 to zero.
24 for j =1 toddo
25 for k=1 to npey, do
26 Create permuted encoding: Z((:k) by shuffling dimension j values in
Z..
27 Get reconstruction from permuted encoding: X% = D (ng))
28 Calculate MSE: IE,; = IE,; + M (X,, X(V).
20 Average importance over permutations: IE = IE/n,erm.
30 return Adjusted pizel importance scores IP.
31 Encoded dimension importance scores IE.

Output: Adjusted pixel importance scores matrix IP . q); Encoded dimension

is the number of pixels; Number of latent dimensions d; Number of
permutations nperm; Error metric M.

importance scores vector IEcxq).
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Some dimensions, like 9 and 10, display seemingly random clusters of red or blue pix-
els that do not form any specific shape, likely encoding more abstract or less specific
features. These abstract features contribute to the overall variability of the AE’s rep-
resentations and might capture more general characteristics of the digits or variations
in handwriting styles. In Figure 3, there appears to be an inverse relationship between
the important and unimportant dimensions. For example, in panel (a), dimension 8 is
one of the most important dimensions for encoding the digit zero, while dimension 11 is
the least important. In contrast, panel (b) shows the opposite, with dimension 11 being
important for encoding the digit one, and dimension 8 is among the least important.

4. Method Demonstration with Example Datasets

Here we apply our methods on two benchmark data sets, both of which are variants of
the the well known MNIST (Modified National Institute of Standards and Technology)
dataset (Yann 1998). For each dataset, we fit an AE model following a consistent
workflow. This included splitting the dataset into training and test (85-15), normalising
and reshaping images, defining the model with 32 latent dimensions and 100 epochs,
compiling with the Adam optimiser and binary crossentropy loss, and training with
a batch size of 256. We then apply our permutation importance method setting the
number of permutations to be four for each dataset. After testing, we found that
four permutations allows us to capture a balance between computational efficiency and
the stability of the importance estimates, ensuring reliable results without excessive
computational cost.

The first data set used in this Section is the Extended-MNIST dataset (EMNIST)
(Cohen et al. 2017) and consists of 28x28 pixel grayscale images of handwritten letters.
In our work we select only the vowels (in English) from the dataset. This results
in 16,800 training images and 2,800 test images. The second data set is the Fashion-
MNIST dataset (FMNIST) (Xiao et al. 2017) and consists of 60,000 training and 10,000
testing 28x28 pixel grayscale images, each representing one of ten fashion categories and
are described in the table in Figure 4. The FMNIST data can be obtained directly from
the keras package.

Input: 0 Input: 1 Input: 2 Input: 3 Input: 4 Input: 5 Input: 6 Input: 7 Input: 8 Input: 9

18R A - B~ | A

Output: 0 Output: 1 Output: 2 Output: 3 Output: 4 Output: 5 Output: 6 Output: 7 Output: 8 Output: 9

MU TERSIEME

0: T-shirt/top | 1: Trouser | 2: Pullover | 3: Dress 4: Coat
5: Sandal 6: Shirt | 7: Sneaker | 8: Bag | 9: Ankle boot

Figure 4: A selection of original (input - top row) and reconstructed (output - bottom
row) images from an autoencoder using the FMNIST data. The table shows their
labels.

11



12 Permutation-Based Visualisation of Input and Encoded Space in Autoencoders

Input 1 Input 2 Input 3 Input 4 Input 5 Input 6 Input 7 Input 8 Input 9 Input 10

Alal£le]I]ijO]e 0l

Output 1 Output 2 Output 3 Output 4 Output 5 Output 6 Output 7 Output 8 Output 9 Output 10

Alal£lelrlijole ]V

Figure 5: A selection of original (input - top row) and reconstructed (output - bottom
images from at autoencoder using the EMNIST data.
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Figure 6: Top ten most important dimensions for encoded dimension and pixel impor-
tance, sorted by encoded dimension importance, across various classes of the EMNIST
data. We can see that the most important encoded dimension typically outlines the
shape of the respective class.

4.1. EMNIST data

For the EMNIST data, we build an AE by following the workflow previously outlined.
Here we only train the model using only the uppercase and lowercase vowels and con-
figure the AE as outlined previously. Figure 5 shows a selection of the original input
images against their reconstructed output counterparts.

