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Abstract

We examine the linear regression problem in a challenging high-dimensional
setting with correlated predictors where the degree of sparsity of the coefficients
is unknown and can vary from sparse to dense. In this setting, we propose a
combination of probabilistic variable screening with random projection tools as
a computationally efficient approach. In particular, we introduce a new data-
driven random projection for dimension reduction in linear regression, which is
motivated by a theoretical bound on the gain in expected prediction error over
conventional random projections when using information about the true coeffi-
cient. The variables to be included in the projection are screened by considering
the correlation of the predictors. To reduce the dependence on fine-tuning choices,
we aggregate over an ensemble of linear models. A threshold parameter is intro-
duced to obtain a higher degree of sparsity, which can be chosen together with
the number of models in the ensemble by cross-validation. In extensive simula-
tions, we compare the proposed method with other random projection tools and
with well-known methods, and show that it is competitive in terms of prediction
in a variety of scenarios with different sparsity and predictor covariance settings,
while most competitors are targeted at either sparse or dense settings. Finally,
we illustrate the method on two data applications.

Keywords: High-dimensional regression, dimension reduction, random projection, screen-
ing.
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1. Introduction
Recent advances in technology have allowed more and more quantities to be tracked
and stored, leading to a huge increase in the amount of data, making available datasets
more complex and larger than ever, both in dimension and size. We consider a standard
linear regression setting, where the response variable is given by

yi = µ+ x′
iβ + εi, i = 1, . . . , n, (1)

where n is the number of observations, µ is a deterministic intercept, the xi are iid
observations of p-dimensional covariates or predictors with a common covariance matrix
Σ ∈ Rp×p, β = (β1, . . . , βp)′ ∈ Rp is an unknown parameter vector, and the εis are iid
error terms with E[εi] = 0 and constant Var(εi) = σ2 independent of the xis. We are
interested in studying the case where p > n or even p ≫ n.
In this paper, we tackle the challenge of high-dimensional linear regression with cor-
related covariates by introducing an ensemble method that integrates a novel random
projection, specifically designed for the regression problem, together with a variable
screening step pre-projection. Sparse methods, such as Tibshirani (1996)’s LASSO
(ℓ1 penalized regression), the adaptive LASSO of Zou 2006, Zou and Hastie 2005’s
elastic net which combines the ℓ1 penalty with an ℓ2 penalty to tackle the inability
of the LASSO to handle multicollinearity, the ordered weighted ℓ1-norm regression of
Figueiredo and Nowak 2014, which can handle strongly correlated predictors or, al-
ternatively, Bayesian shrinkage priors (see Gruber and Kastner 2023 for a discussion),
excel in settings where the true β sparse, while regression techniques such as partial
least squares (PLS; Fornell and Cha 1994) achieve their best performance in dense set-
tings, i.e., where many predictors contribute information about the response (Cook and
Forzani 2019). Our proposed approach, on the other hand, can adapt to various degrees
of sparsity in the true coefficients and provides a computationally efficient alternative
to both sparse and dense methods. This flexibility makes the method relevant in real-
world scenarios where the level of sparsity is often unknown and may vary significantly
across applications. Moreover, the novel data-driven random projection accommodates
various types of correlation settings.
Random projection linearly maps a set of points in high dimensions into a much lower-
dimensional space. The method is theoretically grounded in the lemma of Johnson and
Lindenstrauss (1984) (JL), who proved the existence of a linear map that approximately
preserves pairwise distances for a set of points in high dimensions in a much lower-
dimensional space. Possible applications are low-rank approximations (Clarkson and
Woodruff 2013), data reduction for high n (e.g., Geppert et al. 2015; Ahfock et al. 2021),
or data privacy (e.g., Zhou et al. 2007), but it has also been applied in the context of
regression problems, see e.g., Maillard and Munos (2009), Guhaniyogi and Dunson
(2015), Mukhopadhyay and Dunson (2020). However, employed random projections
that satisfy the JL lemma are data-agnostic and generally rely on sampling the entries
from a (sub)-Gaussian distribution. In this paper, we propose a new random projection
better suited for linear regression, which takes the variables’ effect on the response into
consideration while also accounting for the correlation among the predictors. More
specifically, we construct a sparse random projection that uses the high-dimensional
ordinary least squares projection (HOLP) estimator of Wang and Leng (2016) in the
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construction of the matrix. The proposed construction ensures that the information
about the predictor-response relationship can be recovered in the high-dimensional
space based on the solution learned from the lower-dimensional space. The approach is
motivated by a theoretical result, where we provide a theoretical bound on the expected
gain in prediction error when using a projection that incorporates information about
the true β coefficients compared to a conventional random projection.
The combination of random projection with a variable screening step pre-projection is
motivated by the fact that, for very large p, random projection can suffer from noise
accumulation, as too many irrelevant predictors are being considered for prediction
purposes (Mukhopadhyay and Dunson 2020). To alleviate this issue, we do not project
all predictors onto the lower-dimensional space using the proposed random projection
matrix, but rather only a subset by using a randomized screening step (similar to
Mukhopadhyay and Dunson 2020). In this step, predictors are selected with a proba-
bility proportional to their effect on the response conditional on the other predictors.
To account for the correlation among the predictors, we rely on the same HOLP esti-
mator used in our proposed random projection as a screening coefficient, which can be
efficiently computed and has strong theoretical screening properties.
The proposed method builds an ensemble of linear models using the screened and pro-
jected covariates to reduce the variance caused by these two randomness sources (also
recommended by Thanei et al. 2017; Guhaniyogi and Dunson 2015). The averaged
coefficients over all of the ensemble models can then be used for prediction or interpre-
tation purposes. The method allows for zero coefficients, as some variables may not be
included in the models after the probabilistic screening step. To further encourage spar-
sity in our framework, we introduce a thresholding parameter. This parameter allows
us to set any estimated coefficient values in the ensemble smaller than the threshold
(in absolute value) to zero before averaging. The number of models in the ensemble
and the thresholding parameter can be chosen by cross-validation.
In a broad simulation study with six different covariance structures and three different
levels of sparsity, we benchmark this new approach against an extensive collection of ex-
isting (sparse and dense) methods and show that it provides the best performance when
averaging ranks of prediction ability over all scenarios. While the proposed method is
outperformed by sparse techniques like adaptive LASSO or elastic net in sparse set-
tings, it still delivers better predictions than dense methods in these sparse settings,
and is among the best methods in all medium to dense settings, making it a suitable
choice when the true sparsity level of the problem is unknown. We also show that the
version with cross-validation is competitive in terms of ranking the variables according
to their impact on the response.
The paper is organized as follows. Section 2 introduces the methodology. An extensive
simulation study is presented in Section 3. Section 4 illustrates the proposed method
on two real-world datasets, and Section 5 concludes.

2. Methods
In Section 2.1, we introduce variable screening to reduce the dimensionality of predictors
and motivate the use of HOLP over other alternatives for this purpose.
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In Section 2.2, we propose a random projection tailored to dimension reduction for
linear regression and give a theoretical bound on the performance gain in the expected
prediction error over using a data-agnostic, conventional random projection. We also
show in a simulation example that when estimating the required coefficients using the
HOLP estimator, we stay well within the bound and still obtain better predictions
than a conventional random projection. Finally, we discuss how to combine these two
concepts in Section 2.3 and propose our algorithm in Section 2.4.
The following notation is used throughout the paper. For any integer n ∈ N, [n] denotes
the set {1, . . . , n}, In ∈ Rn×n is the n-dimensional identity matrix and 1n ∈ Rn is an
n-dimensional vector of ones. From model (1), we let X ∈ Rn×p be the matrix of
predictors with rows {xi ∈ [n]} and y = (y1, . . . , yn)′ ∈ Rn the response vector.

2.1. Variable screening
The general idea of variable screening is to select a (small) subset of variables, based
on some marginal utility measure for the predictors, and disregard the rest for further
analysis. In this work, we are interested in screening coefficients that can accommo-
date correlated predictors, while also being almost proportional to the true regression
coefficients. The latter property will prove useful when employing the same screening
coefficient in the data-driven random projection matrix proposed in Section 2.3.
Fan and Lv (2008) propose to use the vector of marginal empirical correlations between
the response and each predictor for variable screening to select a smaller number of
variables (less than n) for subsequent analysis (sure independence screening, SIS). They
show screening consistency of the estimator for exponential growth of p under the
condition that marginal correlations for the important variables must be bounded away
from zero. This condition rules out practically possible scenarios where an important
variable is marginally uncorrelated to the response. Wang and Leng (2016) relax this
assumption and propose the HOLP estimator for screening. Assuming rank(XX ′) = n
and therefore p > n

β̂HOLP = X ′(XX ′)−1y = lim
λ→0

X ′(λIn +XX ′)−1y︸ ︷︷ ︸
Ridge estimator

. (2)

which is also the minimum norm solution to Xβ = y (see Lemma 2). It is notable
that the HOLP estimator is the limit of the Ridge estimator (Hoerl and Kennard 1970)
in the case p > n when λ → 0 (see Lemma 1 for the derivation of this alternative
form of the Ridge estimator for the case p > n). Letting λ → 0 is also in line with
results in Kobak et al. (2020), who show that the optimal Ridge penalty for minimal
mean-squared prediction error can be zero or negative for real-world high-dimensional
data because low-variance directions in the predictors can already provide an implicit
Ridge regularization. This motivates choosing the absolute values of the tuning-free
coefficient vector β̂HOLP for variable screening. Wang et al. (2015) and Wang and Leng
(2016) show that HOLP satisfies stronger theoretical screening properties under weaker
conditions than SIS.
We now turn to investigating the practical performance of these screening coefficients in
a simulation example. The simulation study in Wang and Leng (2016) focuses on cor-
rectly selecting a sparse true model, while we are also interested in the HOLP estimator
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being almost proportional to the true regression coefficients β for later application in
the random projection. Therefore, we simulate data from the following setting (similar
to the ones employed in the simulation study in Section 3.1).

