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Abstract

Model-based ordination of ecological community data has gained significant
popularity among practitioners recently, largely due to increased availability and
utilization of computational resources. Specifically, generalized linear latent vari-
able models (GLLVMs)—a factor-analytic and rank-reduced form of mixed effect
models—have proven to be both accurate and computationally efficient. GLLVMs
have been implemented for a wide range of response types common to ecological
community data; presence-absence, biomass, overdispersed and/or zero-inflated
counts serving as examples. In this paper, we demonstrate how GLLVMs can
be applied in the analysis of high-dimensional compositional count data. These
methods are useful, for example, in the analysis of microbiome data, which are
typically collected using modern lab-based sampling tools and are inherently com-
positional due to the finite capacity of sequencing instruments. We use simulation
studies to compare the ordination methods based on GLLVMs with algorithmic
compositional data analysis methods that rely on log-transformations. Also re-
cently developed fast model-based ordination methods that utilize Gaussian cop-
ula models are included in our comparisons. The methods are illustrated with a
microbiome data example.

1

http://dx.doi.org/10.52933/jdssv.v5i6.133


Keywords: Community-level modeling, copula, latent variable model, overdispersion,
zero-inflation.

1. Introduction
Advancements in modern sampling and classification techniques, such as high-through-
put sequencing (HTS, Fernandes et al. 2014; Conesa et al. 2016; Pollock et al. 2018),
which is an experimental technique capable of rapid and large-scale generation of DNA
or RNA sequence data (Gloor et al. 2017), have significantly advanced microbiome
research. The raw HTS data, where each sample generates thousands or even mil-
lions of gene sequences (reads), typically represent multiple species within a microbial
community. Through preprocessing steps, such as removing duplicates and performing
clustering analysis on these sequences, they can be grouped into distinct operational
taxonomic units (OTUs, Gloor et al. 2017) or classified using alternative methods to
achieve different partitions of the raw HTS data such as amplicon sequence variants
(ASVs). These approaches enable the partitioning of HTS data into biologically mean-
ingful units. In practical analyses, microbiome data are often represented as OTUs or
ASVs, and consist of relative counts; exhibiting unique characteristics that pose signifi-
cant challenges for statistical analysis. First, the data are inherently compositional due
to the finite capacity of sequencing instruments (Gloor et al. 2017). Additionally, the
data are often high-dimensional and sparse; the number of variables can exceed thou-
sands, and many observations may contain zeros due to biological or technical factors
such as under-sampling.
The analysis of microbiome data has become a vibrant area of research. Methods
inspired by compositional data analysis (Aitchison 1986) are widely used, as evidenced
by recent works (Gloor et al. 2016; Greenacre et al. 2021). More recently, probabilistic
models tailored to compositional data have gained popularity (Lutz et al. 2022; Zeng
et al. 2023). For comprehensive reviews, see Swift et al. (2023) and Peterson et al.
(2024).
As an example of high-dimensional, sparse, and overdispersed data, consider the micro-
bial community data set described in Kumar et al. (2017). The data consist of normal-
ized read counts of 985 bacterial species sampled from 56 soil sites across three distinct
climatic regions: Ny-Ålesund (high Arctic), Kilpisjärvi (low Arctic), and Mayrhofen
(European Alps) (Kumar et al. 2017). These regions have distinct climate and envi-
ronmental conditions making them ideal to study the impact of habitat on microbial
communities. For recording species’ abundances from each sample, bacteria were iden-
tified based on the similarity of their 16S rRNA genetic sequences and classified into
operational taxonomic units (OTUs). The data are illustrated in Figure 1, highlight-
ing the sparsity (63.3% zeros) and the overdispersion (variance exceeding the mean
for most bacteria). This data set is available via data("microbialdata") in the R
package gllvm (Niku et al. 2024).
In this paper, we focus on visualizing high-dimensional microbiome data using ordi-
nation methods. Ordination refers to dimensionality reduction techniques that reduce
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Figure 1: Left: Heatmap showing counts of m = 985 bacteria across n = 56 samples.
Blue indicates absence of bacteria, while dark red indicates high abundances. The
black vertical lines represent subsets of sizes m = 50, 100, 200, and 400, to be used as
a basis for simulation studies. Right: Species-wise means plotted against species-wise
variances. The solid line represents the Poisson mean-variance relationship, and the
dotted line represents the negative binomial relationship with a dispersion parameter
1.1.