Figure 6 displays the top 15 most important encoded dimensions and the corresponding
pixel importance for the classes A, E, and I, shown in 6a, 6b, and 6c¢, respectively. For
clarity and size considerations, the remainder of the plots are not presented via our
Shiny app. For plots of all classes, see Appendix C. In Figure 6, the red pixels in the
heatmaps for each class’s most important encoded dimension typically outline the shape
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of the respective class, highlighting the regions of the input that are most important
for encoding and reconstruction. For class A, dimension 4 is the most important. The
corresponding heatmap highlights features resembling both the uppercase and lowercase
forms of the letter. Specifically, it captures the “bowl” (loop) of the lowercase letter on
the left and the tail extending to the right, aligned with the crossbar of the uppercase
A. For class I, dimension 23 stands out as the most important by a large margin,
emphasising the vertical lines characteristic of the letter I. Interestingly, dimension
23 is among the top three most important encoded dimensions across all three classes,
suggesting it represents fundamental features common to different digit structures. For
class E, dimension 12 primarily encodes the distinctive structure of the uppercase letter
E. Dimension 9, the second most important dimension for class E, appears to capture
the characteristic curvature seen in some handwritten variations of the letter. Notably,
dimension 9 has low importance within the top 15 encoded dimensions for the other
classes, indicating that this feature is unique to the representation of £ and less relevant
for distinguishing other characters.

4.2. FMNIST data

The FMNIST data contains images of 10 different types of fashion article classes and
is commonly used as a more complex alternative to the traditional MNIST data. Each
clothing class label is shown in the table in Figure 4. An AE was built, using the
FMNIST data, as previously outlined, with 100 epochs. Figure 4 shows a sample of
the original input images compared to the reconstructed images for each class.

Figure 7 shows the top ten most important dimensions for both the encoded dimension
and pixel importance, sorted by the importance of the encoded dimension, across var-
ious classes. For brevity, we only show a selection of five classes (see Appendix D for
plots of all classes). These are; Shirt in panel (a), T-Shirt in (b), Sandal in (c), Ankle
Boot, in (d), and Trouser in (e). We can observe that items of clothing with similar
physical characteristics also share the same most important encoded dimension. For
example, Shirt and T-Shirt both share dimensions 22, 29, and 30 as their top 3 most
important encoded dimensions. Also, Sandal and Ankle Boot (both being footwear)
both share dimensions 9, 16, and 27 in their top four most important dimensions. This
suggests that these dimensions play a crucial role in determining the basic shape of
these classes.

The heatmaps reveal distinct patterns of pixel importance across encoded dimensions
for each class. For Shirt and T-Shirt, the heatmaps highlight the central region cor-
responding to the torso area, closely resembling the structure of these clothing items.
In the case of Trouser, dimension 21 is uniquely the most important, followed by di-
mension 5. These dimensions display a series of straight lines in the highlighted pixels.
Notably, these dimensions show minimal importance for other classes (see Appendix D
for heatmaps of all 32 dimensions), indicating their particular sensitivity to the linear
patterns characteristic of trousers. For the Ankle Boot class, dimension 15, the third
most important, clearly outlines the shape of a boot, suggesting that this dimension
effectively captures the overall form of this class. Additionally, dimension 22 consis-
tently appears among the top 10 across all classes, hinting at its role in encoding a
fundamental feature shared across different types of clothing.

13
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Figure 7: Top ten most important dimensions for encoded dimension and pixel impor-

tance, sorted by encoded dimension importance, across various clothing classes from
the FMNIST data.

5. Case Study: Analysing Audio MNIST Data

In this section, we apply our methods on a case study with more complex data. The
dataset used in this study consists of 30,000 audio recordings from 60 individuals from
various countries, each vocalising the digits from 0 to 9. It was originally studied by
Becker et al. (2023) and the raw data can be found at https://github. com/soerenab/
AudioMNIST. These audio samples are transformed into visual representations called
spectrograms, an example of which is shown in Figure 8. The axes of a spectrogram
represent frequency versus time, while the amplitude of the audio signal at different
frequencies and times is depicted through varying colours in these images. In our case,
the size of each image is set to 32x32 pixels. The following subsections detail the
methodology employed in preparing the audio samples and the specific architecture of
the autoencoder.
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Figure 8: Example spectrogram of a person saying the number zero.