Example 1. We generate data from (1) with multivariate normal predictors xi ∼
N(0,Σ) and normal errors εi ∼ N(0, σ2), where we choose n = 200, p = 2000, µ = 1,
and Σ = ρ1p1′

p + (1 − ρ)Ip has a compound symmetry structure with ρ = 0.5 and
eigenvalues λ1 = 1 − ρ+ pρ, λj = 1 − ρ, j = 2, . . . , p. The first a = 100 entries of β are
uniformly drawn from ±{1, 2, 3} and the rest are zero. The error variance σ2 is chosen
such that the signal-to-noise ratio is ρsnr = β′Σβ/σ2 = 10.

We compare variable screening based on the marginal correlations used in SIS, HOLP,
Ridge with penalty λ =

√
n + √

p proposed in Wang and Leng (2016) and Ridge with
λ chosen by 10-fold cross-validation. Figures 8a and 8b in the Appendix show that
HOLP and Ridge with penalty λ =

√
n + √

p better separate the active and non-
active predictors and achieve better results for precision, recall, true sign recovery and
correlation to the true coefficient compared to Ridge with cross-validated penalty and
correlation-based screening.

2.2. Random projection
Random projection works by generating a random matrix Φ ∈ Rm×p with m ≪ p
and transforming the predictors as zi = Φxi ∈ Rm for further analysis. When applied
to linear regression, a random projection should ideally preserve predictive power and
ensure that β ∈ span(Φ′), allowing recovery of the true coefficients after reduction. To
achieve this, we propose a novel random projection matrix tailored to the regression
problem, based on the sparse embedding matrix of Clarkson and Woodruff (2013). This
projection satisfies the JL property and is constructed as follows:

Definition 1. Let h : [p] → [m] be a random map such that each j ∈ [p] is assigned
a random goal dimension: h(j) = hj

i.i.d.∼ Unif([m]). Let B ∈ Rm×p be a binary matrix
with Bhj ,j = 1 for all j ∈ [p] and all other entries zero, assuming rank(B) = m. Let
D ∈ Rp×p be a diagonal matrix with default entries dj ∼ Unif({−1, 1}), independent
of h. Then, we call Φ = BD a CW random projection (CW RP).

Each variable j is mapped to a uniformly random goal dimension hj with random sign,
assuming that each goal dimension k ∈ [m] is reached by h for some variable j ∈ [p],
which leads to rank(B) = m (otherwise, the dimension is discarded and m is reduced by
one). The sparsity of the CW RP ensures computational efficiency, while its structure
makes it analytically tractable. Specifically, we propose to adapt its diagonal elements
to ensure: (i) sign consistency: variables in the same goal dimension do not have
conflicting signs that would cancel out their respective contributions to the response,
and, (ii) coefficient recovery: β ∈ span(Φ′), i.e., the true coefficients β ∈ Rp can be
recovered by the reduced predictors zi = Φxi when modeling the responses as their
linear combination yi ≈ z′

iγ = x′
iΦ′γ, γ ∈ Rm.

In Lemma 3, we show that for a CW RP Φ with general diagonal entries dj ∈ R, the
projection of the coefficients β onto the row span of Φ, in matrix form β̃ = PΦβ =
Φ′(ΦΦ′)−1Φβ, is explicitly given by
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β̃j = dj ·
∑

k:hk=hj
dkβk∑

k:hk=hj
d2

k

.

To ensure β̃ = β and thus β ∈ span(Φ′), we propose setting dj = c ·βj for some constant
c ∈ R. Note that for diagonal entries dj ∈ R, we ensure rank(Φ) = m by assuming that
each i ∈ [m] has at least one mapped variable j ∈ h−1(i) = {k ∈ [p] : h(k) = i} with
dj ̸= 0. If not, we set dji

= Unif({−1, 1}) · minj:dj ̸=0 |dj| where ji = min(h−1(i)).
The following theorem shows that we can improve the mean square prediction error
when using diagonal elements proportional to β rather than random signs.

Theorem 1. Assume we have data (yi, xi), i = 1, . . . , n, from the model (1) with µ = 0,
where xi

i.i.d.∼ N(0,Σ) with 0 < Σ ∈ Rp×p, p > n, and we want to predict a new
observation from the same distribution ỹ = x̃′β + ε̃ independent from the given data.
For a smaller dimension m < n − 1, let Φrs = BDrs ∈ Rm×p be the CW RP with
random sign diagonal entries and Φpt = BDpt ∈ Rm×p the CW RP with diagonal
entries dpt

j = cβj for some constant c > 0 proportional to the true β.
Let Zrs = XΦ′

rs ∈ Rn×m and Zpt = XΦ′
pt ∈ Rn×m be the reduced predictor matrices and

ŷrs = (Φrsx̃)′(Z ′
rsZrs)−1Z ′

rsy and ŷpt = (Φptx̃)′(Z ′
ptZpt)−1Z ′

pty the corresponding least-
squares predictions. Then,

E[(ỹ − ŷrs)2] − E[(ỹ − ŷpt)2] ≥ CTh1 > 0, (3)

CTh1 = ∥β∥2
[
λp

(
1 − 2m

p

)]
+ a

p− 1mλpτ
2
(

1 − m+ 1
p− 1 + O(p−2)

)
, (4)

where A = {j ∈ [p] : βj ̸= 0} is the active index set, a = |A| is the number of active
variables, τ = minj:βj ̸=0 |βj| is the smallest non-zero absolute coefficient and λp > 0 is
the smallest eigenvalue of Σ.

The proof can be found in Appendix B.

Remark 1.

• This theorem shows that when using the random projection from Definition 1 for
least-squares regression, the expected squared prediction error is much smaller
when using diagonal elements proportional to the variables’ true effect on the
response as opposed to the conventional random sign, and gives an explicit con-
servative lower bound on how much smaller it has to be at least.

• In practice, the true β is unknown, but in Section 2.1 we saw that β̂HOLP asymp-
totically recovers the true sign and order of magnitude with high probability, and
has high correlation to the true β, meaning it is ‘almost’ proportional to the true
β. So we propose to use β̂HOLP as diagonal elements of our projection. See Re-
mark 2 in Appendix B for a short note on the implications of the error bound,
the relaxation of distributional assumptions, and the full-rank adaption of the
diagonal elements.

• Note that this bound is non-asymptotic and valid for any allowed m,n, p, a (up
to the quadratic order in p), and it does not depend on the signal-to-noise ratio
ρsnr or the noise level σ2, because they have the same average effect on the error
for both random projections.
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Figure 1: MSPE of different conventional projections, the proposed projection using
the HOLP coefficient (SparseCWHolp) or its signs (SparseCWSignH), and the oracle
projections using the true β (SparseCWBeta) or its signs (SparseCWSignB). Example 1
setup with 100 replications is used.

In what follows, we want to verify the above considerations and the obtained bound
by evaluating the prediction performance of different projections in a small simulation
example, using again the setting from Example 1. When Φ ∈ Rm×p is the selected ran-
dom projection matrix, we fit an ordinary least-squares model to the responses yi on the
reduced predictors zi = Φxi to obtain predictions for ntest = 100 new predictor obser-
vations. These predictions are evaluated by the mean squared prediction error MSPE.
We set the reduced dimension to the true number of active variables m = a = 100 and
compare Φ with Gaussian i.i.d. N(0, 1) entries, the sparse construction Φij = ±1/

√
ψ

with probability ψ/2 and zero otherwise with ψ = 1/3 (Achlioptas 2003), and the
following three versions from our Definition 1: SparseCW with standard random sign
diagonal elements, SparseCWSignH with dj = sign(β̂HOLP,j) and SparseCWHolp with
dj = β̂HOLP,j. Additionally, we look at two oracles SparseCWSignB from Definition 1
with dj = sign(βj) and SparseCWBeta with dj = βj with the full-rank adaptions pro-
posed in Theorem 1. Figure 1 shows the prediction performance of these different
projections for 100 replications. We also plot the theoretical lower bound CTh1 from
Theorem 1 from the best oracle to SparseCW with random signs and see that the ob-
served difference is even higher. The conventional random projections stay well above
this bound, while our proposed random projections using the HOLP-coefficient manage
to stay within the bound of the oracle’s performance, with random projection using the
sign-information (SparseCWSignH) instead of the coefficients performing only slightly
worse than SparseCWHolp.