data from many variables to (typically) two dimensions for visualization. These dimen-
sions, known as ordination scores, facilitate the detection of patterns in community
composition (Legendre and Legendre 2012). When covariates are not included, the
process is referred to as unconstrained ordination (Clarke 1993), also known as indirect
gradient analysis. Conversely, when covariates are incorporated, constrained ordination
(Ter Braak and Prentice 1988), also referred to as direct gradient analysis (Ter Braak
and Prentice 1988), or concurrent ordination methods (van der Veen et al. 2023), are
employed.
Ordination has usually relied on dissimilarity-based methods such as non-metric mul-
tidimensional scaling (nMDS, Kruskal 1964a,b). These approaches aim to simplify a
complex dissimilarity matrix—which captures all pairwise distances between observa-
tion units—by reducing its dimensionality, while preserving as much of the original
distance information as possible. As dissimilarity-based methods rely heavily on pre-
chosen dissimilarity measure, they do not necessarily account for important properties
of microbiome data, such as mean-variance relationships or compositional constraints.
We instead focus on model-based approaches, which explicitly account for key data
characteristics such as sparsity, overdispersion, and compositional structure. The meth-
ods also provide tools for inference, model selection, and diagnostics. Two model-based
approaches are compared in this paper:

• The first approach builds upon a joint modeling framework using generalized lin-
ear latent variable models (GLLVMs, Skrondal and Rabe-Hesketh 2004), which
can be seen as a factor-analytic extension of generalized linear mixed models.
GLLVMs account for correlations among high-dimensional responses by intro-
ducing a small number of latent variables. The latent variables capture the un-
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Figure 2: An example of ordination plot based on microbial community data.

derlying structure of the data, enabling dimensionality reduction while explicitly
modeling response dependencies.

• The second approach combines marginal generalized linear models (GLMs) with
a multivariate model to address correlations across responses. Specifically, the
Gaussian copula latent variable model (GCLVM, Popovic et al. 2022) maps re-
sponses to copula values with a Gaussian distribution. Classical factor analysis
is then applied to copulas to model the dependency structure. This two-step ap-
proach allows the GCLVM to handle both marginal distributions and multivariate
dependencies effectively.

Both approaches tackle the key challenges inherent in microbiome data, such as overdis-
persion and sparsity, by selecting appropriate distributions for the responses. Moreover,
the compositional nature of the data is addressed through the specification of the linear
predictor in GLLVMs or GLMs. By comparing these two methods, we aim to provide
insights into their strengths and suitability for visualizing and analyzing complex high-
dimensional data.
The paper is organized as follows. In Section 2, we recall the algorithmic-based and
model-based methods included in the comparisons. Section 3 presents simulation
studies and goodness-of-fit comparisons of the methods, and Section 4 illustrates the
model-based approach in the unconstrained and concurrent ordination. The paper is
concluded with some discussion in Section 5.

2. Ordination Methods
As described above, ordination, when applied to ecological community data, is a
dimensionality reduction technique that reduces multivariate data to (usually) two
dimensions to reveal patterns in community composition. As an example of an
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ordination plot based on microbial community data, as described above, see Figure 2.
The plot displays 56 sampling sites according to their ordination scores on two latent
axes. Sampling sites that are close to each other in the ordination can be interpreted
as having more similar microbial count compositions or relative abundances (Hui et al.
2015; Warton et al. 2015) than those that are farther apart. We discuss this example
again in Section 4.

2.1. Algorithmic methods
We start by a short introduction to the classical methods that have been traditionally
used for unconstrained ordination due to their easy-to-use interfaces and computation-
ally efficient algorithms, but before that, let us first introduce some notation needed
later. Let yi = (yi1, . . . , yim)⊤ denote a m-vector of responses, where yij represents
a count of variable j = 1, . . . , m (here representing bacteria) recorded at an observa-
tional unit i = 1, . . . , n (here representing sampling site). In addition, we can have
information in the form of k variables for each observational unit, denoted here as
xi = (xi1, . . . , xik)⊤.
By far, the most traditional way of performing unconstrained ordination is using so-
called dissimilarity-based methods, such as non-metric multidimensional scaling (nMDS,
Kruskal 1964a,b). The first step for dissimilarity-based methods is to calculate a dis-
similarity matrix between observational units. After that, the dimension reduction is
applied to dissimilarity matrix using an algorithm that attempts to preserve informa-
tion about relative distances. By using some dissimilarity measure, nMDS proceeds
with repositioning ordination scores until the relative distances in the ordination have
the strongest possible monotonic fit to the pairwise dissimilarities between observa-
tional units. When applying nMDS to compositional count data, a classical approach
is to apply as a dissimilarity measure the Bray-Curtis distance (Bray and Curtis 1957)

dii′ =
∑m

j=1 |yij − yi′j|∑m
j=1(yij + yi′j)