5.1. Data preparation

The raw audio data, visualised as spectrograms, are first pre-processed by smoothing
the RGB colour channels to enhance the signal and reduce noise. The raw images
have dimensions of 32x32x4, where the four channels represent the red, green, and
blue colour channels and an alpha channel for transparency. Since the alpha channel is
not needed for our analysis, it is discarded. Subsequently, using a kernel smoother for
irregular 2D data, the RGB channels are merged into a single channel to represent the
amplitude. Following this, the data is normalised to the range [0,1].

5.2. Autoencoder architecture

Input 0 Input 1 Input 2 Input 3 Input 4 Input 5 Input 6 Input 7 Input 8 Input 9

Output 0 Output 1 Output 2 Output 3 Output 4 Output 5 Output 6 Output 7 Output 8 Output 9

Figure 9: Autoencoder input (original spectrograms) and reconstructed outputs for
digits 0-9. Each image depicts the spectrogram of the spoken digi. Digits with fricative
sounds (for example, 0, 6, 7) show prominent high-frequency components.

The encoder of the autoencoder compresses the input, which consists of 1,024 features
(flattened 32x32 images), into a compact representation of 32 features through eight

15
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dense layers. The number of units in these layers progressively decreases, before reach-
ing the bottleneck layer of 32 units. All layers employ ReLLU activation functions. The
decoder reconstructs the original image from this compressed representation by mirror-
ing the encoding process, expanding the 32 features back up to 1,024 features through a
reverse sequence of dense layers, also using ReLLU activation functions. The final output
layer uses a sigmoid activation function to reconstruct the image. The autoencoder is
compiled with the Adam optimiser and a binary cross-entropy loss function, reflecting
the binary nature of the normalised pixel values. It is trained over 100 epochs with a
batch size of 256 and validation with test images. Figure 9 shows the original versus
reconstructed spectrograms for selected spoken digits, with each image corresponding
to the specific sequential number. The autoencoder had the effect of smoothing and
de-noising the original images. Of note here is that certain digits (for example, 0, 6, 7)
exhibit pronounced high-frequency components, whereas digits such as 1 or 9 display
stronger low-frequency energy.

5.3. Analysis of results

Encoded dimensions and pizel importance

In Figure 10, we show the top ten most important encoded dimensions and their corre-
sponding pixel importance plots for classes 0, 4, 5, 6, 7, and 9 (see Appendix E for all
classes). Here, we can see several patterns emerging. For example, certain dimensions,
such as 16 and 26, consistently appear among the top ten across all selected classes.
As indicated by the heatmaps, these dimensions capture features spanning both high
and low-frequency ranges, suggesting that they encode acoustic characteristics across
a broad frequency spectrum.

For classes 0, 6, and 7, dimension 5 is notably more important than the others. This
may reflect unique pronunciation features of these digits, such as the fricative sounds
‘S” in ‘six” and ‘seven’ and ‘Z’ in ‘zero’, which require capturing distinct high-frequency
bands and temporal patterns (this can be seen in Figure 9). Class 4 also has dimension
5 as its most important, possibly due to the acoustic similarity between ‘F’ and ‘S’,
which both emphasise high-frequency turbulence, albeit in slightly different ranges.
For class 5, dimension 23 is the most important, closely followed by dimension 30.
Both highlight activity in two distinct bursts within the high-frequency range. These
bursts may correspond to the fricatives ‘F’” and ‘V’ in ‘five’, as encoding their spectral
and temporal characteristics requires focusing on high-frequency features. In contrast,
class 9 shows dimension 32 as the most important, with its heatmap emphasising lower
frequency bands. This is consistent with the nasal consonant ‘N’ in ‘nine’, which is
characterised by strong low-frequency energy (which can be seen in Figure 9). Notably,
classes 0, 4, 5, 6, and 7 consistently highlight higher frequency bands as important. For
example, the fricatives ‘F’ in ‘four’ and ‘S’ in ‘six’ contribute high-frequency energy,
reinforcing the need for dimensions capturing these regions.

