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Abstract

A new anomaly detection method called kernel outlier detection (KOD) is pro-
posed. It is designed to address challenges of outlier detection in high-dimensional
settings. The aim is to overcome limitations of existing methods, such as depen-
dence on distributional assumptions or on hyperparameters that are hard to tune.
KOD starts with a kernel transformation, followed by a projection pursuit ap-
proach. Its novelties include a new ensemble of directions to search over, and a
new way to combine results of different direction types. This provides a flexible
and lightweight approach for outlier detection. Our empirical evaluations illus-
trate the effectiveness of KOD on three small datasets with challenging structures,
and on four large benchmark datasets.
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1. Introduction

Most outlier detection methods for multivariate and possibly high-dimensional data
assume that the non-outlying data are drawn from an elliptical distribution. However,
many modern datasets such as images, sensor data or genetic data do not obey this
assumption. In this work, we propose a kernel outlier detection method that does not
rely on this assumption, by combining kernel transformations with the Stahel-Donoho
outlyingness (Stahel 1981; Donoho 1982).
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The Stahel-Donoho outlyingness (SDO) assigns an outlyingness value to each data
point by considering the most extreme standardized deviation across all possible pro-
jection directions. In other words, it searches for the direction along which the obser-
vation deviates the most from the majority of the data. Formally, given a data matrix
(x1, . . . ,xn)

T with p-variate data points xi = (xi1, . . . , xip)
T , the SDO of each case is

defined as

SDO(xi) := sup
v∈B

∣∣vTxi −medj(v
Txj)

∣∣
MADj(vTxj)

(1)

where B = {v ; ∥v∥ = 1} is the set of all p-variate vectors of length 1, med denotes the
median, and MAD is the median absolute deviation, defined as

MAD(y1, . . . , yn) = 1.483medi|yi −medj(yj)| (2)

for a univariate sample y1, . . . , yn . The SDO is a projection pursuit method. It is
based on the idea that if a point is a multivariate outlier, then there must be some
one-dimensional projection of the data in which the point is a univariate outlier. It
further relies on the empirical observation that one-dimensional projections of many
high-dimensional data clouds often have a roughly normal distribution.

However, these assumptions are not always satisfied in real data. We illustrate the SDO
on the bivariate dataset in the left panel of Figure 1. We call it the ‘Inside-Outside
data set’, as it has 800 regular observations scattered around a circle (in green), 100
clustered outliers inside the circle, and 100 outliers near a circle with a larger radius.
The outliers are shown in black. The middle panel shows the SDO values of these 1,000
points. We see that the inner cluster has much smaller outlyingness than the regular
points.

Figure 1: Inside-Outside dataset (left), the corresponding SDO values (middle) and
their heatmap (right).

Note that the SDO can also be computed in an arbitrary point x, which does not have
to be a data point. All we need to do in (1) is replace xi by x, yielding SDO(x) =
supv∈B{|vTx − medj(v

Txj)|/MADj(v
Txj)}. The rightmost panel of Figure 1 is a

heatmap, obtained by computing the SDO on a fine grid of points x and coloring the
results. The region with an SDO below the median SDO of the entire dataset is colored
white, and the color gradually goes from white to red for increasing outlyingness. We
see that the SDO does not flag the data points inside the regular circle as outliers.

The SDO values in Figure 1 were obtained from the function depth.projection in
the R package ddalpha (Pokotylo et al. 2019) which computes the exact SDO values.
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Whereas the computation of the exact SDO is feasible in small dimensions, it becomes
too demanding in high dimensions due to the enormous set of unit vectors B in (1).
Maronna and Yohai (1995) noted that even when replacing the median and the MAD
by smooth estimators of location and scale, the function inside (1) has multiple local
maxima, which makes gradient-based methods ineffective. Approximate algorithms to
compute the SDO typically rely on using a specific subset of directions in B. The oldest
approach is to draw a random subsample of p data points, and to use a unit vector
orthogonal to the affine hyperplane they span (Stahel 1981). This is then repeated many
times. The advantage of generating these directions is that the resulting SDO values
do not change when the data are subjected to a nonsingular linear transformation.
This property is called affine invariance. However, the p-subset approach becomes very
time consuming for high-dimensional data, and cannot be applied when there are more
dimensions than data points.