,

that implicitly applies row-standardization (Ricotta and Podani 2017). Another method
for handling compositional count data with nMDS is to use the Aitchison distance
(Aitchison 1982) to measure dissimilarity. In a practical simulation, to compute the
Aitchison distance between compositional data vectors, one can apply a centered log-
ratio (clr) transformation as defined in (1), to map the compositional count data from
the Aitchison space to real space, and then compute the Euclidean distance as dissim-
ilarity between the two vectors.
Due to the compositional nature of microbiome data, Gloor et al. (2016, 2017) advise
applying centered log-ratio (clr) transformation (Aitchison 1982) to the data followed
by principal component analysis (PCA) to obtain a low-dimensional representation of
multivariate data. The clr-transformation of a m-vector of responses yi, i = 1, . . . , n,
can be obtained as

yi,clr = clr(yi) =
log yi1

m

√∏m
j=1 yij

, . . . , log yim

m

√∏m
j=1 yij

 . (1)
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The clr-transformed values are logarithms of the ratios of the original components to
the geometric mean of the composition. This interpretation facilitates understanding
the relative abundances of components within the composition and is based on the
assumption that the information lies in the relative proportions rather than the ab-
solute values. In addition to its scale invariance, the clr-transformation preserves the
Euclidean distance between compositions in the transformed space. This preservation
allows for the application of standard multivariate techniques, such as PCA, to the
clr-transformed data. For further details on the clr-transformation, we refer to Chapter
3 of Filzmoser et al. (2018).
A notable drawback of the clr-transformation is that it is not defined if one or more of
the observed values equal zero. If the frequency of zeros is relatively low and zeros result
from counts below some detection limit or other sampling issues, which can occur, for
example, in high-throughput sequencing, a common approach is to replace them with
a small value (e.g., one). Alternatively, one can treat zeros as missing values and
address them using imputation approaches (Templ et al. 2016; Filzmoser et al. 2018;
Lubbe et al. 2021). A more challenging case is when a zero indicates that the count
is truly zero. Such zeros are known as structural or essential zeros and should not be
replaced with other values. For a more detailed discussion about the differences between
sampling zeros and structural zeros, we refer to Chapter 13 of Filzmoser et al. (2018)
and references therein. Note that distinguishing between structural and sampling zeros
is a difficult problem, and expert knowledge should be used when analyzing sparse
data with compositional data analysis methods. When applying clr-transformation, we
add, for simplicity, to each count value one to avoid having zero counts. Then PCA is
applied to yi,clr, i = 1, . . . , n, and the resulting first two principal components in the
clr-space serve as ordination scores, meaning that in case the interpretation is required,
that needs to take place also in the clr-space.
The popularity of classical algorithmic-based ordination methods arises from their com-
putational simplicity. A notable drawback is however the absence of a probabilistic
model for the observed data. By directly modeling data, we can better account for key
statistical properties (e.g., mean-variance relationship and sparsity) of data at hand
(Warton et al. 2012). The use of probabilistic formulation also allows us to use stan-
dard statistical techniques for model selection, inference, and diagnostics. In the next
section, we review two model-based approaches for unconstrained ordination.

2.2. Ordination based on latent variable models
Generalized linear latent variable models (GLLVMs, Skrondal and Rabe-Hesketh 2004)
offer a flexible framework for specifying a joint model for microbial count data. GLLVMs
are extensions of generalized linear models to multivariate response case where corre-
lation within responses is taken into account using a factor-analytic approach. This
allows us to use GLLVMs for model-based ordination for any response type as shown in
Hui et al. (2015) and reviewed next. For more examples of GLLVMs in the analysis of
any multivariate abundance data (e.g., presence-absence data, counts, biomass, cover
data), see Warton et al. (2015), and references therein.
Assume now that ui = (ui1, . . . , uid)⊤ are d-dimensional latent variables that are
assumed to follow a standard multivariate normal distribution, ui ∼ N(0, Id). In
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GLLVMs, we assume that, conditional on latent variables ui, the responses yij are
distributed independently according to some distribution characterized by its mean
and possibly some nuisance parameters. To be more specific, we assume that yij|ui ∼
F (µij, ϕ), where µij = E(yij|ui) is the conditional mean and vector ϕ includes pos-
sible response-specific parameters for modeling e.g., dispersion and zero-inflation in
count data models. When GLLVMs are used to perform model-based unconstrained
ordination, we link µij to the linear predictor via

g(µij) = αi + β0j + λ⊤
j ui, (2)

where g(·) is a known link-function (usually log-link for count data), β0j is a column-
specific intercept to account for differences in column totals, and λj = (λj1, . . . , λjd)⊤

are d-dimensional factor loadings. To ensure identifiability of the model, the upper
triangular of the loading matrix Λ = [λ1 · · · λm]⊤ are set to zero to avoid rotational in-
variance, and the diagonal elements of it are set positive to avoid sign switching (Huber
et al. 2004; Niku et al. 2017). The row-specific αi adjusts for row total abundance and
allows us to model relative abundance or composition instead of absolute abundance.
Here we assume that αi is a fixed effect (with an identifiability constraint αi1 = 0), but
in practice it can also be included in model as a random effect (Niku et al. 2019).
As in factor analysis, the latent variables and related factor loadings capture the cor-
relation across study units and the number d of latent variables controls the model
complexity. The model (2) can also be seen as a rank-reduced version of general-
ized linear mixed model (GLMM) with general residual covariance structure Σ. Now
Σ = ΛΛ⊤, where Λ = [λ1 · · · λm]⊤ is a m × d matrix. If GLLVMs are used for model-
based ordination analysis (Hui et al. 2015), the predicted latent variables, ûi, (usually
with d = 2) are plotted to illustrate how different study units differ in terms of the
microbiota composition. For comparisons of model-based and classical unconstrained
ordination methods, see Hui et al. (2015) and Niku et al. (2017), for example. For
constrained and concurrent model-based ordination methods utilizing GLLVMs, one
can introduce covariates related study units in model (2) as shown in van der Veen
et al. (2023).
GLLVMs can be estimated efficiently using maximum likelihood estimation. Collect
now into vectors Ψ and u all the parameters and latent variables in the model, respec-
tively. The marginal log-likelihood function to be maximized is obtained by integrating
over the missing latent variables, that is,