2.3. Combination of screening and random projection
Similar to Mukhopadhyay and Dunson (2020), we employ a two-step approach where
probabilistic variable screening is performed before projecting the screened variables to
a random dimension using the random projection matrix in Section 2.2 to avoid noise
accumulation from using too many unimportant predictors in the random projection.
These steps are repeated several times to build an ensemble of linear models in or-
der to reduce the inherent randomness. We set the number of screened variables to a
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Figure 2: Left: Average MSPE for ensembles using HOLP screening (Src_HOLP),
CW random projections (RP_CW), HOLP with conventional random projections
(ScrRP_CW), and HOLP with CW random projections (ScrRP) across different num-
bers of models. Right: Average effect of number of screened variables on MSPE, com-
paring screening alone to screening plus random projection before linear regression.
Example 1 setup with 100 replications is used.

fixed multiple of the sample size c ·n (independent of p), draw the variables without re-
placement with probabilities proportional to their utility based on the HOLP-estimator
p̂j ∝ |β̂HOLP,j|, and use goal dimensions m ∼ Unif({log(p), . . . , n/2}) to increase estima-
tion performance of the linear regression in the reduced model. This is in contrast to the
approach in Mukhopadhyay and Dunson (2020), who use probabilities proportional to
the marginal correlation, do not control the number of variables selected in the screening
directly, and use a slightly larger goal dimension m ∼ Unif({2 log(p), . . . , 3n/4}).
In the remainder of the section, we examine the effects of the number of models in the
ensemble for different combinations of variable screening and random projection steps
as well as the impact of the number of screened variables through a simulation exercise
using the data setting from Example 1.

Number of models in ensemble
Figure 2a shows the effect of the number of models used on the average prediction
performance over 100 replications and compares the following four methods: screen-
ing to n/2 variables based on β̂HOLP (Scr_HOLP), random projections with Spar-
seCW matrix (RP_CW), and first screening with β̂HOLP to 2n variables and then
using the conventional SparseCW random projection (ScrRP_CW) or our proposed
SparseCWHolp random projection (ScrRP). When we use just one model, the screen-
ing methods deterministically select the variables with highest marginal importance
|β̂HOLP,j|, j = 1, . . . , p, otherwise they are drawn without replacement with initial prob-
abilities p̂j ∝ |β̂HOLP,j|, as previously mentioned. We can see that the combination of
screening and the proposed random projection yields the best performance, and that
the gain of using more models diminishes at around 20 models already for this method.
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Number of screened variables
In Figure 2b, we look at the effect of the number of screened variables c ·n on prediction
performance, where we compare just screening (Scr_HOLP) to the combination of
screening with random projection (ScrRP) as above for a fixed number of models M =
20, and we show averages over 100 replications. For just screening, we use the HOLP
estimator from Section 2.1 as the subsequent regression method when c ≥ 1, and in
case the system is close to degeneracy we add a small ridge penalty λ = 0.01 to the
OLS estimate. We see that the screening still performs badly for c close to 1 because
the sample covariance of the selected predictors is close to singularity. For small and
large ratios, it achieves better prediction performance. When combining the screening
with the random projection, c does not have such a big impact, and we can achieve
lower prediction errors where the best results are achieved for 2 ≤ c ≤ 4.
So far, every variable selected once in the screening step will have a contribution to the
final regression coefficient, so when we choose a smaller number of models and ratio
c, there will be fewer variables in the model. To achieve additional sparsity, we use a
thresholding step to actively set less important contributions to 0 before averaging.

2.4. Sparse projected averaged regression (SPAR)
The considerations of the previous sections lead us to propose the following Algorithm
1 for high-dimensional regression where p > n.
In Step 3, for a vector y ∈ Rn and an index set I ⊂ [n], Ī denotes the complement,
yI ∈ R|I| is the subvector with entries {yi : i ∈ I}; for a matrix B ∈ Rn×m, BI. ∈ R|I|×m

denotes the submatrix with rows {Bi. : i ∈ I} (similarly for a subset of columns).
The standardization in Step 1 stabilizes computation and makes the estimated regres-
sion coefficients comparable. In the calculation of β̂HOLP with standardized X in Step 2,
XX ′ will have rank n − 1, so we use UΛ∗U ′ instead of (XX ′)−1, where U ∈ Rn×n has
the eigenvectors of XX ′ in its columns, Λ is a diagonal matrix with the corresponding
eigenvalues λi, and Λ∗ is diagonal with entries 1/λi for i = 1, . . . , n − 1 and the entry
(n, n) is set to zero.
In Step 3.1, the choice of 2n is guided by the analysis of prediction performance in
Section 2.3.2. However, if the ratio of p/n is exceptionally small (< 5) or large (> 100),
a smaller or larger multiple of n can be used for better visual representation of the
estimated coefficients. The thresholding Step 4 introduces additional sparsity to the
models in the ensemble, where the threshold-level can be selected via cross-validation.
Note that when using λ = 0 and no screening (i.e., all variables are included in the
random projection, Ik = [p]), then each marginal model will return the same γ̂k =
1m, β̂

k = β̂HOLP, since Zkγ̂
k = Xβ̂HOLP = y achieves zero training loss. The proposed

method with screening will yield different coefficients compared to HOLP, but there
will remain some similarities.
The simple average in Step 5 can be replaced by a weighted average, where the weights
are chosen based on AIC (Burnham and Anderson 2004), (leave-out-one or cross-
validation) prediction error, true posterior model weights in a Bayesian approach, or
dynamic model weights in time series modeling (Gruber and Kastner 2023). However,
across all our efforts, the simple average across all models turned out to yield the



10 Random Projection for High-Dimensional Regression

Algorithm 1

Step 1. Standardize inputs X : n× p and y : n× 1;

Step 2. Calculate β̂HOLP = X ′(XX ′)−1y using the standardized inputs;

Step 3. For k = 1, . . . ,M :

3.1. Draw 2n predictors out of p with probabilities p̂j ∝ |β̂HOLP,j| with-
out replacement sequentially yielding the screening index set Ik =
{jk

1 , . . . , j
k
2n} ⊂ [p]; if p < 2n set Ik = [p];

3.2. Project selected variables to dimensionmk ∼ Unif{log(p), . . . , n/2} using
Φk : mk × 2n from Definition 1 with diagonal elements di = β̂HOLP,jk

i
to

obtain reduced predictors Zk = X.IkΦ′
k ∈ Rn×mk ;

3.3. Fit OLS of y against Zk to obtain γ̂k = (Z ′
kZk)−1Z ′

ky and β̂k, where
β̂k

Ik = Φ′
kγ̂

k and β̂k
Īk = 0;

Step 4. For a given threshold λ > 0, set all entries β̂k
j with |β̂k

j | < λ to 0 for all j, k;

Step 5. Combine via simple average β̂ = ∑M
k=1 β̂

k/M ;

Step 6. Choose M and λ via 10-fold cross-validation (CV) by repeating Steps 1–5
using the original index sets Ik and projections Φk) for each fold; evaluate
prediction power by MSE on the withheld fold and choose (Mbest, λbest) =
argminM,λM̂SE(M,λ);

Step 7. Output the estimated coefficients and predictions for the chosen M and λ.

best predictions for the investigated settings. Similar observations have already been
reported in the literature as the forecast combination puzzle (Claeskens et al. 2016).
The number of marginal models M can also be chosen via cross-validation (after spec-
ifying a grid of values). However, in Figure 2a, we observed that the effect of M
decreases after a certain value, so it would be possible to fix it in the analysis. Note
that higher values of M will lead to more variables being employed in the ensemble.
Finally, we note that the input data is used both to compute the screening coefficient in
Step 2 and to estimate the ensemble models, raising concerns about potential overfit-
ting. However, additional simulations show that a data-splitting approach – where one
subset is used to estimate the screening coefficient and the remainder for estimating the
marginal models – does not improve performance. This indicates that the combined
data usage does not lead to overfitting in our settings.
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3. Simulation Study

3.1. Data generation

We assume the linear model in Equation (1). The covariance matrix Σ of the predictors
and the coefficient vector β ∈ Rp×p will change depending on the simulation setting.
The intercept is set to µ = 1 and the error variance σ2 is chosen such that the signal-to-
noise ratio ρsnr = β′Σβ/σ2 = 10. We choose p = 2000 as a high number of variables and
consider the following different simulation settings for Σ: (1) Independent predictors,
(2) compound symmetry structure with common covariance ρ = 0.5, (3) autoregressive
structure with ρ = 0.9, (4) a block-diagonal group structure of the previous three
choices, (5) a lower-dimensional factor structure, and (6) an extreme correlation setting,
where any active predictor has less marginal correlation to the response than other
predictors. See Section C in the Appendix for more details on these choices of Σ.
We vary the number of active predictors a between a sparse a = 2 log(p), medium
a = n/2 + 2 log(p) and dense a = p/4 choice (rounded to closest integer). For settings
(1) to (5), the positions of the non-zero entries in β are chosen uniform random (without
replacement) in [p] and these entries are independently set as (−1)u(4 log(n)/

√
n+ |z|),

where u is drawn from a Bernoulli distribution with probability of success parameter
p = 0.4 and z is a standard normal variable. This choice was taken from Fan and
Lv (2008), such that the coefficients are bounded away from 0 and vary in sign and
magnitude. In setting 6, we choose the first a predictors to be active with βj = j for
j = 1, . . . , a and βk = 0 for k > a.
For each setting, we generate n = 200 observations and evaluate the performance on
ntest = 1000 further test observations. For setting 4, we also consider p = 500, 10000,
n = 100, 400 as well as ρsnr = 1, 5, and each setting is repeated nrep = 100 times.