A less computationally expensive approach is to consider directions through two ran-
domly selected data points (Hubert et al. 2005; Segaert et al. 2024). The resulting SDO
values are invariant to orthogonal transformations of the data, which is appropriate in
for instance the context of principal component analysis (PCA). Another algorithm
is based on randomly drawing directions from the uniform distribution on the hyper-
sphere, as in Velasco-Forero and Angulo (2012). But according to Dyckerhoff et al.
(2021) this yields poor performance that degrades with increasing dimension.

To relax the elliptical assumption underlying the SDO, Hubert and Van Der Veeken
(2008) proposed a version of the SDO adjusted for skewed data, based on a robust
measure of skewness. A different approach is proposed in Tamamori (2023). First
the data are transformed to a kernel feature space, then their dimension is reduced
by kernel PCA, and finally their SDO is computed using directions drawn randomly
from the uniform distribution on the unit hypersphere. Kernel transformations can be
beneficial in this context, because they make linear separations more feasible, which
improves the performance of SDO. But as the resulting Kernel Random Projection
Depth (KRPD) relies exclusively on these directions, its ability to identify outliers is
limited, especially in high-dimensional scenarios. This will be illustrated empirically in
Section 4.

Several other kernel-based outlier detection methods have been proposed, such as the
One-Class Support Vector Machine (OCSVM) of Schölkopf et al. (1999) and the Kernel
Minimum Regularized Covariance Determinant (KMRCD) method of Schreurs et al.
(2021). The widely adopted OCSVM method suffers from sensitivity to hyperparam-
eter choices, which is especially problematic in unsupervised contexts such as outlier
detection, where cross validation is not possible. The KMRCD method combines robust
covariance estimation and kernel transformations, but still relies on elliptical distribu-
tion assumptions in the kernel feature space, restricting its generality.

To address these issues we propose a novel Kernel Outlier Detection (KOD) approach.
It contains two main novelties: (i) we introduce intuitive and computationally efficient
directions that naturally arise from kernel transformations, and (ii) we propose a ro-
bust aggregation mechanism for combining multiple direction types, which enhances
detection accuracy.
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Our empirical validation uses synthetic toy datasets and high-dimensional image datasets.
We compare KOD with existing unsupervised methods, including OCSVM, KMRCD,
k-Nearest Neighbors, Local Outlier Factor (LOF) (Breunig et al. 2000), and Isolation
Forest (IF) (Liu et al. 2008). Although no single method outperforms all others across
all scenarios, KOD performed consistently among the best, especially on highly con-
taminated datasets.

The remainder of this paper is organized as follows. In Section 2, we describe the
proposed methodology, and then illustrate it on challenging small datasets in Section 3.
In Section 4, we describe a series of experiments on these small datasets and on large-
scale real-world datasets, to investigate the performance against competing methods.
Finally, Section 5 concludes with a discussion.

2. The Kernel Outlier Detection Method

The proposed methodology consists of three main steps. First, we map the data into a
high-dimensional feature space using kernel functions, and derive a finite-dimensional
representation that preserves the essential structure of the data. Next, we adapt the
SDO measure for high-dimensional data by constructing computationally feasible sub-
sets of relevant directions. Finally, we combine the results from these subsets and
identify outliers.

2.1. Constructing feature vectors

We begin by mapping the data into a feature space. Let X denote the input space, and
consider a dataset X = {x1, . . . ,xn} ⊂ X . We define a feature mapping ϕ : X → F ,
where the feature space F is a vector space with an inner product ⟨·, ·⟩F defined on it.
For each observation xi we call ϕ(xi) its feature vector. A kernel function k : X×X → R
is defined by

k(x,x′) = ⟨ϕ(x), ϕ(x′)⟩F for x,x′ ∈ X .