ℓ(Ψ) = log L(Ψ) = log
∫
Rnd

 n∏
i=1

 m∏
j=1

f(yij|ui, Ψ)
f(ui)

 du, (3)

where f(yij|ui, Ψ) is the conditional distribution of yij and f(ui) is the distribution of
a latent variable. The above log-likelihood has however a closed-form expression only in
the normal-response identity-link (i.e., factor analytic) model. For other response types,
a variety of approximation approaches have been proposed. We use the variational
approximation (VA) method that allows us to derive a closed-form lower bound for (3)
at models suitable for sparse, overdispersed count data. The computational tools are
developed in Hui et al. (2017) and Niku et al. (2019). For a recent review of several
other computational approaches (including VA), see Korhonen et al. (2024).
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2.3. Ordination based on copulas
In high-dimensional data settings, where the number of variables can be counted in
thousands, GLLVMs can be computationally intensive even if methods that approx-
imate marginal likelihood in closed form are used. To overcome this, Popovic et al.
(2022) proposed a model-based ordination method that uses copulas. The copula model
couples a marginal model for the data and a multivariate model that accounts for covari-
ance across responses. When applied to unconstrained ordination, we couple marginal
GLMs suitable for sparse, overdispersed count data with a factor analysis as described
below. For other recent examples of copula modeling in the analysis of multivariate
abundance data, see Popovic et al. (2019) and Anderson et al. (2019).
To specify the marginal model for the counts, we assume that yij ∼ Fj(µij, ϕ), where
µij = E(yij) and the vector ϕ includes all the nuisance parameters as before. We use
GLMs to link µij to the linear predictor via

g(µij) = αi + β0j, (4)

where g(·) is again a known link function, and αi and β0j are row-specific and column-
specific intercepts to account for differences in row and column totals respectively.
Notice that in Popovic et al. (2022), only a column-specific intercept was included in
model (4). We, however, also include a row-specific intercept to account for composi-
tional nature of data. In the Gaussian copula model, counts yij are mapped to copula
values zij that have a multivariate normal distribution as follows

Fj(yij − 1) ≤ Φ(zij) < Fj(yij).

Here Fj(·) denotes the cumulative distribution function (cdf) assumed for jth column
in data matrix under the marginal GLM, Φ(·) is the cdf of the standard normal distri-
bution, and Fj(yij − 1) is the left limit of Fj at yij. When applying copula model for
unconstrained ordination, we assume a factor analytic formulation for copulas, that is,

zij = λ⊤
j ui + ϵij, (5)

where, as in GLLVMs, ui is a d-dimensional latent variable related to study unit and
λj is a d-vector of factor loadings. As in factor analysis, ϵij are independent Gaussian
errors, with variances σ2

j and ui ∼ N(0, Id). Again, predicted latent variables, ûi,
(usually with d = 2) serve as ordination points in unconstrained ordination. If one
wants to apply copula modeling for constrained and concurrent ordination, covariates
can be included in (5) in a similar fashion as in van der Veen et al. (2023).
Popovic et al. (2022) applied a two-step procedure proposed by Joe (2005) for estimat-
ing the parameters of the copula model. In the first step, marginal distributions Fj(·)
are estimated using GLMs suitable for sparse, overdispersed count data. After that
a Monte Carlo Expectation Maximization (MCEM, Wei and Tanner 1990) is applied
to estimate the covariance parameters in (5), i.e., σ2

1, . . . , σ2
m and λ1, . . . , λm. In the

E-step, sampling from distribution of the copula values is done using an importance
sampling approach based on Dunn and Smyth (1996) residuals, and in the M-step,
maximization can be done efficiently by applying algorithms for Gaussian factor anal-
ysis.
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3. Simulation Studies
Let us next compare the unconstrained ordination methods introduced in Section 2
using synthetic data inspired by the dataset microbialdata provided in the R package
gllvm and introduced in Section 1. In the next, we introduce the simulations setups
used in the comparisons.

3.1. Ordination score recovery
To generate data with similar overdispersion and sparsity properties, we used the fol-
lowing two approaches:

1. Data were generated using the generalized linear latent variable model (GLLVM)
in (2) with d = 2, assuming negative binomial (NB) or zero-inflated negative
binomial (ZINB) distribution for counts.

2. Data were generated using the Gaussian copula latent variable model (GCLVM)
in (5) with d = 2, assuming negative binomial (NB) or zero-inflated negative
binomial (ZINB) distribution for counts.