3.2. Error measures

We evaluate prediction performance on ntest = 1000 independent observations via rel-
ative mean squared prediction error rMSPE = ∑ntest

i=1 (ŷtest
i − ytest

i )2
/∑ntest

i=1 (ytest
i − ȳ)2,

which is also used and motivated in Silin and Fan (2022). This measure gives an inter-
pretable performance measure relative to the naive estimator β̂ = 0, which has been
shown to achieve a small mean squared error in some high-dimensional settings, and
we want to achieve rMSPE < 1 as small as possible.
To evaluate how well the methods are able to rank the variables, we employ the absolute
value of the estimated coefficient vector to compute the partial area under the receiver
operating characteristic curve (pAUC) (similar to Wang et al. 2019). In the compu-
tation of pAUC we limit the number of false positives to n/2, which also allows for a
fairer comparison between sparse and dense methods than AUC. In all presentations,
we rescale pAUC to the interval [0,1] for better interpretation.
Finally, we evaluate the sparse methods and screening-based methods for variable selec-
tion using precision (proportion of active predictors among identified active predictors)
and recall (proportion of correctly identified active predictors among active predictors).



12 Random Projection for High-Dimensional Regression

3.3. Competitors
We compare the following list of methods:

• AdLASSO using 10-fold CV (Zou 2006);
• Elastic Net with α = 3/4 using 10-fold CV (Zou and Hastie 2005);
• Sorted L-one penalized estimation (SLOPE) (Figueiredo and Nowak 2014; Bogdan

et al. 2015);
• SIS (Fan and Lv 2008, screening method);
• Projected linear regression using one draw of a Sparse CW RP matrix with di-

mension randomly drawn as in Step 3.3 of the SPAR algorithm (RP_CW);
• An ensemble of M = 100 models of the projected linear regression with a Sparse

CW RP matrix (RP_CW_Ensemble);
• TARP (Mukhopadhyay and Dunson 2020, targeted random projection method),

which employs screening based on marginal correlations and the conventional
random projection of Achlioptas (2003);

• SPAR with fixed λ = 0,M = 20;
• SPAR CV with M ≤ 100 and λ both chosen by cross-validation;
• PLS;
• HOLP, where the coefficients in the linear regression model are computed using

Equation (2);
• Random forests (Breiman 2001, RF).

RF is the only non-linear method, but similarly to TARP and SPAR, it relies on
sampling covariates for inclusion in smaller models to build an ensemble. However, RF
uses uniform sampling, while TARP and SPAR perform probabilistic screening, aiming
at giving higher probabilities to more important covariates.
We also performed principal component regression (PCR) and a linear model with
Ridge penalty chosen by 10-fold CV, but we omitted the results for a more compact
overview. PCR performed similarly to PLS in prediction, while Ridge performed worse
than PLS in most settings. Moreover, we also replaced the Sparse CW matrix with
Gaussian and sparse conventional random projection, but did not report the results
as their performance was very similar to that of the CW RP matrix in all settings.
Finally, we employed a linear model with a LASSO penalty, but observed it did not
outperform adaptive LASSO or elastic net, so we omitted the results from this section.
Adaptive LASSO, elastic net, SLOPE, and SIS can be considered sparse methods and
will be marked by dotted boxes in the figures.
All methods were implemented in R (R Core Team 2024) using the packages glmnet
(Friedman et al. 2010, AdLASSO and ElNet), SIS (Saldana and Feng 2018), pls (Liland
et al. 2022), randomForest with mtry parameter tuned by Out-of-Bag error (Liaw and
Wiener 2002), SLOPE (Larsson et al. 2025, with alpha estimated by up to 10 iterations
of Algorithm 5 in Bogdan et al. 2015) and the source code available online on https:
//github.com/david-dunson/TARP for TARP. Our proposed method is implemented
in the R package spar available on GitHub (https://github.com/RomanParzer/SPAR).

https://github.com/david-dunson/TARP
https://github.com/david-dunson/TARP
https://github.com/RomanParzer/SPAR


Journal of Data Science, Statistics, and Visualisation 13

sparse medium dense

ind
com

sym
ar1

group
factor

extrem
e

Ad
LA

SS
O

El
N

et
SI

S
SL

O
PE

R
P_

C
W

R
P_

C
W

_E
ns

em
bl

e
TA

R
P

SP
AR

SP
AR

 C
V

PL
S

H
O

LP R
F

Ad
LA

SS
O

El
N

et
SI

S
SL

O
PE

R
P_

C
W

R
P_

C
W

_E
ns

em
bl

e
TA

R
P

SP
AR

SP
AR

 C
V

PL
S

H
O

LP R
F

Ad
LA

SS
O

El
N

et
SI

S
SL

O
PE

R
P_

C
W

R
P_

C
W

_E
ns

em
bl

e
TA

R
P

SP
AR

SP
AR

 C
V

PL
S

H
O

LP R
F

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

Method

rM
S

P
E

(a)

sparse medium dense

ind
com

sym
ar1

group
factor

extrem
e

Ad
LA

SS
O

El
N

et
SI

S
SL

O
PE

R
P_

C
W

R
P_

C
W

_E
ns

em
bl

e
TA

R
P

SP
AR

SP
AR

 C
V

PL
S

H
O

LP R
F

Ad
LA

SS
O

El
N

et
SI

S
SL

O
PE

R
P_

C
W

R
P_

C
W

_E
ns

em
bl

e
TA

R
P

SP
AR

SP
AR

 C
V

PL
S

H
O

LP R
F

Ad
LA

SS
O

El
N

et
SI

S
SL

O
PE

R
P_

C
W

R
P_

C
W

_E
ns

em
bl

e
TA

R
P

SP
AR

SP
AR

 C
V

PL
S

H
O

LP R
F

0.02

0.04

0.06

0.08

0.02

0.04

0.06

0.08

0.025

0.050

0.075

0.025

0.050

0.075

0.100

0.02

0.04

0.06

0.08

0.00

0.25

0.50

0.75

0.0

0.1

0.2

0.00

0.05

0.10

0.15

0.20

0.00

0.05

0.10

0.15

0.20

0.00

0.05

0.10

0.15

0.20

0.00

0.05

0.10

0.15

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.0

0.1

0.2

0.3

0.00

0.25

0.50

0.75

1.00

Method

pA
U

C

(b)

Figure 3: Relative MSPE (a) and partial AUC (b) of competing methods for different
covariance and active predictor settings (nrep = 100, n = 200, p = 2000, ρsnr = 10).
Sparse methods are marked by dotted boxes.

3.4. Results
First, we look at the prediction results of the competing methods for the six different
covariance settings and sparse, medium and dense active predictor settings with fixed
n = 200, p = 2000, ρsnr = 10 in Figure 3a. We see that the overall performance depends
heavily on the covariance setting, and the signal-to-noise ratio alone does not quantify
the difficulty of a regression problem. In the ‘independent’ covariance setting with
many active predictors, all methods barely outperform the naive estimator β̂ = 0 with
an rMSPE close to one, while in other covariance settings, the errors are much lower. In
general, we see that the sparse methods, especially AdLASSO and ElNet, perform well
in sparse settings, but not in settings with more active variables. On the other hand, the
PLS method and HOLP perform well in all dense settings, but less so in sparse settings.
Except in some sparse settings, the SPAR method provides competitive results. Note
that Algorithm 5 in Larsson et al. (2025) can fail to estimate alpha for SLOPE when
it selects more than n variables, e.g., in the extreme correlation setting.
To assess the overall performance, for each scenario and each repetition, we rank the
methods from best (= 1) to worst (= 12) in terms of their relative MSPE. Table 1
shows the average of these ranks (and its standard error). The proposed SPAR CV
method has the best average rank, followed by SPAR and PLS. SPAR and SPAR CV
provide a good prediction performance all-around, showing that it is a viable option,
especially in cases where it is not clear how sparse the problem is in practice. We
also observe that in terms of prediction ability, SPAR’s performance is close to SPAR
CV’s. Depending on the application context, the additional computational cost of the
cross-validation can be avoided with minimal loss in prediction power.
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Table 1: Mean and standard error of the rank (best to worst) based on rMSPE and
pAUC across all settings for nrep = 100. The cells with the best 3 values are highlighted.