We consider only positive semidefinite (PSD) kernel functions to ensure that k defines a
valid inner product in the feature space, as guaranteed by Mercer’s theorem (Schölkopf
and Smola 2001). A symmetric function k : X × X → R is called PSD if for any finite
set {x1, . . . ,xn} ⊂ X and real coefficients {c1, . . . , cn} ⊂ R it holds that

n∑
i=1

n∑
j=1

cicjk(xi,xj) ⩾ 0.

A commonly used kernel is the Radial Basis Function (RBF) defined as

k(x,x′) = exp

(
−∥x− x′∥2

2σ2

)
, (3)

where σ is a tuning parameter. The RBF kernel is bounded, which turns out to yield
favorable robustness properties (Debruyne et al. 2009). To select σ we employ the
median heuristic (Gretton et al. 2012; Schreurs et al. 2021) given by

σ2 = med
{
∥xi − xj∥2 ; 1 ⩽ i < j ⩽ n

}
. (4)
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This heuristic assumes that all the input variables are measured in the same units. If
this assumption does not hold we first standardize the data, for instance by subtracting
the columnwise median and dividing by the columnwise MAD. Note that in supervised
learning tasks, there is a categorical or numerical response variable that one tries to
fit according to a criterion, and then one can choose σ through cross-validation. But
in our context of unsupervised outlier detection there is no response variable, so cross-
validation is not applicable.

From a PSD kernel function one constructs an n × n kernel matrix K with entries
kij = k(xi,xj). This kernel matrix contains all pairwise inner products of the feature
vectors, so K = ΦΦT with Φ = [ϕ(x1), . . . , ϕ(xn)]

T . To work efficiently within the
feature space, we aim to obtain a finite-dimensional representation of it, even if the full
feature space has infinitely many dimensions. First, we restrict ourselves to the subspace
spanned by the feature vectors ϕ(xi), as it contains all the available information. To
compute this subspace, we consider the centered feature vectors

ϕ̃(xi) = ϕ(xi)−
1

n

n∑
i=1

ϕ(xi)

that span a subspace F̃ of dimension at most n− 1. The n× n centered kernel matrix
K̃ has entries

k̃ij = ⟨ϕ̃(xi), ϕ̃(xj)⟩F .

It can be computed directly from K as

k̃ij =

(
ϕ(xi)−

1

n

n∑
ℓ=1

ϕ(xℓ)

)T (
ϕ(xj)−

1

n

n∑
ℓ′=1

ϕ(x′
ℓ)

)

= kij −
1

n

n∑
ℓ=1

kℓj −
1

n

n∑
ℓ′=1

kiℓ′ +
1

n2

n∑
ℓ=1

n∑
ℓ′=1

kℓℓ′

= (K− 1nnK−K1nn + 1nnK1nn)ij , (5)

where 1nn is the n× n matrix with all entries equal to 1/n.

Kernel methods typically work with K or K̃ without the need to explicitly know or
compute the feature map. This approach is known as the kernel trick. In our proposed
outlier detection method, we will however construct an n × r matrix F (with r =
rank(K) ⩽ n− 1) that satisfies

K̃ = FFT .

The matrix F can easily be derived from the spectral decomposition K̃ = VΛVT of the
centered kernel matrix, where V contains the eigenvectors of K̃ corresponding to the r
strictly positive eigenvalues λ1 ⩾ λ2 ⩾ · · · ⩾ λr > 0 that form the diagonal matrix Λ.
The matrix F = VΛ1/2 then satisfies FFT = VΛ1/2(VΛ1/2)T = VΛVT = K̃.

Note that this decomposition is not unique, as for any r × r orthogonal matrix U also
FU satisfies (FU)(FU)T = FUUTFT = FFT = K̃. However, we prefer to work with
the matrix F because its columns are ranked by decreasing variance.

A different way to compute F is by means of a transformation matrix. Since all diagonal
entries of Λ are strictly positive, we can compute Λ−1/2 as the r × r diagonal matrix
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with diagonal entries 1/
√
λ1, . . . , 1/

√
λr . We then construct the n× r transformation

matrix T as T := VΛ−1/2. Then F = K̃T since

K̃T = (VΛVT )(VΛ−1/2) = VΛ(VTV)Λ−1/2 = VΛ1/2 = F.

