
June 2025, Volume V, Issue VII. doi: 10.52933/jdssv.v5i7.132

Visualizing Distributions of Covariance
Matrices

Tomoki Tokuda
University of Leuven,
University of Tokyo

Ben Goodrich
Columbia University

Iven Van Mechelen
University of Leuven

Andrew Gelman
Columbia University

Francis Tuerlinckx
University of Leuven

Abstract
Statistical graphics are generally designed for visualizing data, but in this

case our primary goal is to understand complex multivariate distributions that
might be used as prior distributions for models with unknown covariance matri-
ces. Visualizing a distribution of covariance matrices is a step beyond visualizing
a single covariance matrix or a single multivariate dataset. We take advantage of
the symmetries in many standard prior distributions to efficiently and effectively
display these highly multivariate distributions using a tableau of low-dimensional
displays. We demonstrate our approach for graphing distributions of covariance
matrices on several models, including the Wishart, inverse-Wishart, and scaled
inverse-Wishart families in different dimensions. Our visualizations follow the
principle of decomposing a covariance matrix into scale parameters and correla-
tions, pulling out marginal summaries where possible and using two- and three-
dimensional plots to reveal multivariate structure. Our visualization methods are
available through the R package VisCov.
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1. Background
Covariance matrices and their corresponding distributions play an important role in
statistics. Graphical visualizations can be used to understand probability distributions.
But visualizing a distribution in a high-dimensional space is a challenge: Traditional
tools such as plots of densities and distributions, contour plots, and point clouds be-
come less useful in high dimensions. With covariance matrices, there is the additional
difficulty that they must be positive semi-definite, a restriction that forces the joint
distribution of the covariances into an oddly-shaped subregion of the space.
Distributions of covariance matrices show up in frequentist (e.g., Anderson 2003) and
Bayesian statistics (e.g., Yang and Berger 1994; Daniels and Kass 1999; Barnard et al.
2000):

• The sampling distribution of the covariance matrix of independent multivariate
observations: If the data are generated according to a multivariate normal dis-
tribution, then their covariance matrix has a Wishart sampling distribution (see
Wishart 1928).

• The prior for a covariance matrix in a Bayesian analysis, most simply if data
are modeled as independent draws from a multivariate normal with an unknown
mean and covariance matrix; in the same vein, a prior on the residual covariance
matrix is needed in a multivariate linear regression model (Box and Tiao 1973;
Zellner 1971).

• In hierarchical regression model with varying intercepts and slopes, the vector
of varying coefficients for each group is often assumed to follow a multivariate
normal distributed random variable with mean zero and an unknown covariance
matrix, which again requires a prior distribution in a Bayesian analysis (see, e.g.,
Gelman and Hill 2007).

• The covariance matrix itself may be unit-specific and drawn independently from
a population distribution of covariance matrices; such a situation is less common
but can occur in both frequentist and Bayesian settings (see Oravecz et al. 2009;
De Boeck et al. 2024).

In the remainder of this paper, we aim to visualize distributions of covariance matrices,
while focusing on such distributions when used as priors in a Bayesian analysis. Indeed,
such an analysis often requires choosing a family of prior distributions or understanding
a prior distribution that had already been specified before. Several classes of priors for
covariance matrices have been proposed in the statistical literature, but many of their
properties are unknown analytically and, in general, extensive expertise with these
priors has not yet been acquired (see also Merkle et al. 2023).
As an example, consider the inverse-Wishart distribution, which is often used in Bayesian
analyses because it is a proper conjugate prior for an unknown covariance matrix in a
multivariate normal model (see Gelman et al. 2013). Some specific analytical results
for the inverse-Wishart have been derived. For example, the marginal distribution
of a diagonal block submatrix of draws from an inverse-Wishart distribution is also
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inverse-Wishart (Press 1982). Marginal moments of such draws have been derived as
well (Von Rosen 1988). But marginal distributions are typically not known and there
is no expression for the bivariate distribution of any two covariances. As a result, an-
alytical knowledge of the properties of the inverse-Wishart distribution is still highly
incomplete. Various alternatives to the inverse-Wishart have been proposed (Barnard
et al. 2000; O’Malley and Zaslavsky 2008; Lewandowski et al. 2009), but still fewer
analytical results are known for them, making it even more challenging to understand
precisely their properties. In sum, our analytical understanding of these distributions
falls short of providing us a full understanding of them.
Since analytical results are limited, other tools are needed to study covariance matrix
distributions. To obtain insight into the properties of such distributions, visualization
might be considered. There is a considerable literature concerning visualization of
multivariate data (e.g., Valero-Mora et al. 2003; Theus and Urbanek 2008; Cook and
Swayne 2007). For visualization of a covariance or correlation matrix, in particular, a
heatmap is often used (e.g., Friendly 2002). Yet, this and other existing approaches
tend to focus on the visualization of a single covariance matrix (derived from a single
data set), while we would like to visualize distributions of covariance matrices. For
the latter, there is a need for specialized methods, because not all techniques carry
over easily from the single instance to the distribution case. For instance, averaging
a heatmap over a number of instances of correlation matrices ends up with displaying
the mean correlation matrix, which does not capture the variability of the distribution.
As a way out, we propose a series of graphs to visualize covariance matrix distributions.
To cope with the high dimensionality of the distributions in question, we will visualize
key aspects of them while relying as much as possible on exchangeability (i.e., invari-
ance under permutations of variables) in conventional classes of prior distributions of
covariance matrices. For any joint distribution of the covariances, we construct a grid
showing the marginal distribution of the scale and correlation parameters, along with
two- and three-dimensional scatterplots (e.g., Liu et al. 2016; Peters et al. 2014; Al-
varez et al. 2014). Since a covariance matrix can be expressed as an equiprobability
or isodensity ellipse in case of a multivariate normal distribution (or, more generally,
in case of any elliptical distribution, including, e.g., multivariate t-distributions; Owen
and Rabinovitch 1983), we also display the distribution as a mixture of ellipses in a
multivariate normal setting. We demonstrate for several distributions—including the
Wishart, inverse-Wishart, scaled inverse-Wishart, and uniform correlation—that this
series of graphs allows salient features to be visualized, analyzed, and compared. Our
ultimate goal is to offer a method and tool to help us better understand the multivariate
distributions under study.