To generate data from GLLVM, we used the R package gllvm. For generating data from
GCLVM, the code in Popovic (2021) accompaying Popovic et al. (2022) was modified
accordingly. In the case of copula model, fitting marginal GLMs with row-specific and
column-specific intercepts was performed using the R package gllvm with d = 0 as the
package allows fitting model (4) for ZINB -distributed responses.
To mimic the properties of sparse, overdispersed count data, we obtained the true
parameters for the simulation model by fitting either (zero-inflated) NB-GLLVM or
(zero-inflated) NB-GCLVM to the microbial data. To study the effect of sparsity on
ordination results, we first ordered the bacterial species (columns) in the data based on
the number of zeros in columns so that the bacteria that was present in most samples
was given in the first column. We then used subsets of the original data, retaining
the same rows but including different columns. Since the columns were pre-ordered
based on the number of zeros, the proportion of zeros increased as more columns were
included. In our simulation, we selected the first m = 50 (12.5% zeros), 100 (26.7%
zeros), 200 (44.6% zeros), and 400 (64.2% zeros) columns from the original data as
shown in Figure 1. For each value of m and for each of the four different simulation
models, we generated 500 repetitions of data. Note that we did not extend beyond
m = 400 because the proportion of zeros in the full dataset reached 91%, meaning high
sparsity and thus insufficient information in the counts (Figure 1).
We applied seven competing methods to the simulated data to compare their perfor-
mance in estimating ordination scores. Four model-based approaches included GLLVM
and GCLVM, each with negative binomial (NB) and zero-inflated negative binomial
(ZINB) distributions and with d = 2. In addition, three algorithm-based methods
were included in comparisons: PCA for clr-transformed data, implemented using the
R package robCompositions (Templ et al. 2011; Filzmoser et al. 2018); nMDS with
the Aitchison distance, and nMDS with Bray-Curtis distance, computed using the R
package vegan (Oksanen et al. 2018), which provides a fast algorithm for nMDS.
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The performance of methods was assessed by computing the Procrustes distance (Hur-
ley and Cattell 1962) between the estimated ordination scores and the true ordination
scores. The Procrustes distance commonly used for assessing ordination accuracy, is
the minimal squared difference (e.g., Euclidean distance) between the estimated and
true ordination scores.

Procrustes Distance =
n∑

i=1

d∑
r=1

(ũir,fitted − uir,true)2 ,

where uir,true denotes the corresponding true ordination coordinate for site i and latent
variable r, and ũir,fitted denotes the estimated ordination scores after the Procrustes
transformation, that is, the transformation that minimizes the squared differences be-
tween the fitted scores and the true scores by employing a combination of translation,
rotation, reflection, and uniform scaling. At the same time, the transformation pre-
serves the relative geometric relationships of the scores, ensuring meaningful alignment
between the configurations. In the case of GLLVMs and GCLVMs, the ordination
scores are obtained as the predicted latent variables.

3.2. Simulation results
In this section, we present the simulation results only for the zero-inflated NB distri-
bution case. The results when simulating from NB distribution are shown in Figures 6
and 7 in Appendix. Figures 3 and 4 show the Procrustes errors for each of the seven
methods for each subsamples of sizes m = 50, 100, 200 and 400, when data are gener-
ated from GLLVM and GCLVM, respectively.
As seen in Figure 3, when the data are generated from ZINB-GLLVM model, all model-
based ordination methods outperform the algorithm-based classical approaches for all
sizes m. The differences between the methods are small when the number of columns m
is small which means proportion of zeros is modest. However, as m increases—leading
to greater sparsity in the dataset—the gap between model-based ordination methods
and algorithm-based approaches becomes more pronounced. The GLLVM method out-
performs the GCLVM method, however, ZINB-GLLVM outperforms NB-GLLVM only
when m is small. When m is large, NB-GLLVM is slightly better than the method
that was used to generate the data. This may be due to two reasons: either the zero-
inflation in data is not very extreme, or ZINB-GLLVM has in high-dimensional settings
just too many parameters to be estimated efficiently. When data are generated from
the ZINB-GCLVM model, the ordination based on the corresponding model yields the
lowest Procrustes errors (Figure 4). The differences between all four model-based or-
dination methods are however minimal. Interestingly, the clr-transformation followed
by PCA performs almost equally well as the model-based approaches.
To conclude, model-based methods seem to maintain their robust performance even
when sparsity increases, whereas the algorithm-based methods (especially those using
nMDS) struggle significantly with higher proportions of zeros in the dataset. The dif-
ferences between all model-based ordination methods are very small. Thus, for data
with similar properties as in microbiome data used here, the NB-GLLVM seems to
be a safe choice for ordination. This result is also supported by the simulation re-
sults in Figures 6 and 7 in Appendix showing a stable performance of NB-GLLVM
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Figure 3: Comparative boxplots of Procrustes errors between the true and estimated
ordination scores. The true models were GLLVMs assuming zero-inflated NB responses
with d = 2 fitted to subsets of microbiome data of dimensions m = 50, 100, 200 and 400.
We compared the GCLVM model assuming NB distributed responses (NB-GCLVM)
and zero-inflated NB distributed responses (ZINB-GCLVM), the GLLVM model as-
suming NB distributed responses (NB-GLLVM) and zero-inflated NB distributed re-
sponses (ZINB-GLLVM), clr-transformation followed by PCA (CLR+PCA) and nMDS
(CLR+nMDS), and nMDS without transformation.