Method rMSPE pAUC
AdLASSO 5.185 (0.076) 4.146 (0.057)
ElNet 5.511 (0.068) 5.381 (0.078)
SIS 9.002 (0.063) 9.934 (0.041)
SLOPE 8.596 (0.072) 6.734 (0.09)
RP_CW 11.584 (0.02) 11.227 (0.039)
RP_CW_Ensemble 6.885 (0.062) 7.872 (0.057)
TARP 4.544 (0.041) 6.156 (0.064)
SPAR 4.291 (0.047) 4.983 (0.057)
SPAR CV 3.746 (0.048) 4.133 (0.054)
PLS 4.304 (0.066) 4.458 (0.061)
HOLP 4.983 (0.065) 4.427 (0.056)
RF 9.369 (0.039) 8.548 (0.052)

Figure 3b provides information on how well the methods rank the variables as measured
by pAUC. We observe that the results again highly depend on the investigated setting.
The sparse methods achieve a high pAUC in most sparse settings, while SPAR CV
performs well in almost all other settings. In Table 1, we see that SPAR CV, followed
by AdLASSO and HOLP, perform best when ranking the methods based on pAUC.
In the Appendix, we present the results of the sparse methods and the methods includ-
ing a screening step in terms of variable selection by looking at precision (Figure 9)
and recall (Figure 10). We observe that SPAR achieves a high recall but lower preci-
sion, showing that the number of employed variables is rather high compared to the
truly active predictors. The same can be observed for TARP. The sparse methods, on
the other hand, achieve better precision than a dense method, which would select all
variables, and also a high recall in most sparse settings, but not in more dense settings.
Next, we take a closer look at the ‘group’ covariance setting with medium active vari-
ables and look at the effect of changing p, n or ρsnr. Figure 11 in the Appendix shows
that all methods achieve increasingly better performance when p is decreasing and that
a similar effect can be seen for increasing n and the signal-to-noise ratio ρsnr, where
both versions of SPAR are always among the best methods for prediction. RP_CW
was left out of these figures because of its worse performance compared to the ensemble
version and all other methods.
Finally, Figure 4 shows the average computing times in the ‘group’ covariance setting.
For p = 10000, SIS takes the least time to compute, followed by HOLP and SPAR
without cross-validation. One pays a price in terms of computing time when employing
the cross-validation in SPAR CV. However, the increase in needed computation time
for growing p is lower than for most other methods, e.g., RF or PLS. It might be
surprising that the random projection ensemble takes longer to compute than other
methods consisting of more steps, but this is due to the large input dimension of
the random projection matrices compared to SPAR and TARP, which first employ a
screening step.
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Figure 4: Average computing time in seconds for ‘group’ covariance over nrep = 100
replications of each active variable setting for increasing p and fixed n = 200, ρsnr = 10.

4. Data Applications
In this section, we apply SPAR and its competitors to two real-world high-dimensional
regression problems. For both applications, the data is randomly split into a training
set of size 3n/4 and a test set of size n/4 (rounded), with this process being repeated
100 times.

4.1. Rat eye gene expression
In this example, we use the data from Scheetz et al. (2006)1, which measured expression
levels of 31,042 (non-control) gene probes on collected tissues from eyes of n = 120
rats. Similarly to Huang et al. (2006), we are interested in modeling the relation of
all other genes to a specific gene TRIM32, which has been related to Bardet-Biedl
syndrome. Since only a few genes are expected to be linked to the given gene, this can
be interpreted as a sparse high-dimensional regression problem (Huang et al. 2006). As
in Huang et al. (2006) and Scheetz et al. (2006), we only analyze genes expressed in
the eye with sufficient variation. A gene is expressed if its maximum observed value
is higher than the first quartile of all expression values of all genes, and has sufficient
variation if it exhibits a coefficient of variation of at least two. This filtering yields
p = 22,905 genes to be used in the analysis. A subset of this dataset with p = 200
genes is available in the R package flare (Li et al. 2022), where all but three genes
are also contained in our filtered version. The selection process in Li et al. (2022) is
not described in more detail, but all 200 genes have a higher marginal correlation to
TRIM32 than 75% of all available genes.
Figure 5 shows the prediction performance for these two versions of the dataset, where
SPAR CV and HOLP perform best on the bigger dataset. For the small dataset,
SLOPE, TARP, and the ensemble of CW random projections achieve the best results.
Both SPAR methods improve their performance when the number of variables increases
from 200 to 22905, showing that the method is able to make use of additional infor-
mation, while the sparse methods yield worse predictions on the bigger dataset. Note
that the computation for PLS and PCR failed on the larger dataset, so we show Ridge
here instead.

1The dataset is publicly available in the Gene Expression Omnibus repository www.ncbi.nlm.nih.
gov/geo (GEO assession id: GSE5680)

www.ncbi.nlm.nih.gov/geo
www.ncbi.nlm.nih.gov/geo
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Figure 5: Relative MSPE on the rat eye gene expression datasets for 100 random
train/test splits. Sparse methods are marked by dotted boxes.

Table 2: Median number of active predictors for all methods on data applications across
nrep = 100 random train/test splits.

AdLASSO ElNet SIS SLOPE TARP SPAR SPAR CV
rateye 44.0 24.5 5.0 41.0 16,490.0 3,199.5 8,737.5
rateye200 10.0 18.5 4.0 36.0 200.0 199.0 181.0
face 19.5 113.5 5.5 309.5 3,626.5 3,506.0 3,746.5

Table 2 shows the median number of active variables of the competing methods on
these data applications. SPAR with M = 20 and λ = 0 as well as SPAR CV (where M
and λ are selected by cross-validation) reduce the predictor space, but we can see that
the number of used variables is much larger than for the sparse methods. Note that
SPAR CV can be less sparse than SPAR, even if it performs additional thresholding, in
cases where the selected number of models used in the ensemble is larger. The fact that
the sparse methods do not achieve the best performance on these datasets raises the
question whether this problem is actually sparse, as in our simulated sparse settings,
the sparse methods always performed better than the rest. To investigate whether this
is due to the observed covariance structure of the predictors rather than the sparsity in
β, we perform a small simulation exercise where we generate synthetic data with the
observed predictors. Results are presented in Appendix Section D. We show that, for
such a covariance structure, the SPAR method performs well even in the sparse setting,
leaving the question of the true sparsity in this problem open.

4.2. Face images
The dataset originates from Tenenbaum et al. (2000)2 and was also studied, among
others, in Guhaniyogi and Dunson (2016). It consists of n = 698 black and white face
images of size p = 64 × 64 = 4,096 and the faces’ horizontal looking direction angle as
the response. The bottom-left plot in Figure 6 illustrates one such instance with the
corresponding angle. For each train/test split, we exclude pixels close to the edges and

2Data can be found at https://web.archive.org/web/20160913051505/http://isomap.
stanford.edu/datasets.html

https://web.archive.org/web/20160913051505/http://isomap.stanford.edu/datasets.html
https://web.archive.org/web/20160913051505/http://isomap.stanford.edu/datasets.html
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ŷ = 37.4

Figure 6: Top: positive (left) and negative (right) estimated coefficients of SPAR CV.
Bottom: One new instance (left) and the pixel contributions to its prediction (right).

median

 0.65

median

 0.228

median

 0.06

0.00

0.01

0.02

0.03

AdL
ASSO

ElN
et SIS

SLO
PE

RP_C
W

RP_C
W

_E
ns

em
ble

TA
RP

SPA
R

SPA
R C

V
PLS

HOLP RF

Method

rM
S

P
E

Figure 7: Relative MSPE on the face angle dataset for 100 random train/test splits.
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corners, which are constant on the training set. We expect that many pixels together
carry relevant information, making this a rather dense regression problem.
Figure 7 shows the prediction performance results for this dataset. Here, RF yields
the lowest prediction error, followed by SPAR, SPAR CV, and PLS. AdLASSO and
SIS perform substantially worse than the other methods, as their number of estimated
active predictors seems to be way too low; see Table 2. As a non-parametric method,
RF is able to estimate a non-linear relationship to the response. Actually, this data
example was previously used for illustrating non-linear compressed methods in (low-
dimensional) manifold regression in Guhaniyogi and Dunson (2016). When replicating
the preprocessing in their paper, SPAR CV achieved an average MSPE of 0.0142 with
average bootstrap standard error of 0.0043, while the best non-linear method mentioned
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in Guhaniyogi and Dunson (2016) achieved 0.06 with standard error 0.009, showing
that the proposed method with the linear model assumption is a feasible option for
modeling this data, but there might still be some non-linearity indicated by RF’s good
performance.
One advantage of the linear methods over RF is interpretability. For this dataset,
we now illustrate the estimated regression coefficients and their contribution to a new
prediction for SPAR CV. We apply our method once on the full dataset except for two
test images, thus n = 696. The top of Figure 6 shows the positive (left) and negative
(right) estimated regression coefficients of the pixels. It yields almost symmetrical
images, which is sensible, and highlights the contours of the nose and forehead. For
the prediction of a new face image, we can define the contribution of each pixel as the
pixel’s coefficient multiplied by the corresponding grey-scale value of the new instance.
In the bottom-right panel, we visualize these contributions for the test instance on the
bottom left. The sum of all these contributions (plus a ‘hidden’ intercept) yields the
prediction of ŷ = 37.4 for the true angle y = 35.2.