2. A Four-Layer Visualization Method
Let us first introduce some notation. A k × k covariance matrix Σ has variances
σ2

i (i = 1, . . . , k) on its diagonal. The typical off-diagonal element is σij = σiσjρij

(i = 1, . . . , k, j = 1, . . . , k, i ̸= j), where σi is the standard deviation of the ith variable
and ρij the correlation between the ith and jth variables. We often separate covariances
into standard deviations and scale-free correlations for interpretability.
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We begin with the inverse-Wishart distribution:

Σ ∼ inv-Wishartν(S−1), (1)

where ν denotes the degrees of freedom and S is a positive definite k× k scale matrix.
The density of Σ is proportional to:

p(Σ) ∝ |Σ|−(ν+k+1)/2exp
(

−1
2tr(SΣ−1)

)
. (2)

The expectation of the inverse-Wishart distribution is S/(ν − k − 1).
For all illustrations of the inverse-Wishart distribution in this paper, we assume that
S is a k × k identity matrix, denoted by Ik, which makes the variables exchangeable.
However, our method can easily be used with any other scale matrix. The distribution is
proper if and only if ν ≥ k, and the first moment only exists if ν > k+1. Furthermore, if
Σ follows an inverse-Wishart distribution, then any submatrix of q (possibly permuted)
variables is also inverse-Wishart (Eaton 1983): ΣD ∼ inv-Wishartν−k+q(S−1

D ) where SD

is such a submatrix of S. If we take ν = k + d (where d is a positive constant), then
the degrees of freedom of the distribution of ΣD are q+d and do not depend on k. The
degrees of freedom of the distribution of a submatrix then parallels that of the original
matrix. As a consequence, we can focus on the 4 × 4 covariance matrix distribution to
study most (but not all) properties of the inverse-Wishart, because the joint marginal
of two correlation coefficients ρij and ρkm without a common variable requires at least
four dimensions.

2.1. General strategy
In our visualization method, we start with sampling L (typically L = 1000) covariance
matrices Σ (or correlation matrices R) from their distribution and then plot the sam-
pling distribution of various statistics in four layers or parts. The first layer consists of
univariate histograms of the correlations and the logarithm of the standard deviations.
The second layer is a set of bivariate scatterplots of variances or correlations. In the
third layer, we display the distribution of two variances and a correlation by means
of overlaying isodensity contours, and three-dimensional scatterplots of three correla-
tions. Finally, the fourth layer is based on reducing the entire covariance matrix into
scalar measures called the effective variance and the effective dependence (Peña and
Rodríguez 2003).
Our four-layered graphical representation reveals different aspects of the covariance
distribution that can be used to compare the implications of different values of hyper-
parameters or different distributions. A detailed explanation of the method is given
below, but Figure 1 provides an illustration of the method, as generated by our R
function VisCov (from the package with the same name available on CRAN).

2.2. Layer 1: Histograms of log σi and ρij

For the L = 1000 draws, we display the histogram of the logarithm of the standard
deviations and the histogram of a correlation ρij (typically ρ12). Given the assumption
of exchangeability, the histogram for each standard deviation is the same, and the same
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Figure 1: Visualization of an inverse-Wishart distribution with dimension k = 4, de-
grees of freedom k + 1 and an identity scale matrix, as generated by the R function
VisCov from the package with the same name (Example 1 in the example file of Vis-
Cov). To construct this plot, 1,000 covariance matrices were sampled from the inverse-
Wishart distribution. Each column of plots refers to a different layer of the visualization
method (univariate, bivariate, trivariate and multivariate). The first column shows two
histograms (of a log standard deviation and of correlation). A green reference line
has been added to the correlation histogram, which is the density of a correlation of
a correlation matrix that is uniformly distributed (see below in the text for a detailed
explanation of this case). In the second column, various scatterplots are shown. In the
third column, the first plot shows 100 50% equiprobability ellipses of a normal distri-
bution centered at the origin (based on a random subsample of the 1,000 covariance
matrices). In the last column, histograms of the effective variance and the effective de-
pendence are shown along with a plot that displays effective dependence as a function
of a growing dimension of the leading principal submatrix. In all plots, representations
stemming from covariance matrices with extreme effective dependencies are colored
blue or red (for small and large effective dependence, respectively). The plots shown in
this figure can be generated by set.seed(1234); VisCov(title.logical = FALSE).
See the documentation of VisCov for more explanation.
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holds for the histogram of each correlation; therefore, it is only necessary to display
one of each.

2.3. Layer 2: Scatterplots
From the L draws, we can construct

(
k(k+1)/2

2

)
scatterplots for pairs of covariances,

but a smaller number of plots will suffice because of the exchangeability assumption.
The scatterplots can be found in the second column of Figure 1, where a scatterplot of
variable y versus x will be denoted as (x, y).
If k = 2, the two plots (σ1, σ2) and (σ1, ρ12) contain all the relevant information. If
k = 3, there are four non-redundant plots: (σ1, σ2), (σ1, ρ12), (σ1, ρ23), (ρ12, ρ23). The
difference between (σ1, ρ12) and (σ1, ρ23) is that there is an overlap of variables in the
former. Finally, if k > 3, five scatterplots are necessary when exchangeability is as-
sumed: (σ1, σ2), (σ1, ρ12), (σ1, ρ23), (ρ12, ρ23), (ρ12, ρ34). In the last plot, the correlations
have no variable in common, which illustrates our earlier claim that covariance matri-
ces with k = 4 are sufficient to reveal most of the interesting information about the
inverse-Wishart distribution.

2.4. Layer 3: Contour plot and three-dimensional scatterplots
Here we look at three elements of the covariance matrix simultaneously in two different
ways.
Contour plot. In the contour plot approach (see third column, first plot of Figure 1),
we focus on the distribution of a specific 2 × 2 marginal sub-matrix of Σ. For instance,
we can look at the sub-matrix formed by variables i and j, defined as(

σ2
i σiσjρij

σiσjρij σ2
j

)
. (3)

Given the exchangeability assumption, we take i = 1 and j = 2 and further assume
that the two variables are bivariate normal with mean vector zero. Thus, the 50%
equiprobability ellipse (the contour plot in which 50% of the bivariate normal density
lies) can be plotted (see Johnson and Wichern 2007). It would be straightforward to
use another bivariate distribution if desired.
Each ellipse represents an idealized cloud of points in two dimensions and gives in-
formation about the orientation and spread of the points along both axes. To avoid
clutter, we usually show fewer contour plots; about 100 seem sufficient to visualize the
pattern of isodensity contours.
Three-dimensional scatterplot. We also include a three-dimensional scatterplot of
three correlations: ρij, ρi,j+1 and ρi+1,j+1. The triplet (ρij, ρi,j+1, ρi+1,j+1) corresponds
to a 3×3 correlation submatrix from the k×k correlation matrix. Given the exchange-
ability assumption, we can take i = 1 and j = 2.
The two-dimensional scatterplots of the correlations already suggest some of the intri-
cate relations among the correlations under the positive semi-definiteness constraint,
and the three-dimensional scatterplot goes a step further. It has been shown by
Rousseeuw and Molenberghs (1994) that the support of the distribution of three corre-
lations is a convex volume (called a elliptical tetrahedron). Any cross-section parallel
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to one of the two-dimensional coordinate planes forms an ellipse, implying that the
support of the conditional distribution of two correlation coefficients given the third
one is elliptical. The general pattern in the second plot of the third column of Figure 1
will often occur throughout this paper: For a sufficiently large sample, the convex hull
of the points in the scatterplot will approximately coincide with the elliptical tetrahe-
dron, but the way in which the points are distributed across this volume may differ
from one distribution to another.