method when data are generated from NB-GLLVM or NB-GCLVM model. What is
notable in all simulation results is that, when the data dimension increases, the vari-
ation in Procrustes errors based on GLLVMs increase. This is likely attributable to
the inherent computational challenges of fitting joint models in high-dimensional set-
tings—particularly when the number of samples (n) is much smaller than the number
of variables (m), i.e., n ≪ m. As the number of variables increases, the number of
parameters to be estimated grows, making it significantly more difficult to identify the
global maximum of the log-likelihood. Consequently, the model-fitting process becomes
increasingly complex and unstable, resulting in greater fluctuations in the Procrustes
errors.
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Figure 4: Comparative boxplots of Procrustes errors between the true and estimated
ordination scores. The true models were GCLVMs assuming zero-inflated NB responses
with d = 2 fitted to subsets of microbiome data of dimensions m = 50, 100, 200 and 400.
We compared the GCLVM model assuming NB distributed responses (NB-GCLVM)
and zero-inflated NB distributed responses (ZINB-GCLVM), the GLLVM model as-
suming NB distributed responses (NB-GLLVM) and zero-inflated NB distributed re-
sponses (ZINB-GLLVM), clr-transformation followed by PCA (CLR+PCA) and nMDS
(CLR+nMDS), and nMDS without transformation.

3.3. Goodness-of-fit
In our second empirical study, we compared the goodness-of-fit of the four model-
based methods under similar data scenarios as in simulation studies above. The data
were generated from different models and the goodness-of-fit was measured using the
following three statistics (Meynard and Quinn 2007; Liu et al. 2011).
The mean absolute range normalized error (MARNE) is defined as

MARNE = 1
n

n∑
i=1

 1
m

m∑
j=1

|yij − ŷij|
maxj(yij) − minj(yij)


where yij represents the observed count, ŷij denotes the count predicted by the model,
n is the total number of observational units (here samples) and m is the number of
variables (here bacteria). A smaller MARNE value indicates a better model fit.
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The global correlation (gCOR) between the predicted values and the observed values
across all data points is simply calculated as the Pearson correlation coefficient between
the observed and predicted counts, that is,

gCOR = Cor(ŷ, y),

where y = (y⊤
1 , . . . , y⊤

n )⊤, with yi = (yi1, . . . , yim)⊤, is a stacked response vector and ŷ
is the corresponding predicted response vector.
The average correlation between the predicted and observed values for each individual
species (or column in the dataset) (mCOR) is given by

mCOR = 1
m

m∑
j=1

Cor(ŷj, yj),

where yj = (y1j, . . . , ynj)⊤ are the species-wise counts and ŷj includes corresponding
predictions. For both gCOR and mCOR, higher values indicate better model perfor-
mance.
The goodness-of-fit values for each method in each data scenario are shown in Table 1.
The results indicate GLLVMs consistently exhibit the smallest MARNE values across
all values of m. When m = 50, the global correlation between predicted and observed
counts (gCOR) is highest for copula-based methods (GCLVMs). However, when m
is large, the differences in gCOR values for GLLVMs and GCLVMs are very small.
When looking at mean of species-wise correlations (mCOR), the GLLVMs outperform
GCLVMs in all considered cases. ZINB-GCLVM and NB-GCLVM models seem to
exhibit some performance fluctuations across different data dimensions, whereas ZINB-
GLLVM and NB-GLLVM models demonstrate more stable performance. A more de-
tailed examination reveals very minimal differences between the two GLLVMs.

4. Real Data Analysis
Let us then illustrate the model-based ordination methods using the microbiome dataset
microbialdata in the R package gllvm with n = 56 samples and m = 986 bacteria
(Niku et al. 2024). In this example, we use the methods based on GLLVMs only as
they were shown to be a bit more stable in our comparisons in Section 3.
Table 2 shows the information criteria (AIC and BIC) based on the negative binomial
and ZINB models (2) with d = 2 and without any covariates, that is, for the purpose
of unconstrained ordination. Based on the information criteria, we can say that the
negative binomial model fitted data best. Figure 5 (left) shows the two unconstrained
ordination scores based on the NB-GLLVM model labeled according to sampling sites
(i.e., Mayrhofen, Kilpisjärvi and NyÅlesund). As seen in the figure, we can state that
especially the samples taken from Kilpisjärvi are more separated from the other two
locations indicating that these sites differed from Mayrhofen and NyÅlesund in terms
of bacteria species composition.
As an extension of model-based unconstrained ordination method, let us next illustrate
how GLLVM in (2) can be extended to perform so-called concurrent ordination that
aims to infer which environmental covariates affect the community composition (Ter



14 Comparing Model-Based Unconstrained Ordination Methods

Table 1: Goodness-of-fit of GLLVM and GCLVM models with d = 2 assuming (zero-
inflated) NB responses measured using the mean absolute range normalized error
(MARNE), global correlation between predicted and observed counts (gCOR) and mean
of species-wise correlations (mCOR).