5. Summary and Conclusions
This paper introduced a new data-informed random projection aimed at dimension
reduction for linear regression, which uses the HOLP estimator (Wang and Leng 2016).
We motivated this projection matrix by a theoretical result, where we show how much
better we can expect the prediction error to be in a projection that uses the true β
coefficients compared to a conventional random projection.
Around this new random projection, we built the SPAR ensemble method with a data-
driven threshold selection using cross-validation. In an extensive simulation study, we
compare SPAR to different methods employing random projections and other sparse
and dense methods. We show that the proposed method achieves the best all-around
prediction and variable ranking performance on average across the scenarios. This
makes SPAR a viable option, especially in cases where it is unclear how sparse the
problem is in practice, because most other methods only perform well in sparse set-
tings but underperform in dense settings or vice versa. We also noticed that SPAR’s
prediction performance is comparable to the cross-validated SPAR CV. However, SPAR
CV shows better performance in terms of variable ranking. In applications where fast
prediction is the main task, SPAR without cross-validation can be employed without
notable loss in prediction ability.
This methodology can be extended to non-linear (or robust) regression by employing
non-linear (or robust) methods, such as generalized linear models or Gaussian processes,
in the marginal models instead of OLS. Future work also includes extensions for (multi-)
classification or multivariate regression tasks.

Computational Details
All the code to reproduce the results in this paper can be found in the GitHub repository
https://github.com/RomanParzer/SPAR_Paper_Figures_Code.

https://github.com/RomanParzer/SPAR_Paper_Figures_Code
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Figure 8: Comparison of screening based on marginal correlations, HOLP, Ridge with
λ =

√
n+ √

p and Ridge with cross-validated λ in the setting in Example 1. (a) shows
density estimates of absolute estimated coefficients for active and non-active predictors
over nrep = 100 repetitions. (b) shows precision, recall, sign recovery, and correlation
of estimates to the true coefficients averaged over 100 replications, where the vertical
line indicates the true number of active variables.

A. Simulation Study for Screening

Similarly to Example 1 of Section 2.1, we compare the selection of variables based on
marginal correlations, HOLP, Ridge with proposed penalty λ =

√
n + √

p, and Ridge
with λ chosen by 10 fold cross-validation.

Figure 8a shows density estimates of the absolute coefficients estimated by these four
methods for truly active and non-active variables for 100 replicated draws of the data.
In Figure 8b, we evaluate the selection process of the four methods when selecting the
k variables having the highest absolute estimated coefficients and let k vary on the
x-axis. We show the precision and recall of this selection, as well as the ratio of correct
signs for truly active predictors included in the selection and the correlation of the
corresponding true coefficients to the estimates averaged over the 100 replications. We
see that HOLP and Ridge with penalty λ =

√
n + √

p better separate the active and
non-active predictors and achieve better results for precision, recall, true sign recovery
and correlation to the true coefficient compared to Ridge with cross-validated penalty
and correlation-based screening. In Figure 8a, we see that the absolute coefficients of
cross-validated Ridge are much smaller than HOLP and Ridge with λ =

√
n + √

p,
meaning the λ suggested by cross-validation is much higher. In comparison, the choice
λ =

√
n+ √

p even leads to quite similar results as HOLP, which can be interpreted as
Ridge with λ = 0.
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B. Lemmas and Proof of Theorem 1
This section states and proves Lemmas 1, 2 and 3 mentioned in Section 2, and gives a
detailed proof of Theorem 1 and Lemma 4 needed in the proof.

Lemma 1. Let X ∈ Rn×p be a fixed matrix and y ∈ Rn a vector. Then, the Ridge
estimator for λ > 0 has the following alternative form suitable for the p ≫ n case.

β̂λ := (X ′X + λIp)−1X ′y = X ′(λIn +XX ′)−1y. (5)

Proof. Using the Woodbury matrix inversion formula

(A+ UCV )−1 = A−1 − A−1U(C−1 + V A−1U)−1V A−1,

where A, U , C and V are conformable matrices, we have for any penalty λ > 0

β̂λ := (X ′X + λIp)−1X ′y

= 1
λ

(
Ip − 1

λ
·X ′

(
In + 1

λ
·XX ′

)−1

X

)
X ′y

= 1
λ
X ′y − 1

λ
X ′(λIn +XX ′)−1XX ′y ± 1

λ
X ′(λIn +XX ′)−1λy

= 1
λ
X ′y − 1

λ
X ′ (λIn +XX ′)−1(XX ′ + λIn)︸ ︷︷ ︸

=In

y + 1
λ
X ′(λIn +XX ′)−1λy

= X ′(λIn +XX ′)−1y.

Lemma 2. Let X ∈ Rn×p be a fixed matrix with rank(XX ′) = n (implying p > n) and
y ∈ Rn a vector. Then, the minimum norm least-squares solution argminβ∈Rp,s.t.Xβ=y∥β∥
is uniquely given by β̂ = X ′(XX ′)−1y.

Proof. Obviously, β̂ = X ′(XX ′)−1y satisfies Xβ̂ = y. For any β̃ ∈ Rp with Xβ̃ = y we
have

∥β̃∥2 = ∥β̂ + β̃ − β̂∥2 = ∥β̂∥2 + ∥β̃ − β̂∥2 + 2 · β̂′(β̃ − β̂) =
= ∥β̂∥2 + ∥β̃ − β̂∥2︸ ︷︷ ︸

≥0

+2 · y′(XX ′)−1 X(β̃ − β̂)︸ ︷︷ ︸
=0

≥ ∥β̂∥2,

with equality if and only if β̃ = β̂.

Lemma 3. Let Φ ∈ Rm×p be a CW random projection from Definition 1 with general
diagonal elements dj ∈ R and β ∈ Rp. Then, the projected vector β̃ = PΦβ for the
orthogonal projection PΦ = Φ′(ΦΦ′)−1Φ onto the row span of Φ is given by

β̃j = dj ·
∑

k:hk=hj
dkβk∑

k:hk=hj
d2

k

. (6)
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Proof. We can split the projection in

PΦβ = Φ′(ΦΦ′)−1Φβ = D(B′(ΦΦ′)−1B)(Dβ).

The matrix ΦΦ′ = BD2B′ ∈ Rm×m is diagonal with entries {∑l:hl=i d
2
l : i ∈ [m]},

because each variable is only mapped to one goal dimension. Then, for j, k ∈ [p] we
have

(B′(ΦΦ′)−1B)jk =
0 hj ̸= hk

1/(∑l:hl=hj
d2

l ) hj = hk

.

Putting it together, we get

β̃j = dj ·
p∑

k=1
I{hk = hj} · dkβk∑

l:hl=hj
d2

l

= dj ·
∑

k:hk=hj
dkβk∑

k:hk=hj
d2

k

.

Lemma 4. Let h : [p] → [m] be a random map such that for each j ∈ [p] : h(j) =
hj

i.i.d.∼ Unif([m]), and let A ⊂ [p] be a subset of indices with a = |A| > 1. Then,

E
[

|A ∩ h−1(hj) \ {j}|
|h−1(hj)|

]
= a− I{j ∈ A}

p− 1 ·
(

1 − m

p

(
1 −

(
m− 1
m

)p))
, (7)

E
[

|A ∩ h−1(hj) \ {j}|
|h−1(hj)|2

]
= m

a− I{j ∈ A}
p− 1 ·

(
1

p− 1 − m+ 1
(p− 1)2 + O(p−3)

)
, (8)

where h−1(k) = {j ∈ [p] : h(j) = k} is the (random) preimage set for k ∈ [m].

Proof. The first random variable |A ∩ h−1(hj) \ {j}|/|h−1(hj)| (random in h) has the
distribution of X1/(1 + X1 + X2), where X1 ∼ Binom(aj, 1/m), aj = a − I{j ∈ A}
corresponding to the active variables (except j) and X2 ∼ Binom(p − 1 − aj, 1/m)
independent of X1 corresponding to the inactive variables.
Note that for any x1, x2 ∈ N x1/(1+x1 +x2) =

∫ 1
0 x1s

x1+x2ds and, by Fubini’s theorem,
we can interchange the integral and expectation to obtain

E
[

X1

1 +X1 +X2

]
=
∫ 1

0
E[X1s

X1 ]E[sX2 ]ds.

By using the moment-generating function of a binomial variable and the dominated
convergence theorem to interchange the derivative and the expectation, we get

E[sX2 ] =
(
m− 1
m

+ 1
m
s

)p−1−aj

,

E[(X1 + 1)sX1 ] = ∂

∂s
E[sX1+1] = ∂

∂s
s

(
m− 1
m

+ 1
m
s

)aj

=
(
m− 1
m

+ 1
m
s

)aj

+ s
aj

m

(
m− 1
m

+ 1
m
s

)aj−1

,

=⇒ E[X1s
X1 ] = E[(X1 + 1)sX1 ] − E[sX1 ] = s

aj

m

(
m− 1
m

+ 1
m
s

)aj−1

.
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Putting the results together and using partial integration, we obtain

E
[

X1

1 +X1 +X2

]
=
∫ 1

0
s
aj

m

(
m− 1
m

+ 1
m
s

)aj−1(
m− 1
m

+ 1
m
s

)p−1−aj

ds

= aj

p− 1 ·
(

1 − m

p

(
1 −

(
m− 1
m

)p))
.