2.5. Layer 4: Effective variance and dependence
Visualization in four or more dimensions is difficult, but visualization in fewer dimen-
sions cannot capture all relevant information in a covariance distribution. Thus, we
also analyze scalar statistics that are a function of the entire covariance matrix.
Peña and Rodríguez (2003) have defined the effective variance Ve of a k× k covariance
matrix Σ to be

Ve = |Σ|1/k, (4)
and the effective dependence as

De = 1 − |R|1/k, (5)

where R is the correlation matrix derived from Σ.
These two statistics facilitate comparisons across different values of k or different-
sized submatrices of Σ. The first two plots of the last column of Figure 1 give the
histograms of the effective variance and the effective dependence under the inverse-
Wishart distribution. In a third plot, the effective dependence is shown as a function
of a growing dimension of the leading principal submatrix. Specifically, the effective
dependence of a leading i× i submatrix is given on the y-axis as a function of i (with
i = 1, . . . , k). Each k × k correlation matrix defines a line (by letting the leading
i × i submatrix grow) and the collection of lines is smoothed and shown as the light
blue background. The plot shows how the effective dependence changes with increasing
dimension, and how much variation there is across the distribution. In particular, when
k is large, it is useful to visualize how the distribution of effective dependence converges.
The most extreme matrices with respect to effective dependence are indicated by the
colored tails (blue for low values and red for large values). The matrices with very low
or very high effective dependence can be identified in the histograms via the rug, via the
same blue and red color scheme in the scatterplots and contour plots, which illustrates
how the effective dependence relates to, for instance, the bivariate distribution of the
correlations.

3. The Visualization Method in Action
In this section, we apply the four-layered visualization method to various distributions
of covariance matrices, draw implications from the plots, and compare distributions.
Due to space limitations, we do not present the complete graphical display (such as in
Figure 1), but focus on plots that facilitate comparisons. The full four-layered plot can
be recreated using our VisCov function.
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3.1. The inverse-Wishart distribution
We first re-examine several features of the inverse-Wishart distribution with k = 4
dimensions and ν = k + 1 = 5 degrees of freedom from Figure 1. First, the univariate
marginal distribution of a correlation is uniform, which is known analytically when
ν = k + 1. Second, the scatterplots reveal a strong positive relationship between the
(log) standard deviations, which is also reflected in the contour plot (third layer) where
ellipses stretching along only one of the main axes are rare. In this distribution, large
ellipses tend to be oriented along one of the two principal diagonals. Third, if two
variables are extremely correlated, their standard deviations tend to be large, which
shows up in the contour plot as well. Fourth, covariance matrices with a large degree of
effective dependence (colored in red) tend to have large (log) standard deviations and
extreme correlations, which is also apparent in the contour plots where extreme effective
dependence coincides with small volume in the metric space. Covariance matrices with
little effective dependence tend to have smaller ellipses and (log) standard deviations.
In Figure 2, two inverse-Wishart distributions are compared with ν = k + 1 and ν =
k + 50 in the left and right column, respectively, and k = 4 in both cases. This figure
includes two types of scatterplots (containing log standard deviations and correlations),
contour plots, and histograms of effective dependencies. When ν = k+ 50, there is less
dependence between the log standard deviations and between the correlations, but the
marginal distributions of both log standard deviations and correlations become heavily
concentrated. A similar pattern can be seen in the contour plots: The length of the
major and minor axes decreases, as well as the eccentricity. For a large number of
degrees of freedom, the effective dependence becomes very small, which is in line with
the fact that the marginal correlations tend to be close to zero.
Both Figures 1 and 2 support the observation by Gelman et al. (2013) that the inverse-
Wishart is restrictive as a prior distribution, in part due to the fact that it has only
one degree of freedom parameter, ν. When the degrees of freedom are set to ν = k+ 1,
the marginal distribution of the correlation is uniform, but the joint distribution of the
correlations is far from uniform. There tends to be an abundance of mass in the extreme
corners of its support (see, e.g., the starlike pattern in the middle column, last two
scatterplots, of Figure 1) and often severe effective dependence. Increasing the degrees
of freedom concentrates the distribution around its expectation (here Ik/(ν − k − 1)),
which is a strong prior that may not be appropriate in a particular research situation.
We also compare different values of dimensionality, k, which does not lead to qualita-
tively different conclusions when looking at the first three layers of our visualization
method. However, the distribution of effective dependencies is pushed toward the up-
per bound of 1 when k increases (and ν = k + 1); see Figure 3 which presents two
histograms of effective dependence for the inverse-Wishart distributions with k = 4
and k = 100. The intuition behind this conjecture is that the average proportion of
explained variability of the variables increases with the number of variables, just as a
simple R2 increases in a regression if more predictors are added.
In order to mitigate the restrictiveness of the inverse-Wishart distribution, separation
strategies have been proposed where the covariance matrix is decomposed so that differ-
ent priors can be specified on the resulting components. The next three subsections will
be devoted to alternatives to the inverse-Wishart implied by three separation strategies
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Figure 2: Visualization of inverse-Wishart distributions (using 1,000 simulations) with
dimension k = 4, degrees of freedom k+1 (left column) and k+50 (right column), and
an identity scale matrix. The first row represents the scatterplot of two log standard
deviations, the second row depicts the scatterplot of two correlations (that share a
common variable), the third row shows 100 contour plots for covariance matrics of
two variables, and the last row contains histograms of the effective dependencies. The
covariance matrices with extreme effective dependencies are colored blue or red (for
small and large effective dependence, respectively). The points in the other plots based
on these extreme effective dependency matrices are also colored blue and red. The plots
shown in this figure can be generated by setting set.seed(1234), followed by running
Example 2 of VisCov. See the documentation of VisCov.
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Figure 3: Distribution of the effective dependence of an inverse-Wishart distribution
with dimension k = 4 (left panel) and k = 100 (right panel) based on 1,000 simulations
with ν = k + 1 and an identity scale matrix. The covariance matrices with extreme
effective dependencies are colored blue or red (for small and large effective dependence,
respectively). The points in the other plots based on these extreme effective depen-
dency matrices are also colored blue and red. The plots shown in this figure can be
generated by setting set.seed(1234), followed by running Example 3 of VisCov. See
the documentation of VisCov.

based on different decompositions of Σ.