The rows fi of F are representations of the data points in the subspace F̃ . They are
equal to the feature vectors ϕ̃(xi) up to an orthogonal transformation. At large sample
sizes, they can still be high dimensional, making all following computations intensive.
Hence, in the decomposition of K̃, we retain only the q largest eigenvalues such that
their cumulative sum accounts for at least 99% of the total sum, i.e., we set q as the
smallest value for which ∑q

j=1 λj∑r
j=1 λj

⩾ 0.99. (6)

We define Λq as the q × q diagonal matrix of the retained eigenvalues, as well as the
n × q matrix Vq containing the corresponding eigenvectors. Then we construct the

matrix F̂ = VqΛ
1/2
q which satisfies F̂F̂T ≈ K̃. We can also compute F̂ as

F̂ = K̃Tq with Tq = VqΛ
−1/2
q . (7)

We call the rows f̂i of F̂ the approximate feature vectors. They can also be obtained
as the scores from applying PCA to the feature vectors ϕ(xi), known as kernel PCA
(Schölkopf et al. 1998). But whereas kernel PCA typically aims to reduce the dimension
a lot (i.e., using a low q), our approach focuses on preserving enough structure for
outlier detection. This motivates selecting the high threshold of 0.99 in Equation (6).
The computation of F̂ can be carried out using the makeFV function in the R package
classmap (Raymaekers et al. 2022; Raymaekers and Rousseeuw 2023).

Note that not all kernel matrices originate from numerical data. For instance, a string
kernel can produce a kernel matrix from text or parts of DNA. Our methodology can
handle such kernel matrices as well.

2.2. Constructing directions

The second step of the KOD method is to compute a measure of outlyingness applied
to the approximate feature vectors f̂i. In order to compute the SDO of (1) we need a
set of directions. For this purpose, we construct four different types of directions, that
we will then combine.

One Point type: a first set of directions B1 consists of the n directions passing through
each point f̂i and a robust center. Similar to the choices made in Hubert et al. (2002)
and Croux and Ruiz-Gazen (2005) in the context of robust PCA, we use the L1-median
as center. This estimator can withstand up to 50% of outliers. It is also orthogonally
invariant, which is relevant in our context since rotations in feature space leave the
kernel matrix unchanged, and the orthogonal equivariance of this center ensures that
the SDO values remain unchanged as well. The L1-median is computed using the
NLM algorithm described in Fritz et al. (2012) and provided in the R package pcaPP
(Filzmoser et al. 2006). At large sample sizes n, a random subset of B1 could be used,
but in our examples we will consider all n directions.
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Two Point type: the second set of directions B2 is given by lines passing through pairs
of feature points f̂i and f̂j as in Hubert et al. (2005). We restrict B2 to at most 5,000
directions, selected randomly from the

(
n
2

)
possible directions.

Basis Vector type: the third set Bb is new. It consists of the q basis vectors computed
when constructing the f̂i and is natural in our context. Since they correspond to the
first q principal components of the feature vectors ϕ(xi), it can be expected that some
of these basis vectors point in the direction of outliers because the resulting projections
yield large variances. We observed empirically that this often does happen. In Figure 2,
we see a scatterplot of the (f̂i1, f̂i3) for the Inside-Outside dataset of Figure 1 after
applying the RBF kernel. The kernel transformation has created a linear separation
between the three groups in the data. Projecting the points onto the third basis vector
then yields large SDO values for both the ‘outside’ and the ‘inside’ outliers.

Random type: we also randomly draw vectors from the unit hypersphere in q dimen-
sions. This set of directions we denote as Br. Our default number of random directions
is set to 1,000 as in Tamamori (2023).

Figure 2: Scatterplot of the third versus the first coordinate in feature space, of the
Inside-Outside dataset of Figure 1.