Similarly, the second random variable |A∩h−1(hj)\{j}|/|h−1(hj)|2 has the distribution
of X1/(1 +X1 +X2)2. We will use a similar approach to Cribari-Neto et al. (2000) to
obtain a fourth-order approximation.
By use of the Gamma function and similar arguments to the first case, we can write

x1

(1 + x1 + x2)2 =
∫ ∞

0
x1te

−(1+x1+x2)tdt

for any x1, x2 ∈ N, and

E
[

X1

(1 +X1 +X2)2

]
=
∫ ∞

0
te−tE[X1e

−X1t]E[e−X2t]dt. (9)

By use of the moment-generating functions we get

E[e−X2t] =
(
m− 1
m

+ 1
m
e−t

)p−1−aj

,

E[X1e
−X1t] = E

[
∂

∂t

(
− e−X1t

)]
= − ∂

∂t
E[e−X1t] = − ∂

∂t

(
m− 1
m

+ 1
m
e−t
)aj

= aj

(
m− 1
m

+ 1
m
e−t
)aj−1 1

m
e−t.

Plugging this into (9) and using the variable substitution e−r = (m− 1)/m+ (1/m)e−t

and the definition g(r) = − log[m{e−r − (m− 1)/m}]me−r yields

E
[

X1

(1 +X1 +X2)2

]

= aj

∫ ∞

0

1
m
te−2t

(
m− 1
m

+ 1
m
e−t

)p−2

dt

= aj

∫ − log[{(m−1)/m}]

0
− log

(
m

(
e−r − m− 1

m

))
m

(
e−r − m− 1

m

)
e−(p−1)rdr

= aj

∫ − log[{(m−1)/m}]

0

(
1 − m− 1

m
er

)
g(r)e−(p−1)rdr. (10)

From Cribari-Neto et al. (2000), we use the facts that for δ < min(1,− log{(m− 1)/m})

g(r) = m2r
[
1 + m− 3

2 r + O(r2)
]
, (11)∫ δ

0
rke−(p−1)rdr = Γ(k + 1)

(p− 1)k+1 + O(e−(p−1)δ), (12)∫ − log{(m−1)/m}

δ
g(r)e−(p−1)rdr = O(e−(p−1)δ). (13)
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We split the integral in (10) in two parts (0, δ) and (δ,− log{(m− 1)/m}). On r > δ
we can use (1 − {(m− 1)/m}er) ≤ 1 and (13) to obtain∫ − log{(m−1)/m}

δ

(
1 − m− 1

m
er

)
g(r)e−(p−1)rdr = O(e−(p−1)δ).

On r < δ we use the Taylor expansion er = 1 + r+ O(r2) and Equations (11) and (12)
to get ∫ δ

0

(
1 − m− 1

m
er

)
g(r)e−(p−1)rdr

= m2
∫ δ

0

(
r

1
m

+ r2
(

− m− 1
m

+ m− 3
2m

)
+ O(r3)

)
e−(p−1)rdr

= m

[
1

(p− 1)2 + 2(−(m− 1) + (m− 3)/2)
(p− 1)3 + O(p−4)

]
,

where any exponential decay (e.g., from (12))t is omitted when a polynomial decay is
present. Together, we obtain from (10)

E
[

X1

(1 +X1 +X2)2

]
= aj

[ ∫ δ

0

(
1 − m− 1

m
er

)
g(r)e−(p−1)rdr

+
∫ − log {(m−1)/m}

δ

(
1 − m− 1

m
er

)
g(r)e−(p−1)rdr

]

= ajm

[
1

(p− 1)2 + 2(−(m− 1) + (m− 3)/2)
(p− 1)3 + O(p−4)

]

= m
aj

p− 1 ·
(

1
p− 1 − m+ 1

(p− 1)2 + O(p−3)
)
.

Proof of Theorem 1. For a general CW projection Φ = BD, reduced predictors Z =
XΦ′, and a prediction ŷ = (Φx̃)′(Z ′Z)−1Z ′y = (Φx̃)′(Z ′Z)−1Z ′Xβ + (Φx̃)′(Z ′Z)−1Z ′ε
we get the expected squared error (w.r.t x̃, ε̃, and ε given X and Φ)

E[(ỹ − ŷ)2|X,Φ] (14)
= E[(x̃′(Ip − Φ′(Z ′Z)−1Z ′X)β + ε̃− x̃′Φ′(Z ′Z)−1Z ′ε)2|X,Φ] = (15)
= E[β′(Ip −X ′XΦ′(ΦX ′XΦ′)−1Φ)x̃x̃′(Ip − Φ′(ΦX ′XΦ′)−1ΦX ′X︸ ︷︷ ︸

:=P

)β (16)

+ ε̃2 + ε′XΦ′(ΦX ′XΦ′)−1Φx̃x̃′Φ′(ΦX ′XΦ′)−1ΦX ′ε|X,Φ] = (17)
= β′(Ip − P )′Σ(Ip − P )β + σ2 (18)

+ E[ε′XΦ′(ΦX ′XΦ′)−1ΦΣΦ′(ΦX ′XΦ′)−1ΦX ′ε|X,Φ], (19)
where we used that the mixed terms have expectation 0. The third term has conditional
expectation given Φ

E[ε′XΦ′(ΦX ′XΦ′)−1ΦΣΦ′(ΦX ′XΦ′)−1ΦX ′ε|Φ]

= E[tr
(

(ΦX ′XΦ′)−1ΦΣΦ′(ΦX ′XΦ′)−1ΦX ′εε′XΦ′
)

|Φ]

= σ2 · tr
(
E[(ΦX ′XΦ′)−1|Φ]ΦΣΦ′

)
,
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where we used the facts that tr(AB) = tr(BA) for matrices A,B of suitable dimensions,
E[εε′] = σ2 · In and ε is independent of X and Φ. For fixed Φ, the matrix XΦ′ has a
centered matrix normal distribution with among-row covariance In and among-column
covariance ΦΣΦ′ ∈ Rm×m. Therefore, ΦX ′XΦ′ has a Wishart distribution with scale
matrix ΦΣΦ′ ∈ Rm×m and n degrees of freedom, and (ΦX ′XΦ′)−1 has an Inverse-
Wishart distribution resulting in the expectation E[(ΦX ′XΦ′)−1|Φ] = (ΦΣΦ′)−1/(n −
m− 1) and, continuing above calculations, we obtain

E[ε′XΦ′(ΦX ′XΦ′)−1ΦΣΦ′(ΦX ′XΦ′)−1ΦX ′ε] = σ2 · m

n−m− 1 .

Since the expectations of the second and third term in (18) and (19) do not depend on
Φ or the respective diagonal elements, they will cancel when computing the difference
in (3), and we only need to consider the first term β′(Ip − P )′Σ(Ip − P )β = (β −
Pβ)′Σ(β − Pβ). The plan is to find an upper bound on its expectation when using
diagonal elements proportional to the true coefficient and a lower bound when using
random signs as the diagonal elements.

Lower bound for random signs: Let λ1 ≥ · · · ≥ λp > 0 be the ordered eigenvalues
of Σ and P rs

X = Φ′
rs(ΦrsX

′XΦ′
rs)−1ΦrsX

′X. Then,

E[(β − P rs
Xβ)′Σ(β − P rs

Xβ)] ≥ λp · E[∥β − P rs
Xβ∥2]. (20)

Let P rs
Φ = Φ′

rs(ΦrsΦ′
rs)−1Φrs and β̃rs = P rs

Φ β be the orthogonal projection. Then, we
have

∥β − P rs
Xβ∥2 = ∥β − β̃rs∥2 + ∥β̃rs − P rs

Xβ∥2︸ ︷︷ ︸
≥0

≥ ∥β − β̃rs∥2,

because β̃rs − P rs
Xβ ∈ span(Φ′

rs) and β − β̃rs ⊥ span(Φ′
rs).

Using the explicit form of β̃rs from Lemma 3 and independence of the map h and
diagonal elements dj

i.i.d.∼ Unif({−1, 1}), we get

E[β̃rs
j ] = E

[
dj ·

∑
k:hk=hj

dkβk

|h−1(hj)|

]
= βj · E

[
1

|h−1(hj)|

]
. (21)

Since we always have j ∈ h−1(hj) and the other goal dimensions are independently
drawn uniformly at random, the cardinality of this set has distribution |h−1(hj)| ∼
1+Binom(p−1, 1/m). Cribari-Neto et al. (2000) showed that the inverse moments are
then given by

E
[

1
|h−1(hj)|

]
= m

p

(
1 −

(
m− 1
m

)p)
,

E
[

1
|h−1(hj)|2

]
= m2

(p− 1)2 + (m− 3)m2

(p− 1)3 + O(p−4).
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Plugging this into (21) yields

βjE[β̃rs
j ] = β2

j · m
p

(
1 −

(
m− 1
m

)p)
≤ β2

j · m
p
,

E[(β̃rs
j )2|h] = E

[∑
k:hk=hj

∑
l:hl=hj

dkdld
2
jβkβl

|h−1(hj)|2
|h
]

=
∑

k:hk=hj
β2

k

|h−1(hj)|2
≥ τ 2 |A ∩ h−1(hj)|

|h−1(hj)|2
,

where τ = minj:βj ̸=0 |βj|. Using Lemma 4 we get for βj ̸= 0 (or j ∈ A)

E[(β̃rs
j )2] ≥ τ 2E

[
|A ∩ h−1(hj)|

|h−1(hj)|2

]
= τ 2E

[
1 + |A ∩ h−1(hj) \ {j}|

|h−1(hj)|2

]

= τ 2
[

m2

(p− 1)2 + (m− 3)m2

(p− 1)3 O(p−4)

+m
a− 1
p− 1 ·

( 1
p− 1 − m+ 1

(p− 1)2 + O(p−3)
)]

≥ τ 2
[
m

a

p− 1 ·
(

1
p− 1 − m+ 1

(p− 1)2 + O(p−3)
)]

and, for βj = 0 (or j /∈ A)

E[(β̃rs
j )2] ≥ τ 2E

[
|A ∩ h−1(hj)|

|h−1(hj)|2

]
= τ 2E

[
|A ∩ h−1(hj) \ {j}|

|h−1(hj)|2

]

= τ 2
[
m

a

p− 1 ·
(

1
p− 1 − m+ 1

(p− 1)2 + O(p−3)
)]
.