3.2. Alternative distribution based on separation strategy with
marginal correlation matrix from the inverse-Wishart
Barnard et al. (2000) propose the following decomposition:

Σ = Diag(σ1, . . . , σk) · R · Diag(σ1, . . . , σk), (6)

where R has the marginal distribution of the correlation matrix in the inverse-Wishart
distribution. The notation Diag(σ1, . . . , σk) refers to a diagonal matrix obtained by
placing the σi’s on the diagonal. In other words, the standard deviations are integrated
out, leaving the marginal distribution of the correlation matrix, and then the distribu-
tion of the standard deviations can be taken any marginal distribution to form a new
joint distribution on the covariance matrix. As derived by Barnard et al. (2000), the
kernel of the density function of R is:

p(R) ∝ |R|(ν−1)(k−1)/2−1
(

k∏
i=1

|Rii|
)−ν/2

, (7)

where Rii is the ith principal sub-matrix of R (obtained from R by removing row and
column i). There are several options for the prior distribution on each σi (see O’Malley
and Zaslavsky 2008). Here, we assume each σi is distributed as a standard half-normal:

σi
i.i.d.∼ N+(0, 1), (8)

for i = 1, . . . , k.
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Thus, the standard deviations are not affected by the degrees of freedom by construc-
tion, as is reflected in the first row of Figure 4. Similarly, the correlations are in-
dependent of the standard deviations, as is reflected in the second row. However,
the univariate and joint distributions of the correlations are similar to those from the
inverse-Wishart distribution because they depend on the same degrees of freedom pa-
rameter, ν. Increasing ν would move the marginal distribution of a correlation from a
uniform distribution toward a peaked distribution around zero. Again, we see a star-
like pattern in the bivariate scatterplots. Thus, despite some increased flexibility, this
distribution has many of the same problems as the inverse-Wishart distribution.

3.3. Alternative distribution based on separation strategy with
uniform prior on the correlation matrix: The LKJ prior
An alternative distribution for Σ is obtained with a separation strategy in which the
matrix R in Equation (6) has a joint uniform distribution (Barnard et al. 2000) on its
support, the space of all k × k correlation matrices. Here we assume again that each
σi has a standard half-normal distribution.
Investigating the properties of such distribution requires an efficient algorithm to draw a
correlation matrix uniformly, which is not straightforward for k ≥ 3 due to the positive
semi-definiteness restriction. However, Joe (2006) proposed such an algorithm, further
refined by Lewandowski et al. (2009), based on the bijective function that exists between
the correlation matrix R and (k − 1)(k − 2)/2 partial correlations (viz., correlations
between the residuals of two variables when each is regressed on some subset of the
other variables). The simplest approach is to condition on all variables before the ith
when defining the partial correlation between the ith and jth variables where i < j.
In that case, each partial correlation can be drawn independently from a symmetric
beta distribution spread over the (−1, 1) interval with both shape parameters equal
to αi = η + (k − i − 1)/2, where η > 0 is a hyperparameter. Specifically, under such
circumstances, Lewandowski et al. (2009) prove that

p(R|η) = 1
c(k, η) |R|η−1, (9)

where c(k, η) is a normalization constant, which was first given in Joe (2006); see
also Equation (A.2) below. The distribution in Equation (9) is often referred to as
the LKJ (Lewandowski-Kurowicka-Joe) distribution (Appendix A in Gelman et al.
2013; Chapter 8 in Lambert 2018). R has a joint uniform distribution if and only
if η = 1; Lewandowski et al. (2009) further prove that the marginal distribution of
each correlation is then a symmetric beta distribution over the (−1, 1) interval with
both shape parameters α = k/2. Hence, the marginal distribution of each correlation
becomes more concentrated around zero as k increases in order to satisfy the positive
semi-definiteness constraint on the correlations jointly. However, the distribution of
Σ is not uniform, because its density also depends on the realizations of the standard
deviations.
We visualize the implied distribution of Σ in Figure 5, with k = 4 and k = 50. Again,
the correlations are independent of the standard deviations by construction. However,
unlike the distributions that we have seen thus far, the scatterplot of pairs of correlations
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Figure 4: Visualizing a covariance matrix distribution based on decomposing an inverse-
Wishart distributed covariance matrix into a correlation matrix and standard devia-
tions. In the left column, ν = k+1 while ν = k+50 in the right column, the dimension
is k = 4 in both cases, and the standard deviations have a standard half-normal distri-
bution. The number of realizations is 1,000 (only 100 50% equiprobability ellipses in
the final row are shown). The covariance matrices with extreme effective dependencies
are colored blue or red (for small and large effective dependence, respectively). The
points in the other plots based on these extreme effective dependency matrices are
also colored blue and red. The plots shown in this figure can be generated by setting
set.seed(1234), followed by running Example 4 of VisCov. See the documentation
of VisCov.

does not follow a star-like shape. Rather, the correlations seem to be less dependent
on each other. Also, a comparison of the evolution of 1 − |Rp,k|1/p as a function of p
reveals two points: First, the range of the effective dependencies is large for small k
and very narrow for large k. Second, for large k, the effective dependence of the leading
submatrix increases almost linearly, whereas it increases more erratically for small k.
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Figure 5: Visualizing a covariance matrix distribution based on a separation strategy
with a uniformly distributed correlation matrix and standard half-normal standard
deviations. In the left column, k = 4 and in the right column k = 50. The number
of realizations is 1,000 (only 100 of the 50% equiprobability ellipses are shown). The
covariance matrices with extreme effective dependencies are colored blue or red (for
small and large effective dependence, respectively). The points in the other plots based
on these extreme effective dependency matrices are also colored blue and red. The plots
shown in this figure can be generated by setting set.seed(1234), followed by running
Example 5 of VisCov. See the documentation of VisCov.

For the asymptotic behavior of the effective dependence, it can be proven that it con-
verges to 1 − exp(−1) = 0.632 in probability; see Corollary 1 in Appendix A.
Lastly, we visualize the LKJ distribution on the correlation matrix, setting k = 100
and η = 5 in Equation (9); see Figure 6). It this case, too, the effective dependence
converges to 1−exp(−1) = 0.632 in probability for η ∈ N ; see Theorem 1 and its proof
in Appendix A.



14 Visualizing Distributions of Covariance Matrices

ρ12

F
re

qu
en

cy

−1 0 1

0
20

0
60

0
10

00

●●

●

●
●●

●

●

●●

●

●●

●

●

●

●
●

●

● ●

●●

●

●

●

● ●

●

●

●

●

●●
●

●

●●

●

●

●

●

● ●●

●
●

●

●

●

●

●

●
●

●

●

● ●● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

● ●
●●●●

●

●

●
●

●
●
●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

● ●
● ●

●
●

●

●●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●●

●●
●

● ● ●

●
● ●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●●●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●
●