MARNE gCOR mCOR
m = 50 ZINB-GCLVM 0.145 0.903 0.639

NB-GCLVM 0.147 0.902 0.638
ZINB-GLLVM 0.115 0.847 0.660
NB-GLLVM 0.115 0.846 0.659

m = 100 ZINB-GCLVM 0.148 0.898 0.628
NB-GCLVM 0.144 0.901 0.628
ZINB-GLLVM 0.117 0.885 0.648
NB-GLLVM 0.118 0.883 0.646

m = 200 ZINB-GCLVM 0.155 0.888 0.609
NB-GCLVM 0.137 0.890 0.610
ZINB-GLLVM 0.113 0.889 0.628
NB-GLLVM 0.114 0.878 0.628

m = 400 ZINB-GCLVM 0.172 0.883 0.558
NB-GCLVM 0.138 0.886 0.560
ZINB-GLLVM 0.115 0.898 0.593
NB-GLLVM 0.115 0.886 0.595

Table 2: The AIC and BIC values for negative binomial (NB) and zero-inflated NB
GLLVMs without environmental covariates (unconstrained) and with environmental
covariates (concurrent).

unconstrained concurrent
AIC BIC AIC BIC

ZINB-GLLVM 130,535.4 183,722.3 130,441.7 183,673.2
NB-GLLVM 126,965.6 162,584.1 126,647.7 162,310.8

Braak and Prentice 1988). Now as environmental covariates, pH, soil organic matter
(SOM), and available phosphorus (P) were recorded from each sample (Kumar et al.
2017). We proceed as in van der Veen et al. (2023) and fit a latent variable model
where latent variables ui are driven by the measured covariates with an additional set
of “residual” variables that account for unmeasured drivers of species covariation. To
be more specific, the model is defined as

g(µij) = αi + β0j + λ⊤
j ui

ui = B⊤xi + ϵi,
(6)

where B is a k × d matrix containing the reduced-rank regression coefficients and ϵi

are the additional d-dimensional residuals that are assumed to follow a multivariate
normal distribution, ϵi ∼ N(0, Σ), where Σ is a diagonal d × d matrix. Here, latent
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Figure 5: Model-based unconstrained (left) and concurrent (right) ordination plots
based on the full microbiome dataset, both fitted with a NB-GLLVM incorporating
two latent variables (d = 2). In the concurrent ordination, three environmental co-
variates (k = 3) were included in the model. In concurrent ordination plot, longer
arrows represent covariates with the largest relative effects, and dark red arrows (here
associated to pH) indicate covariates with a significant effect on ordination.