2.3. Flagging outliers

For each set of directions, we can now compute the SDO of the f̂i as in (1). In exper-
iments, we noticed that for some directions the denominator could become extremely
small, thereby unduly enlarging the result. To avoid this, we impose a lower bound cd
on the denominator. This cd is obtained in a data-driven manner by

cd =
1

5
med
v∈Br

(
MADj(v

T f̂j)
)

. (8)

Next, we compute the outlyingness for each set of directions. The index type ranges
over 1, 2, b and r, corresponding to the sets B1,B2,Bb and Br. For each type we get
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outltype(f̂i) = max
v∈Btype

∣∣∣vT f̂i −medj(v
T f̂j)

∣∣∣
max

(
MADj(vT f̂j), cd

) . (9)

Now we still have to combine these four measures of outlyingness into a single one. For
this purpose, we first normalize each outltype by its median, and then take the largest
normalized value. This yields the Kernel Outlyingness (KO) of each case i, given by

KOi = max
type

(
outltype(f̂i)

medj(outltype(f̂j))

)
. (10)

The normalization ensures that no single direction type dominates, as we observed
empirically that outltype can have a rather different behavior for different types.

The last task is to flag outliers based on the KO values. Empirical evidence, such as
provided by Rousseeuw et al. (2018), suggests that in high-dimensional settings the
distribution of outlyingness values for non-outliers often approximates a log-normal
distribution. Hence, we first apply a logarithmic transformation to the KOi:

LOi = log(0.1 + KOi), (11)

and then estimate their center and scale with the Huber M-estimator of location µ̂M

(Huber 1964) and the Qn estimator of scale σ̂Qn (Rousseeuw and Croux 1993). Next,
we determine the cutoff value as

c = exp
(
µ̂M(LO) + z0.99σ̂Qn(LO)

)
− 0.1, (12)

where z0.99 is the 99th percentile of the standard normal distribution. Finally, the data
points with KOi ⩾ c are flagged as outliers.

The full procedure is summarized in Algorithm 1.

Algorithm 1 Kernel Outlier Detection

Input: Dataset X = {x1, . . . ,xn} ⊂ X , kernel function k : X × X → R.
1: Compute the kernel matrix K, and its centered version K̃ given by (5).

2: Perform the spectral decomposition of K̃ = VΛVT and construct the approximate
feature matrix F̂ = VqΛ

1/2
q .

3: Create the subsets of directions B1,B2,Bb and Br.
4: Compute a lower bound for the denominator according to (8).
5: Compute the outlyingness for each f̂i and each direction type, following (9).
6: Scale the outlyingness values by their medians and compute the kernel outlyingness

as in (10).
7: Obtain a cutoff c for outlier detection using (11) and (12).
8: Flag data points as outliers if KOi ⩾ c.

Output: Kernel outlyingness KOi of all cases, and the set of flagged outliers.

When we need to compute the KO of out-of-sample cases {y1, . . . ,ym}, we first compute
all the kernel values kyx(yi,xj) for i = 1, . . . ,m and j = 1, . . . , n and store them in the
m× n matrix Kyx. Then we compute the centered kernel matrix

K̃yx = Kyx −Kyx1nn − 1mnK+ 1mnK1nn
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with 1mn the m × n matrix with all elements equal to 1/n. Finally we compute the

approximate feature vectors F̂y = K̃yxTq as in (7). For each set of directions Btype, the

outlyingness of each f̂ y is computed as in (9) where the center medj(v
T f̂j) and scale

MADj(v
T f̂j) in each direction are those from the training data.

3. Toy Datasets

To support the rationale behind the proposed KOD method and provide an intuitive
understanding of its strengths, we first show detailed results on three synthetic but
challenging bivariate datasets. These ‘toy’ datasets illustrate how different types of
projection directions influence outlier detection performance.

Figure 3: Scatter plots of three toy datasets. Green dots represent regular data points,
and black dots represent outliers.

The three datasets are displayed in Figure 3 and referred to as Salt-Pepper Ring, Circle-
Cluster, and Inside-Outside.

� Salt-Pepper Ring: In this dataset, the regular data points are arranged in a
roughly circular pattern, while the outliers are uniformly sprinkled both inside
the circle and in the background, creating sparse noise with no coherent structure.

� Circle-Cluster: The regular data points again follow a circular pattern, but the
outliers now form a cluster near the center. This is harder than the Salt-Pepper
Ring, since some methods may interpret the centrally located outliers as a dense
cluster of regular points.