●

●

●
●

●
●●

●

●

●

●

●
●

●
●

●
●●

●

●

●● ● ●

●

●
●

●

●●

●

● ●
●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●●
●

●

●
●

●
●

●●

●

●

●
● ●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●●●●

●

●

●

●●
●

●

●

●

●

●

●

●●
●

●
●●

●

●

●

●

●

● ●
●

●
●

●●

●

●●
●

●

●

●

●

● ●
●

●

●
●

●
●

●

●

●
●●

●

●

●●

●

●

●●

●

●

● ●
●

●

●

●

●

●●●
●

●

●
●

●

●

●

●
●

●

●

●●

●

●
●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

● ●

●

●

●

●
●●

●

●
●

●

●●

●
●

●

●
●●

●

●
●

●

●
●

●

●●
●

●

●
●

● ●

●
●

●
●

●
●

●

●

●

●
●
●

●
●

●●

●
● ●

●
●

●
●

●

●

● ●

●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●
●

●

●●

●

●

●
●

●
●

●●●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●●
●

●

●
●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●
●

●

● ●
●

●
●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●
●●

●

●
●

●
●

●

●

● ●

●
●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●●

●

●

●

●
●

● ●

●
●

●
●●

●

●●● ●

●

● ● ●

●

●

●

● ●
●

●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●● ●
●

●

●

●

● ●

●

●●

●

●

●

●●
●

●

●

●●● ●

●

●●

●

●

●
●

●

●

●
●

●● ●

●
●

●

●

●

●

●
●

● ●

●

●●

●

●

●

●

●
●

●
●

●
●

●
●●

●

●

●

●
●

●

● ●

●

●

●●
●●

●
●

●

●

●

●
●

●

●

●
●

●
●

●

●

●●
●

●

●

●

●

●
●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●●
●

●●

●●

●

●

●

●

●●
●

●
●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●
●

●

●

●

●●

●

● ●

●

●

●

●

●

● ●
●

●
●

ρ23
ρ 1

2
−1 0 1

−
1

0
1

●●

●

●
●●

●

●

● ●

●

●●

●

●

●

●
●

●

● ●

● ●

●

●

●

●●

●

●

●

●

●●
●

●

●●

●

●

●

●

●●●

●
●

●

●

●

●

●

●
●

●

●

●●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●●
● ●●●

●

●

●
●

●
●

●
●

●
● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

● ●
● ●

●
●

●

●●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●●

● ●
●

● ●●

●
● ●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
● ●●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●
●

●

●

●
●
●

●●
●

●

●

●

●
●

●
●

●
● ●

●

●

● ●● ●

●

●
●

●

● ●

●

●●
●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

● ●
●

●

●
●

●
●

● ●

●

●

●
● ●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●●● ●

●

●

●

● ●
●

●

●

●

●

●

●

● ●
●

●
●●

●

●

●

●

●

●●
●

●
●

● ●

●

●●
●

●

●

●

●

● ●
●

●

●
●

●
●

●

●

●
●●

●

●

●●

●

●

●●

●

●

●●
●

●

●

●

●

●● ●
●

●

●
●

●

●

●

●
●

●

●

● ●

●

●
●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●●

●

●

●

●
●●

●

●
●

●

●●

●
●

●

●
● ●

●

●
●

●

●
●

●

● ●
●

●

●
●

●●

●
●

●
●

●
●

●

●

●

●
●

●
●

●

● ●

●
● ●

●
●

●
●

●

●

● ●

●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●
●

●

● ●

●

●

●
●

●
●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●●
●

●

●
●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●●

●

●
●

●

●●
●

●
●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●
●●

●

●
●

●
●
●

●

● ●

●
●

●

●

●
●

●

●

● ●

●

●

●●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●
●●

●

●●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●●

●

●

●

●
●

●●

●
●

●
●●

●

●●●
●

●

●●
●

●

●

●

● ●
●

●

●

●

●●

● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●● ●●
●

●

●

●

●●

●

●●

●

●

●

●●
●

●

●

●●● ●

●

●●

●

●

●
●

●

●

●
●

●● ●

●
●

●

●

●

●

●
●

●●

●

● ●

●

●

●

●

●
●

●
●

●
●

●
● ●
●

●

●

●
●

●

●●

●

●

●●
●●

●
●

●

●

●

●
●

●

●

●
●

●
●

●

●

●●
●

●

●

●

●

●
●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

● ●
●

●●

●●

●

●

●

●

● ●
●

●
● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

● ●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●● ●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●●

●

●

●

●

●

●●
●

●
●

ρ34

ρ 1
2

−1 0 1

−
1

0
1

−1.1 0.0 1.1

−
1.

1
0.

0
1.

1

X1

X
2

−1 0 1

−
1

0
1

−1

0

1

●

●

●

●

●

●

●
●

● ● ●

●

●
●

●
●

●
●

●

●

●
●

● ●

●

●
●

● ●
●

●

●

●
●

● ●

●
●
●

●
●

●
●●●

●

●●●

●

●

●●●
●

●

● ●
●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●
●●

●

●

●

●●
●●

●

●●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●
●

●

●●

●
●

●

●

●
●
●
●

●

●

●
●●

●
●

●

●

●
● ●

●

●

●●
●

●

●

● ●

●●
●

●

●

● ●

●

●●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●
●

●

●
●

●

●

●●

●

● ●

●
● ●

●

●

●
●

●

●

●

●

●

●

●
● ●●

●

● ●
●

●

●

●

●

●

●●

●

● ●●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●
●

●
●

●
●●

●
●

●
●
●●

●

●

●

●

●

●

●
●

●
●

●

●

● ●
●

●●

●
●

●

●

●

●
●

●

●

●

●
●
●

●
●

●
● ●

●

●

●

●
●
●

●

●

●

●●●

●

●
●●

●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

● ●

●●
●

●
●

●●

●

●

●●

●●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
●●●

●

●●

●

●●

● ●

●

●●
●

●

●

●

●

●
● ●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●●
●

●

●

●

●

●
●

● ●
● ●

●

●
●

●

●

●

●

● ●

●

●

● ●● ● ●
●
●
●

●

●

●
●

●

●
●

●

●
●

●●

●

●

●

● ●
●

●
●

●
●●●

●

●

●

●
●

●

● ●
●

●

●●
●

●

●

●
●

●

●
●

●

●

●
●

●
●

●
●

●

●●

●

●

●

●
●
●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

● ●
●
● ●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●
●
●

●

●

●

●
●

●

●
●

●

●

●

●●●

●

●●
●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

●
●

●
●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●
●

●

●
● ●

●

●
●
●

●

●

●
●

●
●

●
●

●

●
●

●
●

●

●●

●

●
● ●

●
●●

●

●

●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●
●●●

●

●

●

●●

●

●●
●

●
●

●

●

● ●●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●●●

●
●

●

●
●

●
●

●
●

●

●
●● ●

●

●

●

●

●●
●●●

●

●
●●

●

●●
●

●

●

● ● ●

●
●

●

●
●

●

●

● ●

●

●
●

●
●●

●

●

●

●

●

●●

●
●

●

●

●

● ●

●

●

●

●
●

● ●

●

●

●

●
●

●

●
●●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

● ●●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●
●●

●
●

●

●

●
●

●
●

●
●●

●

●

●

●

●

●

●●
● ●
●

●

●
●●

●

●●
●

●

●

●

●

●

●

●

●
●

●

● ●●

●

●●

●

●

●

●
●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●●●

●

●

ρ1:2

ρ 1
:3

ρ2:3

●

●

●
●

●

●

●
●
● ●

●

●

●

●

●

● ●

●

●
●

●

●●●
●

●

● ●

●

●
●
●

●●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

● ●
●●
●

●

●

●

●●
●

●

●

●●

●

●
● ●

●

●
●●

●

●●● ●
●

●

●
●
●

●●

●
●●

●

●
●
●●
●

●●
●

●

●

●●
●

Effective Dependence

F
re

qu
en

cy

0.0 0.5 1.0

0
50

15
0

0 20 40 60 80

0.
0

0.
4

0.
8

p (size of leading subR)