Concluding remarks

This case study demonstrates the effectiveness of using a permutation importance ap-
proach to analyse the reconstruction of audio data from spectrograms. By examining
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dimension importance, across selected audio MNIST classes.

the importance of both raw input pixels and encoded dimensions, we have identified
key features that are critical for accurate reconstruction. Heatmap visualisations re-
vealed that certain encoded dimensions capture shared acoustic features across multiple
digits, such as common phonetic properties, while others highlight unique characteris-
tics specific to certain digits. For example, digits 0, 6, and 7 share many of the same
importance profiles and highlight similar frequency bands in their pixel importance

heatmaps, suggesting common acoustic properties and distinct phonetic features.
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UMAP

Here, we used Uniform Manifold Approximation and Projection (UMAP) (Mclnnes
et al. 2018) to visualise the encoded dimensions of the audio MNIST data. This helps
us assess how effectively the AE separates the different classes in the encoded space. Us-
ing UMAP serves as a sanity check, ensuring that our subsequent results are consistent
with the visual separation observed in the UMAP plot. The UMAP is a dimensional-
ity reduction technique that is particularly well-suited for visualising high-dimensional
data. It reduces the dimensions of the data to two or three, making it possible to plot
the data points in a scatterplot. The technique aims to preserve both the local and
global structure of the data, meaning that points that are close together in the high-
dimensional space should remain close together in the low-dimensional space, while also
maintaining the overall shape and distribution of the data. The UMAP plot in Figure
11 shows the resulting 2D visualisation of the AE applied to the audio MNIST data.

UMAP 2

0
UMAP 1

Figure 11: UMAP plot of the encoded dimensions where the label represents the number
being spoken. We can see moderate class separation and noticeable clusters, particu-
larly for digits 6 and 8.

Referring back to Figure 11, the overlapping regions of {0, 7} in the UMAP plot can also
be observed in Figure 10, as these classes share many of the same important dimensions.

In Figure 11, we can see a moderate separation of the classes, with some noticeable
clusters corresponding to specific digits. For instance, digits such as {3,4,6,8} show
well-defined clusters (with minimal cross-over of other digits), indicating that the AE
has learned to encode these digits in a way that makes them distinct in the latent
space. However, there are also regions with significant overlap, such as between digits
{0,2,7}, or {1, 5,9}, suggesting that the AE may struggle to distinguish between these
digits as effectively. The overlapping regions of {0,7} in the UMAP plot can also be
observed in Figure 10, as these classes share many of the same important dimensions.
An interesting note here is that some classes appear as outliers. For example, at the
edge of cluster 8 we can see a few instances of the classes 2 and 3. This may be due to
mis-labelling or suggest that the feature representation of these particular digits share
similarities with the 8 cluster, indicating ambiguity in the digit’s shape or style.



Journal of Data Science, Statistics, and Visualisation

6. Practical Implications

The findings from our permutation-based analysis have significant practical implica-
tions, demonstrating how knowledge about biases and key dimensions can be used to
improve model performance and address potential biases in the data. For example, in
our analysis of the Fashion-MNIST dataset (Section 4), we observed that the encoded
dimensions important for the Shirt and T-Shirt classes captured similar features. This
overlap suggests that the AE is encoding these two classes in a similar manner, po-
tentially leading to difficulties in accurately reconstructing and differentiating between
them. Recognising this issue, we can take practical steps to enhance the model’s ability
to distinguish between these classes.

One approach is to adjust the AE’s architecture to better capture the unique character-
istics of each class. By introducing additional layers or modifying existing ones to focus
on features that differentiate Shirts from T-Shirts, we can encourage the model to learn
more discriminative representations. For example, incorporating convolutional layers
that specialise in detecting specific patterns associated with each class can improve
the model’s sensitivity to subtle differences. Another strategy involves augmenting
the training data with variations that highlight distinguishing features between similar
classes. By enriching the dataset with images that emphasise the unique aspects of
Shirts and T-Shirts—such as variations in sleeve length or collar style etc., we pro-
vide the model with a broader range of examples from which to learn. This enhanced
diversity helps the AE to form more distinct encoded representations for each class,
improving reconstruction accuracy and class differentiation.