Now we can find a lower bound on the expected squared norm as

E[∥β − β̃rs∥2] = E

 p∑
j=1

(
βj − β̃rs

j

)2
 =

p∑
j=1

β2
j − 2βjE[β̃rs

j ] + E[(β̃rs
j )2] (22)

≥ ∥β∥2 ·
(

1 − 2m
p

)
+ τ 2ma

(
1

p− 1 − m+ 1
(p− 1)2 + O(p−3)

)
. (23)

Upper bound for true coefficient: The additional assumption on the diagonal
elements proportional to the true coefficient ensures that Φpt has full row rank. From
Lemma 3, we see that β̃pt = P pt

Φ β for P pt
Φ = Φ′

pt(ΦptΦ′
pt)−1Φpt still equals

β̃pt
j =


cβj · {∑k:hk=hj

(cβk)βk/
∑

k:hk=hj
c2β2

k} = βj βj ̸= 0
0 · {∑k:hk=hj

(cβk)βk/
∑

k:hk=hj
c2β2

k} = 0 βj = 0,∃k ∈ h−1(hj) : βk ̸= 0

dj · {∑k:hk=hj
dk

=0︷︸︸︷
βk /

∑
k:hk=hj

d2
k} = 0 βj = 0,∀k ∈ h−1(hj) : βk = 0

,

the true coefficient β in every case, implying β = P pt
Φ β ∈ span(Φ′

pt). As a short remark,
here we see that the choice of diagonal elements {dk : k ∈ h−1(hj)} in the third case
has no influence on the projection, as long as at least one is non-zero.
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Similarly to before, we need to bound the expectation of (β − P pt
X β)′Σ(β − P pt

X β),
where P pt

X = Φ′
pt(ΦptX

′XΦ′
pt)−1ΦptX

′X. Since β ∈ span(Φ′
pt), we have β = P pt

X β and,
therefore,

E[(β − P pt
X β)′Σ(β − P pt

X β)] = 0. (24)
Finally, we can put the results together to obtain

E[(ỹ − ŷrs)2] − E[(ỹ − ŷpt)2] = E[(β − Prsβ)′Σ(β − Prsβ)] − E[(β − Pptβ)′Σ(β − Pptβ)]

≥ ∥β∥2λp

(
1 − 2m

p

)
+ a

p− 1mλpτ
2
(

1 − m+ 1
p− 1 + O(p−2)

)
.

Remark 2.
• When using diagonal elements just almost proportional to the true β, we can

obtain the upper bound

E[(β − P pt
X β)′Σ(β − P pt

X β)] ≤ λ1 · E
[
∥β − β̃pt∥2 ·

(
1 + ∥P pt

X ∥2
)]
, (25)

where ∥P pt
X ∥ is the spectral norm induced by the Euclidean norm growing bigger

when X ′X is further away from the identity. As long as ∥β−β̃pt∥2 is small enough
such that this upper bound remains smaller than the obtained lower bound for
random sign diagonal elements, we still have a theoretical guarantee for an average
gain in prediction performance.

• We assumed E[yi] = 0,E[xi] = 0 for notational convenience in the proof. With
a general center E[xi] = µx and intercept µ ̸= 0 as in (1), we can just use the
centered X and y and the proof will work in a similar way for the same bound, but
also needs to consider the estimation of the intercept µ̂ = ȳ − (Φx̄)′(Z ′Z)−1Z ′y
for both Z = Zrs, Zpt and Φ = Φrs,Φpt.

• The assumption of multivariate normal distribution for the predictors allows us to
explicitly calculate E[(ΦX ′XΦ′)−1|Φ]ΦΣΦ′ from the Inverse-Wishart-distribution,
but we could also allow any distribution, for which this expression does not depend
on the choice of Φ.

• In the proof, we can see that the concrete adaption of diagonal elements to retain
rank(Φpt) = m after Definition 1 is irrelevant, as long as there is at least one non-
zero dj with j ∈ h−1(i) for each i ∈ [m]. Our proposed adaption aims at adding
minimal noise when we can not choose the diagonal elements exactly proportional
to the true β (e.g., when we only use the sign information), while keeping Φrs not
just full rank but also well-conditioned.
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Figure 9: Precision of competing methods which perform any type of variable selection
for different covariance and active predictor settings for nrep = 100 replications (n =
200, p = 2000, ρsnr = 10). Sparse methods are marked by dotted boxes.

C. Additional Details for Simulation Study
The following choices were considered for the covariance matrix Σ in Section 3.

1. Independent predictors: Σ = Ip.
2. Compound symmetry structure: Σ = ρ1p1′

p + (1 − ρ)Ip, where we set ρ = 0.5.
3. Autoregressive structure: The (i, j)-th entry is given by Σij = ρ|i−j| and we choose
ρ = 0.9. This structure is appropriate if there is a natural order among the
predictors and two predictors with larger distances are less correlated, e.g., when
they give measurements over time.
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Figure 10: Recall of competing methods which perform any type of variable selection
for different covariance and active predictor settings for nrep = 100 replications (n =
200, p = 2000, ρsnr = 10). Sparse methods are marked by dotted boxes.

4. Group structure: Similarly to scheme II in Mukhopadhyay and Dunson (2020),
Σ follows a block-diagonal structure with blocks of 100 predictors each, where
the first half of the blocks has the compound structure from setting 2 and the
second half has the AR structure from setting 3. Only the very last block has
identity structure corresponding to independent predictors within that block, and
the predictors between different blocks are independent.

5. Factor model: Inspired by model 4.1.4. in Wang and Leng (2016), we first gen-
erate a p × k factor matrix F with k = a and iid standard normal entries, and
then set Σ = FF ′ + 0.01 · Ip. Here, dimension reduction of the predictors will be
useful, because most of the information lies within the k-dimensional subspace
defined by F .
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Figure 11: Performance measures of the competing methods, where the sparse methods
are marked by dotted boxes, for ‘group’ covariance setting, medium setting for the active
variables and p = 500, 2000, 10000 (top panel, n = 200, ρsnr = 10), n = 100, 200, 400
(middle panel, p = 2000, ρsnr = 10) and ρsnr = 1, 5, 10 (bottom panel, p = 2000, n =
200) for nrep = 100 replications.

6. Extreme correlation: This setting is designed such that methods relying on marginal
correlations have difficulty in finding any true active predictor. Similarly to ex-
ample 4 in Wang (2009), we create each predictor variable xi the following way.
For i = 1, . . . , n, let zij ∼ N(0, 1) be iid standard normal variables for j = 1, . . . , p
and wij ∼ N(0, 1) iid standard normal variables for j = 1, . . . , a independent of
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Figure 12: Relative MSPE and pAUC of the competing methods for different active
predictor settings and different number of variables p = 500, 2000, 22905 over nrep = 100
synthetic datasets using the observed genes in the gene expression dataset. Sparse
methods are marked by dotted boxes.

the zijs. We then set

xij =
(zij + wij)/

√
2 j ≤ a

(zij +∑a
k=1 zik)/

√
a+ 1 j > a

.

The marginal correlation of any active predictor xj, j ≤ a to the response is
way smaller than that of any unimportant predictor xk, k > a. The exact ratio
between them is (j/a) · 2−3/2 · (a+ 1)−1/2 < 1 for j = 1, . . . , a.

Next, we include the additional Figures 9,10 and 11 for the simulation results mentioned
and explained in Section 3.4.
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D. Simulation Study with Synthetic Rat Eye Data
We employ a simulation setting similar to the one in Section 3 where we use the
first p = 500, 2000, 22905 genes from our filtered gene expression data as predictors,
construct sparse, medium, and dense coefficient vectors β as in Section 3.1, and generate
a synthetic response with mean µ = 1 from the predictors with noise level chosen such
that the signal-to-noise ratio based on the empirical predictor covariance is 10.
Figure 12 shows the relative MSPE and the partial AUC for sparse, medium, and
dense settings and the different values of p over 100 replications. We observe that
SPAR performs well in all settings, even in the sparse ones, especially for the case
p = 22,905. In contrast to the simulation scenarios in Section 3, the sparse methods do
not perform clearly better in the sparse settings. This highlights the strong impact of
the correlation structure on the performance of the methods.
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