1
−

su
bR

 1 p

Figure 6: LKJ distribution of the correlation matrix with k = 100 and η = 5 in Equation
(9). We present the relevant panels only, while removing those related to variances.
The number of realizations is 1,000 (only 100 for the 50% equiprobability ellipses are
shown). The covariance matrices with extreme effective dependencies are colored blue
or red (for small and large effective dependence, respectively). The points in the other
plots based on these extreme effective dependency matrices are also colored blue and
red. The plots shown in this figure can be generated by setting set.seed(1234),
followed by running Example 6 of VisCov. See the documentation of VisCov.

3.4. Alternative overparametrized distribution based on sepa-
ration strategy: The scaled inverse-Wishart distribution
As a final separation strategy, the scaled inverse-Wishart distribution uses an over-
parametrized distribution in which there is a tradeoff between sets of parameters. The
covariance matrix is now decomposed as follows (see O’Malley and Zaslavsky 2008):

Σ = Diag(ξ1, . . . , ξk) · Q · Diag(ξ1, . . . , ξk). (10)

Q has an inverse-Wishart distribution with degrees of freedom ν and identity scale
matrix:

Q ∼ inv-Wishartν(Ik). (11)
In this case, ξi is not a standard deviation because Q does not have 1’s on its diagonal.
The ith standard deviation is ξi

√
Qi,i. Nevertheless, we take the distribution for each

ξi to be standard half-normal.
The scaling operation has no effect on the correlations, so the correlational proper-
ties of the scaled inverse-Wishart distribution are the same as those of the unscaled
inverse-Wishart distribution. One motivation for the scaled inverse-Wishart distribu-
tion is to mitigate the dependence between the standard deviations and the correlations
that plagues the unscaled inverse-Wishart distribution. However, the scaling does not
completely eliminate this dependence.
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Figure 7: The scaled inverse-Wishart with ν = k+1 (left column) and ν = k+50 (right
column) with k = 4. The number of realizations is 1,000 (only 100 50% equiprobability
ellipses are shown in the third row). The covariance matrices with extreme effective
dependencies are colored blue or red (for small and large effective dependence, respec-
tively). The points in the other plots based on these extreme effective dependency
matrices are also colored blue and red. The plots shown in this figure can be generated
by setting set.seed(1234), followed by running Example 7 of VisCov. See the docu-
mentation of VisCov.

In Figure 7, similar patterns as for the unscaled inverse-Wishart are seen in the scatter
and contour plots for ν = k + 1. The dependence between the standard deviation and
correlation is weaker, confirming the aforementioned property. When ν = k + 50, the
plots differ from those of the unscaled inverse-Wishart, because the distribution of Σ
is now dominated by ξ (with large variability) as the correlations tend to zero.
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3.5. The Wishart distribution
The Wishart distribution, prominent in multivariate statistics (see Press 1982; Johnson
and Wichern 2007), is the sampling distribution of (n−1)S, where S is the k×k sample
covariance matrix calculated from a sample of size n normal observations on k variables
with mean vector µ0 and population covariance matrix Σ0 (see Wishart 1928). As can
be seen in Figure 8, the marginal distribution of a covariance matrix depends on k (when
ν = k+ 1). As the dimension increases, there is less variability in standard deviations,
correlations and effective dependence. If one seeks similar marginal distributions for
the standard deviations when k varies, different values of ν must be used (and not
always ν = k + 1).
For the asymptotic behavior of the effective dependence, we have the same results as
in the case of the uniform distribution: It can be proven that the effective dependence
converges to 1 − exp(−1) = 0.632 in probability (see Theorem 2 and its proof in
Appendix A).

3.6. A new distribution
Our visualization tool may help in the evaluation of customized distributions. For
example, assume that we define the following prior distribution on covariance matrices:

Σ = Diag(σ1, . . . , σk) · Λ · D · Λ′ · Diag(σ1, . . . , σk), (12)

where Λ is a k×k randomly generated orthogonal matrix (draw a k×k matrix W with
standard normal deviates, calculate the singular value decomposition W = UDV ′ and
then set Λ = UV ′), D is a diagonal matrix of eigenvalues, the marginal distribution
of which can be any distribution with positive support. Here we draw each diagonal
element of D from a beta(0.5, 5) distribution, which tends to yield a few eigenvalues
close to 1 and many eigenvalues close to 0. Again, each σi is a standard deviation and
has a standard half-normal distribution.
We investigate the properties of this customized distribution in Figure 9. The corre-
lations are concentrated around zero, but not as strongly as we have seen with other
covariance distributions. The effective dependence is a function of the eigenvalues only,
and is centered around the mean value 0.67 (a value close to the limiting value for the
uniformly distributed correlation matrices as k goes to infinity).

4. Comparison of Distributions
In order to select a prior in an empirical application, researchers must know the proper-
ties of the various choices for a covariance distribution. In this section, we compare the
four distributions discussed above with regard to the marginal and joint distributions
of the covariances and the dependence on k.
First, for the inverse-Wishart distribution, as ν gets larger, the correlations are concen-
trated around zero. For the scaled inverse-Wishart, a similar pattern is obvious for the
correlation when ν = k+1, but the standard deviations depend heavily on the prior for
each ξi. In the previous section, we drew these scale parameters independently from a
standard half-normal distribution, so the dependence among the standard deviations
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Figure 8: Wishart distribution with ν = k + 1, where k = 4 (left column) and k = 50
(right column). The number of realizations is 1,000 (only 100 50% equiprobability
ellipses in the third row are shown). The covariance matrices with extreme effective
dependencies are colored blue or red (for small and large effective dependence, respec-
tively). The points in the other plots based on these extreme effective dependency
matrices are also colored blue and red. The plots shown in this figure can be generated
by setting set.seed(1234), followed by running Example 2 of VisCov. See the docu-
mentation of VisCov.

is small and driven by Q. When R is the marginal correlation matrix of the inverse-
Wishart distributed covariance matrix, the correlations are more dependent than when
R is given a joint uniform distribution.
Second, the size of the covariance matrix affects some of its properties in different ways
across distributions. For the distributions derived from the inverse-Wishart, we can
invoke an exchangeability property; hence, only a few plots are needed to understand
univariate and bivariate properties of the covariances, even if k is large. However,
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Figure 9: Visualization of a customized distribution (see Equation (3.6) and the text
below) of covariance matrices. To construct the plot, 1,000 covariance matrices (di-
mension k = 50) were simulated and plotted. The covariance matrices with extreme
effective dependencies (50 instances) are colored blue or red (for small and large effec-
tive dependence, respectively). The points in the other plots based on these extreme
effective dependency matrices are also colored blue and red. The plots shown in this
figure can be generated by setting set.seed(1234), followed by running Example 9 of
VisCov. See the documentation of VisCov.