Understanding which encoded dimensions are most important for reconstruction also
allows for targeted model optimisation. If certain dimensions are found to be less
important, we can reduce the size of the latent space without significantly impacting
performance. This reduction leads to a more efficient model with decreased compu-
tational requirements and a lower risk of overfitting. Simplifying the model in this
way can also make it more interpretable, aiding in the identification and correction of
biases. Moreover, preprocessing techniques can be guided by knowledge of important
input features. For example, applying attention mechanisms or region-of-interest pool-
ing can ensure that the model concentrates on critical areas such as the neckline or
sleeve pattern, which are key to differentiating Shirts from T-Shirts.

The approach demonstrated here extends beyond the Fashion-MNIST dataset and can
be applied to various domains where biases may exist. In healthcare, for example,
certain dominant features in medical images might overshadow subtle but clinically
significant information. By identifying and adjusting for this imbalance, we can im-
prove diagnostic accuracy. In financial anomaly detection, understanding which fea-
tures contribute most to reconstruction error can help identify systemic biases, leading
to better risk assessment. In natural language processing, recognising key features in
encoded representations can enhance language models by highlighting important lin-
guistic structures or detecting biases in language usage.
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7. Conclusion

In this paper, we presented a novel permutation importance method for evaluating
the significance of raw pixel values and encoded dimensions in autoencoders applied
to image data. By applying permutation importance at two stages (that is, on the
original image data and the encoded space), we provided a detailed analysis of the fea-
ture importance in the encoding and reconstruction processes. Our approach reveals
how variations in input feature importance affect the encoded representations, shedding
light on the encoder’s focus and potential biases. Additionally, we identified the key
encoded dimensions that significantly impact the reconstruction quality for different
image classes. Experimental results on benchmark image datasets, including Fashion-
MNIST and EMNIST, demonstrated the efficacy of our method. We observed diverse
patterns of pixel importance across different encoded dimensions, indicating that au-
toencoders learn a variety of features from the data. The case study on Audio MNIST
data further validated our approach, showing that specific encoded dimensions capture
crucial acoustic features for accurate reconstruction.

Our method enhances the interpretability of autoencoders, providing deeper insights
into their inner workings. By understanding which features and dimensions are most
important, we can improve model transparency and potentially address biases inher-
ent in the training data. By identifying biases and key dimensions, practitioners can
make informed adjustments to their models or data, leading to more robust and trust-
worthy applications. The practical examples demonstrated in Section 6 illustrate how
knowledge about biases and key dimensions can be used to address potential issues and
optimise models in real-world scenarios.

Future work could extend this methodology to other types of data and autoencoder ar-
chitectures, such as variational autoencoders (VAE) or Large Language Models (LLMs),
further broadening the scope and applicability of permutation importance in unsuper-
vised learning scenarios. For VAEs, understanding the importance of encoded dimen-
sions can aid in improving latent space representations and enhancing the quality of
generated data. Similarly, for LLMs, which often rely on intricate encoding mecha-
nisms to understand and generate human language, our approach could be adapted to
provide valuable insights into which aspects of the input data are most important for
generating coherent and contextually accurate outputs.

While our approach offers significant insights, it also has limitations. The computa-
tional cost of permutation importance can be high, especially for large datasets and
complex models. Future work could include parallelisation of the permutation process
to decrease computational time. Additionally, the method assumes that the impor-
tance of features is independent, which may not always hold true in practice. Address-
ing these limitations in future research could lead to more efficient and comprehensive
interpretability methods for autoencoders and other deep learning models.

Computational Details

The results in this paper were obtained using R 4.3.1 and the R package aim available
at: https://github.com/AlanInglis/aim. All additional packages used are available
from the Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.
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org/. The source code and data for generating the experimental results is available at
https://github.com/AlanInglis/autoencoder.
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Appendix

In this Appendix, we show a a practical example of the how the regression, step outlined
in Section 3.2, can be used to highlight important pixels for a specific class. Addition-
ally, we provide both a demonstration of our Shiny app and display plots of all the
classes from the autoencoder models used in Sections 4 and 5.

A. Visualisation of the Regression Step

In Figure 12, we provide an example of how applying the linear model can help highlight
patterns learned by each dimension. Both panels display heatmaps of importance values
for dimension 11 from the example shown in Figure 3. In the left panel, pixel importance
is shown on a gradient from white (low) to red (high). While a generally linear pattern
is visible, the image is noisy and appears somewhat random. In the right panel, pixels
are classified as either positive or negative using the linear regression model method.
This reveals the vertical, linear shape of the digit ‘one’ as areas of positive importance
in red, with the surrounding negative space highlighted in blue.