� Inside-Outside: This dataset was already shown in Section 1. It contains two con-
centric circular patterns and a cluster in the center. This is the most challenging
setup because it combines clustered outliers at the center with rather structured
outliers outside the main circle. We put the same number of outliers outside as
inside.

Each dataset contains n = 1000 observations, with contamination levels set at 20%. In
Section 4, we will compare KOD with competing methods on these datasets, and then
we will use contamination levels of 5%, 10%, and 20%.

We apply the RBF kernel to each of these datasets. They all have 1,000 cases so the
kernel matrix is always 1000× 1000, but the centered kernel matrices are of ranks 98,
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Figure 4: Outlyingness values obtained from each direction type and the combined KO
outlyingness on the Salt-Pepper Ring dataset with 20% contamination.

Figure 5: Heatmaps of the outlyingness values obtained from each direction type and
the combined KO on the Salt-Pepper Ring dataset with 20% contamination.

61 and 79 (we discard eigenvalues below 10−12). Following (6) the retained number
of dimensions q is 9, 6, and 8. So even though we have applied the RBF kernel, our
computations are performed in a space of dimension much lower than n− 1 = 999.

Figures 4 and 5 show some results on the Salt-Pepper Ring dataset. The first four
panels display the normalized outlyingness values outltype/medj(outltype(f̂j)) for each
type of direction. The last panel shows their maximum, which is the final KO. To each
panel we have added a horizontal line. The solid red line in the last panel has height
c, the cutoff given by (12) for flagging the outliers. The dashed red lines in the other
panels represent the hypothetical thresholds that would be obtained if only that single
direction type was used for deriving an outlier cutoff.

In Figure 4, the outliers were put at the end for visual support, but in real data they
can be anywhere. The Two Points type and the Random type directions detected
most of the outliers outside the circle, but were unable to discover the centrally located
anomalies. They consider the entire region inside the circle as a regular region. The
Basis Vector type roughly captures the shape of the ring, but does not detect all outliers.
The One Point type did provide a clear separation between regular data points and
outliers, which is also reflected in the combined KO values in the rightmost panel.

The differences between the direction types can be seen more clearly in Figure 5, which
displays heatmaps of the SDO computed on a grid as in Figure 1. Again points whose
outltype is below medj(outltype(f̂j)) are colored white, and darkening shades of red
indicate increasing outlyingness. The Two Points and Random types leave the region
inside the circle almost white, so they failed to capture the structure of the regular
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Figure 6: Outlyingness values obtained from each direction type and the combined KO
outlyingness on the Circle-Cluster dataset with 20% contamination.

Figure 7: Heatmaps of the outlyingness values obtained from each direction type and
the combined KO on the Circle-Cluster dataset with 20% contamination.

Figure 8: Outlyingness values obtained from each direction type and the combined KO
outlyingness on the Inside-Outside dataset with 20% contamination.

region. The heatmap of the combined directions in the rightmost panel looks a lot like
that of the One Point type, which in this dataset gave the best separation.

Figures 6 and 7 show the results on the Circle-Cluster dataset. The Two Points type
directions and the Random type directions were unable to discover the centrally located
anomalies. They consider the entire region inside the circle as a regular region. The
One Point and Basis Vector types did provide a clear separation between regular data
points and outliers.

We now revisit the Inside-Outside dataset of Figure 1. Both the ‘inside’ and ‘outside’
outliers need to be identified, which SDO cannot do in the input space as illustrated
in Section 1. In Figures 8 and 9, we see that Two Points and Random struggle to
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Figure 9: Heatmaps of the outlyingness values obtained from each direction type and
the combined KO on the Inside-Outside dataset with 20% contamination.

separate the ‘inside’ outliers from the regular observations, whereas One Point and
especially Basis Vector correctly identify the region of the regular points. The cutoff
on the combined KO provides a good separation.

In the Appendix, an additional toy dataset is studied.

4. Numerical Experiments

In this section, we compare KOD with several competitors, both on the toy datasets
of Section 3 and on four large benchmark datasets. The choice of datasets was guided
by the principle that in order to evaluate outlier detection methods we need to know
which cases are the outliers, which does not happen very often in real data. We will
first describe the competing methods and the evaluation metrics.