the effective dependence is a function of k and its sampling distribution depends on
the distribution of the covariance matrix. In particular, if R is given a joint uniform
distribution, then the effective dependence is bounded away from 1 as k goes to infinity,
which is not the case for the inverse-Wishart distribution. If a researcher wants to use
a prior that is dependent on the dimensionality, our visualization tool can be used to
gauge its properties.
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5. An Empirical Example
We demonstrate the use of our tools to visualize the prior and posterior covariance dis-
tributions for a model that was fit to data from the Survey of Consumer Expectations,
collected by the Federal Reserve Bank of New York (FRBNY). On a monthly basis,
FRBNY asks a sample of respondents to provide point predictions of annual inflation,
12 months, 36 months, and 60 months into the future (i.e., k = 3). Here we analyze the
median point predictions from January 2023 until January 2025 (25 months of data).
The median point predictions are centered at zero. The observed covariance matrix of
the n = 25 observations is

S =

 0.690 0.101 −0.016
0.101 0.067 0.003

−0.016 0.003 0.013

 . (13)

To model these data, we assume that every (median) point prediction triplet yi =
(yi1, yi2, yi3) is a draw from a trivariate normal model with mean zero and an unstruc-
tured covariance matrix:

yi ∼ N (0,Σ) ,

with 0 being the trivariate zero vector.
Four different Bayesian analyses will be conducted. In the first two, we will use inverse-
Wishart priors for Σ:

Σ ∼ inv-Wishartk+1=4(Ik=3)

and
Σ ∼ inv-Wishartk+10=13(Ik=3).

In the next two analyses, we will use a decomposition of the covariance matrix:

Σ = Diag(ξ1, ξ2, ξ3) · R · Diag(ξ1, ξ2, ξ3),

where R is the correlation matrix and ξj is the standard deviation of the median point
prediction j (j = 1, 2, 3), with the standard half-normal prior for ξj and one of the
following two LKJ priors for the correlation matrix:

R ∼ LKJ(η = 1) or R ∼ LKJ(η = 5).

We run the analyses using Stan (Stan Development Team 2024a,b). All R̂’s were smaller
than 1.001. The posterior means and standard deviations are shown in Table 1.
Next, we visualize the prior and posterior distributions for Σ using VisCov. In our
visualization we focus on the marginal distribution of ρ12, the joint distribution of ρ12
and log σ1, the joint distribution of ρ12 and ρ23, and a sample of 50% equiprobability
ellipses. The results can be found in Figure 10. From these comparisons within each
figure and across figures, several observations can be made.
First, when using Bayes’ rule for inferential statistics, we are reassigning probability
mass from the prior in light of the observed data. By comparing the left and right
column in each figure, this reassignment of probability from prior to posterior for a
distribution on covariance matrices can be seen in action. Second, the more informative
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(b) inv-Wishart(ν = 13)
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(c) LKJ(η = 1)
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(d) LKJ(η = 5)

Figure 10: Comparison of prior and posterior for the models with four different priors in
the text (dimension k = 3). Each plot is based on 1,000 draws (except the concentration
ellipses, which only use 200 draws). In each plot, the left column is the visualization of
the prior and the right column is the visualization of the posterior.
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Table 1: Posterior means and standard deviations for the unique components of Σ
using four different priors. See text for discussion.

IW4 IW13 LKJ1 LKJ5
σ2

1 mean 0.707 0.517 0.763 0.730
sd 0.207 0.129 0.234 0.220

σ2
2 mean 0.105 0.077 0.077 0.073

sd 0.031 0.019 0.024 0.022
σ2

3 mean 0.053 0.039 0.016 0.015
sd 0.015 0.010 0.005 0.005

σ12 mean 0.098 0.071 0.101 0.077
sd 0.060 0.037 0.055 0.043

σ13 mean −0.016 −0.011 −0.017 −0.013
sd 0.041 0.025 0.023 0.019

σ23 mean 0.003 0.002 0.004 0.003
sd 0.015 0.010 0.008 0.006

a prior is, the more the posterior mass is concentrated in a particular region in the space.
Comparing Panel (a) to Panel (b) and Panel (c) to Panel (d), this can be seen clearly.

6. Conclusion
We have introduced a four-layered visualization method for a distribution of covariance
matrices that compromises histograms, scatterplots and contour plots. The four lay-
ers of plots complement each other, enabling a researcher to visualize distributions of
covariance matrices from different perspectives. As we have seen in the examples, this
novel visualization method effectively reveals properties of distributions that were not
easy to understand analytically.
We take advantage of the exchangeability (invariance under permutations of variables)
in many standard prior distributions of covariance matrices to efficiently and effectively
display these highly multivariate distributions using a tableau of low-dimensional dis-
plays. Our method can be applied to any proper distribution for covariance matrices
that satisfies this exchangeability property. Hence, the method may be useful not only
to deepen our understanding of existing distributions, but also to better understand
newly proposed distributional families. Unlike typical uses of statistical graphics for
data exploration, here we are using visualization to better understand complex math-
ematical distributions.
A limitation of the method is that it cannot visualize at once a family of distributions
that is dependent on the dimensionality k of the variable set; in that case, it is necessary
to draw plots for several values of k.
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7. Code and Data Availability
The code and data to generate Figures 1–9 in the present paper are available in the R
package VisCov from the CRAN repository with dependencies on clusterGeneration,
bayesm, MASS, TeachingDemos, scatterplot3d and KernSmooth. The code and data
for the empirical example are at KU Leuven GitLab: https://gitlab.kuleuven.be/
ppw-okpiv/researchers/u0019524/empirical-application-viscov-paper/.
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A. Asymptotic Behavior of Effective Dependence
We provide two mathematical results of asymptotic behavior of effective dependence
for LKJ distribution and Wishart distribution.

Theorem 1. Let R be a k-dimensional positive definite correlation matrix. If R follows
a LKJ distribution, then, for ∀η ∈ (0,∞) in Equation (9),

1 − |R|1/k P→ 1 − exp(−1) when k → ∞.

Proof. By definition:

E(|R|1/k) =
∫

|R|1/kf(R)dR

= 1
c(k, η)

∫
|R|1/k+η−1dR

= c(k, η + 1/k)
c(k, η) , (A.1)

where c(k, η) and c(k, η + 1/k) are normalizing constants defined in Equation (9).
To evaluate this expression, we use the results on the normalizing constant in Equation
(9) by Joe (2006) (we adapt the notation for the present paper):

c(k, η) = 2
∑k−1

i=1 (2η−2+i)i
k−1∏
i=1

Beta
(
η + i− 1

2 , η + i− 1
2

)i

. (A.2)

By applying this formula to (A.1), E(|R|1/k) becomes:

E(|R|1/k) = 2
∑k−1

i=1 (2η+2/k−2+i)i∏k−1
i=1 {Beta((i− 1)/2 + η + 1/k, (i− 1)/2 + η + 1/k)}i

2
∑k−1

i=1 (2η−2+i)i∏k−1
i=1 {Beta((i− 1)/2 + η, (i− 1)/2 + η)}i

.