Figure 12: Heatmaps of importance values for dimension 11. The left panel shows pixel
importance on a gradient from white (low) to red (high), while the right panel uses the
linear model method to highlight positive importance in red and negative importance
in blue, revealing the shape of the digit one.

B. Shiny App

In this section, we show a brief demonstration of the Shiny app developed in our R
package aim (Autoencoder Importance Mapping), using the EMNIST vowel data. In
Figure 13, we can see the layout of the app.

In the main plot window we show both the encoded dimension importance and the pixel
importance side-by-side. Additionally, we provide multiple user interfaces, starting from
the top left, these are:
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Figure 13: Demonstrations of the Autoencoder analysis Shiny app using EMNIST vowel
data. Panel (a) shows all the dimensions for class A. Panel (b) filters the important

dimensions from 32 to 3 for the selected class I.
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o Select Class: This allows the user to select and display a specific class from the
data.

e« Number of Top Importances: Allows the user to filter the plot to display the
top x most important dimensions.

e Select Rotation Specifies the rotation of the heatmaps, where 0 = no rotation,
1 =90°, 2 = 180°, 3 = 270° .

o Filter Empty Dimensions: This filters any dimensions that are not used by
the autoencoder.

e Sort by Importance: When checked, this sorts the encoded dimension im-
portance from high to low and additionally sorts the pixel importance plots to
correspond with the encoded dimensions.

o Flip Horizontal: Flips the heatmaps horizontally.
o Flip Vertical: Flips the heatmaps vertically.

o Select Mode: Allows the user to switch between light and dark modes on the
app.

In Figure 13 (a), we can see that the selected class is A, and we are displaying all the
32 dimensions used in building the AE model from Section 3.A. As there are no unused
dimensions, the Filter Empty Dimensions option is unchecked. We are additionally
sorting the plots by the encoded dimension importance values. We have also selected
the first rotation (that is 90°) and have not flipped the image horizontally or vertically.
The inclusion of rotation and flipping options for heatmaps in the Shiny app addresses
the need for correct image orientation and enhanced visual clarity. Sometimes the initial
orientation of an image is incorrect, and these features allow users to easily adjust the
heatmaps to the correct orientation by rotating and flipping. This ensures that the
visualisations are displayed in the most readable and interpretable manner. The final
option is a mode button which allows a user to select either a ‘Dark’ mode (with darker
surrounding colours) or a ‘Light’ mode (which has lighter surrounding colours). In this
case ‘Dark’ mode is selected. In panel (b) the selected class has been changed to I and
the number of top importances has been set to three. This filters the plot to display
the top 3 most important encoded dimensions. All other input remain the same as in

panel (a).
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C. EMNIST Importance Plots For All Classes

In this appendix, we present the EMNIST importance plots for all classes. Each plot
shows the most important dimensions for encoded dimension and pixel importance,

sorted by encoded dimension importance.

8
i
& Y e e
B i
—

Encoded Dimension
BBNYR 3583 NaeR3B-FuFnsd

%_,,,,...........|||||||||II|||||
k3

L

1 17 18 27

(c) Class I

(e) Class U

Figure 14: The most important dimensions for encoded dimension and pixel impor-
tance, sorted by encoded dimension importance, across all classes of the EMNIST

data.
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D. FMNIST Importance Plots For All Classes

In this appendix, we present the FMNIST importance plots for all classes. Fach plot
shows the most important dimensions for encoded dimension and pixel importance,
sorted by encoded dimension importance.
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Figure 15: The most important dimensions for encoded dimension and pixel impor-
tance, sorted by encoded dimension importance, across all classes of the FMNIST
data.
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E. Audio MNIST Importance Plots For All Classes

In this appendix, we present the audio MNIST importance plots for all classes. Each
plot shows the most important dimensions for encoded dimension and pixel importance,
sorted by encoded dimension importance.
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Figure 16: Top most important dimensions for encoded dimension and pixel impor-
tance, sorted by encoded dimension importance, across all classes of the audio MNIST
data.
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