4.1. Competing methods

We compare KOD with three other kernel-based methods, as well as three well-known
anomaly detection methods that do not use kernels.

Kernel random projection depth (KRPD). Tamamori (2023) first applies the kernel,
and then switches to the kernel PCA scores of the data points. Next, 1,000 directions
are generated randomly from the uniform distribution on the hypersphere, from which
the SDO of (1) is computed. Also a monotone decreasing function of the SDO is
considered, given by D(xi) := 1/(1+SDO(xi)) and called projection depth. The paper
does not provide an unsupervised selection method for the σ of the RBF kernel, or
for the number of principal components. To make a fair comparison we use the same
number of principal components as in KOD, and consider 8,000 random directions,
which is roughly the total number of directions in KOD when n = 1000.

Kernel Minimum Regularized Covariance Matrix (KMRCD). The KMRCD method
of Schreurs et al. (2021) computes a robust regularized covariance estimator in the
feature space. The method uses a fast algorithm that exploits the kernel trick to
speed up computations. The hyperparameter α that determines the proportion of data
points used to estimate the covariance matrix is set to 0.5 for maximal robustness. The
resulting outlier diagnostic is the robust Mahalanobis distance computed in the feature
space. We have implemented this method in R.
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One-Class Support Vector Machine (OCSVM).OCSVMmaps the data into the feature
space and searches for a hyperplane that separates them from the origin with maximum
margin (Schölkopf et al. 1999). It needs an additional hyperparameter ν that controls
the maximum allowed fraction of outliers. We set it to 0.5 for maximal robustness.
Moreover, OCSVM provides a decision function whose values indicate the position
of each point relative to the separating boundary. These decision values can thus
be interpreted as an outlyingness values. Computations are performed with the svm

function from the R package e1071 (Meyer et al. 2024).

kNN for outlier detection (KNN). This method and the following ones do not use ker-
nels. KNN ranks the observations based on the distance to their k-th nearest neighbor
(Ramaswamy et al. 2000). We use the L1 distance which is more informative than the
Euclidean distance on high dimensional data, and we consider both

√
n and log (n) for

the hyperparameter k. Computations are performed with the kNNdist function from
the R package dbscan (Hahsler et al. 2025).

Local Outlier Factor (LOF). LOF is a density-based method that assigns to each point
an outlyingness value based on how much it deviates from its local neighborhood in
terms of density (Breunig et al. 2000). We again used the L1 distance for finding the
nearest neighbors, and considered two alternatives for the size of the neighborhoods.
First, we set k = 20. Then, as a hyperparameter-free alternative and as advocated in
Breunig et al. (2000), we calculated outlyingness values for k = {10, 20, 30, 40, 50} and
set for each data point its final outlyingness as the maximum among the five values
(denoted as LOF Pmax). We use the lof function from the R package dbscan (Hahsler
et al. 2025).

Isolation Forest (IForest). IForest is a tree-based method that recursively partitions the
data to isolate outliers (Liu et al. 2008). The anomaly score of a point is related to the
number of splittings required to isolate it. The results depend highly on hyperparameter
choices, and there are numerous alternatives to choose from. We used the default
settings from scikit-learn (Pedregosa et al. 2011) and also considered a density-based
alternative. The function isolation.forest from the R package isotree (Cortes 2019)
was used.

4.2. Evaluation metrics

In the literature, one often evaluates outlier detection performance by the Area Under
the Curve (AUC) of the Receiver Operating Characteristic (ROC). However, Campos
et al. (2016) show that it is not optimal for this purpose. Another measure is the
Matthews Correlation Coefficient (MCC), which considers all aspects of the confusion
matrix: the number of true positives (TP), true negatives (TN), false positives (FP),
and false negatives (FN). It is given by

MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
. (13)

However, when comparing a broad range of methods, a practical difficulty arises. Many
outlier detection methods in the literature output a ranking or score indicating the
degree of outlyingness, but do not provide a cutoff threshold beyond which a data



14 Kernel Outlier Detection

Table 1: Comparison of outlier detection methods applied to the three toy datasets,
with varying contamination percentage. The entries are the Precision at N (P@N) of
(14), averaged over 10 replications of each dataset.