(A.3)
Next, we apply the mean value theorem to the logarithm of E(|R|1/k) (a prime ′ refers
to a first derivative and logBeta(·) is the logarithm of the beta function):

log(E(|R|1/k)) = (k − 1) log 2 +
k−1∑
i=1

i
{

logBeta
(1

2(i− 1) + η + 1
k
,
1
2(i− 1) + η + 1

k

)

−logBeta
(1

2(i− 1) + η,
1
2(i− 1) + η

)}

= (k − 1) log 2 +
k−1∑
i=1

i

k
logBeta′

(1
2(i− 1) + η + si,

1
2(i− 1) + η + si

)

= (k − 1) log 2 +
k−1∑
i=1

i

k

Beta′ ((i− 1)/2 + η + si, (i− 1)/2 + η + si)
Beta ((i− 1)/2 + η + si, (i− 1)/2 + η + si)

= (k − 1) log 2 + 2
k

k−1∑
i=1

i
{
ψ
(1

2(i− 1) + η + si

)
− ψ(i− 1 + 2η + 2si)

}
,

(A.4)
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where ∃si ∈ (0, 1/k) by the mean value theorem and ψ(·) is the digamma function,
defined as ψ(x) = Γ′(x)/Γ(x). Note that d log Beta(x, x)/dx = 2ψ(x) − 2ψ(2x).
As ψ(x) = log x− (1/2x) +O(1/x2) (Abramowitz and Stegun 1972), we find that:

log(E(|R|1/k)) = (k − 1) log 2 + 2
k

k−1∑
i=1

i

 log
(1

2(i− 1) + η + si

)
− 1
i− 1 + 2η + 2si

− log(i− 1 + 2η + 2si) + 1
2(i− 1 + 2η + 2si)

+O
( 1
i2

)
= (k − 1) log 2 + 2

k

k−1∑
i=1

i
{

− log 2 − 1
2(i− 1 + 2η + 2si)

+O
( 1
i2

)}

= 2
k

k−1∑
i=1

{
− i

2(i− 1 + 2η + 2si)
+O

(1
i

)}

= 2
k

k−1∑
i=1

{
− 1

2 + −1 + 2η + 2si

2(i− 1 + 2η + 2si)
+O

(1
i

)}

= −k − 1
k

+ 2
k

k−1∑
i=1

{ −1 + 2η + 2si

2(i− 1 + 2η + 2si)
+O

(1
i

)}

= −k − 1
k

+ 1
k

k−1∑
i=1

O
(1
i

)
. (A.5)

Consequently, this leads to:

lim
k→∞

log(E(|R|1/k)) = −1, (A.6)

and also:
lim

k→∞
E(|R|1/k) = exp(−1). (A.7)

In the same way, it can be shown that limk→∞ E(|R|2/k) = exp(−2). Thus,

lim
k→∞

Var(|R|1/k) = exp(−2) − (exp(−1))2 = 0. (A.8)

These results imply that the effective dependence converges to 1 − exp(−1) = 0.632 in
probability.

Corollary 1. Let R be a k-dimensional positive definite correlation matrix. If R
follows a uniform distribution, then,

1 − |R|1/k P→ 1 − exp(−1) when k → ∞.

Proof. The uniform distribution is a special case of LKJ distribution with η = 1 in
Equation (9). Hence the proposition is trivial from Theorem 1.

Theorem 2. Let R be a k-dimensional positive definite correlation matrix. If R follows
the marginal distribution of the correlation matrix derived from Σ that has a Wishart
distribution with ν = k + d (d ≥ 1) degrees of freedom and scale matrix Ik, and d is
irrespective of k, then,

1 − |R|1/k P→ 1 − exp(−1) when k → ∞.



28 Visualizing Distributions of Covariance Matrices

Proof. We need to consider a transformation of variables from Σ to the correlation
matrix R and the standard deviations S = Diag(ξ1, . . . , ξk). Since the Jacobian of this
transformation is given by 2k(∏k

i=1 ξi)k (Barnard et al. 2000),

f(R,S) = f(Σ) × Jacobian

= c−1
2 |Σ|(ν−k−1)/2exp

(
−1

2tr(Σ)
)

2k

(
k∏

i=1
ξi

)k

= 2kc−1
2 |R|(ν−k−1)/2

k∏
i=1

ξν−1
i exp

(
−1

2ξ
2
i

)
, (A.9)

where c2 is the normalizing constant for the Wishart. The density function of R is
then:

f(R) =
∫ ∞

0
f(R,S)dξ1 · · · dξk

∝ |R|(ν−k−1)/2. (A.10)

Because of Equation (9), we have:

f(R) = 1
c(k, (ν − k + 1)/2) |R|(ν−k−1)/2. (A.11)

This leads to:

E(|R|1/k) =
∫

|R|1/kf(R)dR

= 1
c(k, (ν − k + 1)/2)

∫
|R|(ν−k−1)/2+1/kdR

= c(k, (ν − k + 1)/2 + 1/k)
c(k, (ν − k + 1)/2) . (A.12)

From Equation (refJoe):

E(|R|1/k) = 2
∑k−1

i=1 (d−1+2/k+i)i∏k−1
i=1 {Beta((i+ d)/2 + 1/k, (i+ d)/2 + 1/k)}i

2
∑k−1

i=1 (d−1+i)i∏k−1
i=1 {Beta((i+ d)/2, (i+ d)/2)}i

. (A.13)

In the same way as in Theorem 1, it can be shown that:

log(E(|R|1/k)) = (k − 1) log 2 + 2
k

k−1∑
i=1

i

 log
(1

2(i+ d) + si

)
− 1
i+ d+ 2si

− log(i+ d+ 2si) + 1
2(i+ d+ 2si)

+O
( 1
i2

)
= −k − 1

k
+ 1
k

k−1∑
i=1

O
(1
i

)
, (A.14)

where ∃si ∈ (0, 1/k) by the mean value theorem. Thus, it follows that:

lim
k→∞

log(E(|R|1/k)) = −1, (A.15)
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and also that:
lim

k→∞
E(|R|1/k) = exp(−1). (A.16)

In the same way, it can be shown that limk→∞ E(|R|2/k) = exp(−2). Thus,

lim
k→∞

Var(|R|1/k) = exp(−2) − (exp(−1))2 = 0. (A.17)

These results imply that the effective dependence for a Wishart distribution converges
to 1 − exp(−1) = 0.632 in probability.
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