variables ui are referred to as informed latent variables. For more details on model
components, identifiability issues and how inference is performed, see van der Veen
et al. (2023). Notice that the model-based concurrent ordination and many of its
variants are implemented in the R package gllvm.
Table 2 shows the information criteria based on the negative binomial and ZINB models
(6) with d = 2 and with (scaled) pH, soil organic matter (SOM), and available phos-
phorus (P) as covariates. Again, the model assuming a negative binomial distribution
yields the lowest information criterion. Figure 5 (right) shows the two concurrent ordi-
nation scores based on the NB-GLLVM model (6) labeled according to sampling sites.
Red arrows in the figure show the effects of environmental covariates with the longest
arrow indicating the covariate with largest relative effect (here pH). The dark arrow
associated to pH indicates a significant effect, that is, the 95% confidence interval of
the associated slope in the matrix of reduced-rank regression coefficients B excludes
zero in both dimensions.
Finally, as a diagnostic tool, we plotted the Dunn–Smyth residuals (Dunn and Smyth
1996) against the linear predictors and Q–Q plots of the residuals for NB-GLLVM
models with d = 2, without covariates (unconstrained) and with three available covari-
ates (concurrent). The plots in Figure 8 in Appendix show that for both models, the
Dunn–Smyth residuals given by NB-GLLVMs are uniformly distributed around zero
indicating that the models fit the data well. The Q–Q plots show that the residuals do
not deviate from normality.
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5. Conclusions
In this paper, we compared two recently developed model-based unconstrained ordina-
tion methods in the analysis of microbiome data. The first method builds upon gen-
eralized linear latent variable models (GLLVMs) and, while very flexible, the method
requires fitting a joint model for high-dimensional data to account for correlation across
responses (Hui et al. 2015; Warton et al. 2015). The second method combines marginal
generalized linear models (GLMs) with a Gaussian copula model to address correla-
tions across responses (Popovic et al. 2022). Our simulation results indicated that the
differences between the model-based approaches are small when the data dimension
and sparsity in data are moderate. The model-based approaches also perform very
similarly to some algorithm-based approaches such as the one that combines the cen-
tered log-ratio (clr) transformation (Aitchison 1982) with principal component analysis
(PCA). However, when the data dimension increases—leading possibly to greater spar-
sity in data—the gap between model-based ordination methods and algorithm-based
approaches becomes more pronounced.
Between the two model-based approaches, in simulations, GLLVM was more robust in
latent variable (LV) recovery under model misspecification, and attained better scores
on goodness-of-fit measures. This can, at least in part, be alluded to the fact that
the advantages of the copula-based method (as demonstrated e.g., in Popovic et al.
2022), are in some sense reliant on whether proper marginal models can be exploited.
With sequencing data we require the observation-level effects αi to be included in
(2), in order to properly account for compositionality in count data models. For the
copula approach, this, in turn, posits that the estimation should be based on a joint
GLM, or on treating the data in the “long” format; both being options that lead to
increased computation or memory overhead, compared to GLMs fitted on each of the
species/OTUs separately.
The inherent compositionality of microbiome data—caused by finite capacities of the
sequencing instruments—can be controlled for by including the aforementioned site ef-
fects αi, as in models (2) and (5). Another approach would be to base the joint model
on some distribution that is tailored for compositional count data, such as the Dirichlet-
multinomial (DM) distribution (Wang 2021). Such a model however suffers from two
problems. First, the model does not take into account structural zeros meaning that
all zeros are assumed to be due to under-sampling, thus the zero-inflated DM distribu-
tion (Koslovsky 2023) can be a better option for sparse compositional data. Second, the
DM model intrinsically imposes a negative correlation among variables which may not
be very realistic assumption for biological or ecological datasets. To allow also positive
correlations, models such as zero-inflated generalized DM could be used along the lines
of Tang and Chen (2018).
Algorithmic compositional data analysis methods that rely on log-transformations face
a significant challenge: the transformation is undefined for zero counts. In this article,
we addressed this issue by adding one to each count. While this approach is simple
and convenient, it implicitly assumes that none of the zero counts represent structural
zeros.
Given the prevalence of zeros in the data, it seems infeasible to determine whether each
zero arises from being below the detection limit or represents a structural zero. From
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a biological perspective, however, structural zeros should not be disregarded, as they
may hold critical importance. For instance, the presence of one bacterial species might
exclude the presence of another. Consequently, modeling approaches that explicitly
account for structural zeros could be more appropriate in this context.

Computational Details
The results in this paper were obtained using R 4.4.1. R itself and all packages used
are either available from the Comprehensive R Archive Network (CRAN) at https:
//CRAN.R-project.org/ or on github and listed together with the code to reproduce
all results at https://github.com/tangwenq/microbial-data.
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Appendix: Additional Simulations Results
Below, we present the from the simulation settings 1 and 2 in Section 3.1 for negative
binomial GLLVM. Figure 8 shows the Dunn–Smyth residuals against linear predictors
and Q-Q plots for the unconstrained and constrained NB-GLLVM models applied to
microbial data in Section 4.
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Figure 6: Comparative boxplots of Procrustes errors between the true and estimated
ordination scores. The true models were GLLVMs assuming negative binomial re-
sponses with d = 2 fitted to subsets of microbiome data of dimensions m = 50, 100, 200
and 400. We compared the GCLVM model assuming NB distributed responses (NB-
GCLVM) and zero-inflated NB distributed responses (ZINB-GCLVM), the GLLVM
model assuming NB distributed responses (NB-GLLVM) and zero-inflated NB dis-
tributed responses (ZINB-GLLVM), clr-transformation followed by PCA (CLR+PCA)
and nMDS (CLR+nMDS), and nMDS without transformation.
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Figure 7: Comparative boxplots of Procrustes errors between the true and estimated
ordination scores. The true models were GCLVMs assuming zero-inflated negative
binomial responses with d = 2 fitted to subsets of microbiome data of dimensions
m = 50, 100, 200 and 400. We compared the GCLVM model assuming NB dis-
tributed responses (NB-GCLVM) and zero-inflated NB distributed responses (ZINB-
GCLVM), the GLLVM model assuming NB distributed responses (NB-GLLVM) and
zero-inflated NB distributed responses (ZINB-GLLVM), clr-transformation followed by
PCA (CLR+PCA) and nMDS (CLR+nMDS), and nMDS without transformation.
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Figure 8: Diagnostic plots for the model-based unconstrained (top row) and concurrent
(bottom row) ordination based on the full microbiome dataset, both fitted with a NB-
GLLVM incorporating two latent variables (d = 2). In the concurrent ordination three
environmental covariates (k = 3) were included in the model. The left panel displays
Dunn-Smyth residuals plotted against linear predictors, and the right panel features
a Q-Q plot of the Dunn-Smyth residuals, with the blue region representing the 95%
confidence interval for evaluating residual distribution.
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