Salt-Pepper Ring Circle-Cluster Inside-Outside
Contamination Contamination Contamination

5% 10% 20% 5% 10% 20% 5% 10% 20%

KOD 1.00 1.00 0.94 1.00 1.00 1.00 1.00 1.00 1.00
KRPD 0.78 0.77 0.81 0.00 0.00 0.00 0.47 0.50 0.54
KMRCD 0.39 0.46 0.60 0.00 0.00 0.00 0.22 0.34 0.41
OCSVM 0.87 0.86 0.88 0.00 0.00 0.00 0.50 0.50 0.50
KNN k =

√
n 1.00 1.00 1.00 0.83 0.41 0.20 1.00 0.92 0.69

KNN k = log (n) 1.00 1.00 1.00 0.50 0.39 0.23 0.80 0.77 0.70
LOF k = 20 1.00 0.97 0.75 0.30 0.52 0.61 0.50 0.66 0.78
LOF Pmax 1.00 1.00 0.98 0.27 0.46 0.66 0.99 0.62 0.77
IForest Default 0.90 0.94 0.96 0.12 0.03 0.00 0.62 0.58 0.50
IForest Density 0.98 0.98 0.99 0.98 0.60 0.14 1.00 0.92 0.58

point is flagged as an outlier. Introducing an arbitrary cutoff for such methods could
introduce bias, and lead to an inaccurate assessment of their performance. We will
therefore use a different evaluation metric, called Precision at N and denoted P@N. If
N is the known number of true outliers, then P@N is defined as

P@N =
number of true outliers among the N highest values of the criterion

N
. (14)

The P@N measure is particularly well-suited in our situation, as it circumvents the
need for a threshold, by focusing on the proportion of true outliers among the N top
ranked cases. For a comprehensive discussion on the appropriateness of P@N in outlier
detection see Campos et al. (2016).

4.3. Performance comparison on the toy datasets

Applying KOD and the outlier detection methods listed in Section 4.1 to the three toy
datasets in Section 3 yielded the P@N results in Table 1. In all three datasets we varied
the contamination percentage from 5% to 20%, and the reported P@N is the average
over 10 replications of each setting.

We observe that KOD worked well on all three datasets, even for 20% of contamination.
The performance of the competing methods was quite variable, ranging from reasonable
to poor. On some datasets, certain methods failed entirely. The kNN method with
k =

√
n and the density version of IForest had good performance on Circle-Cluster for

5% of contamination, but degraded substantially as the contamination level increased.

The fact that KOD outperformed KRPD illustrates that only using directions generated
from the uniform distribution on the hypersphere is not enough. The combination of
direction types in KOD makes it more versatile. We know from partial results that
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sometimes one direction type does better, and sometimes another. We also observed
that some of the competing methods are highly sensitive to hyperparameter choices,
and in this unsupervised setting those cannot be tuned by cross validation. Even when
hyperparameters are set using prior knowledge about the data, no method consistently
produces satisfactory results. This is because the clean data can have many different
distributions, and the outliers can take many forms.

4.4. Performance comparison on real datasets

Now we move on to more complex real-world scenarios. To evaluate the effectiveness of
the proposed KOD method, we conducted a series of experiments on three well-known
benchmark datasets of images. As these datasets contain nonlinear relationships and
are high-dimensional, they provide a suitable testing ground. Also, it is easy for the
human eye to verify outliers in images.

The MNIST, MNIST-C, and Fashion MNIST datasets contain grayscale images with a
resolution of 28× 28 pixels, each categorized into 10 distinct classes. The MNIST data
(Lecun et al. 1998) consist of handwritten digits from 0 to 9. MNIST-C extends the
MNIST dataset by introducing several types of corruption applied to the handwritten
digit images, some of which are shown in Figure 10. The Fashion MNIST grayscale
images depict various types of clothing, distributed across 10 categories.

Figure 10: An original image and some corruption types in the MNIST-C dataset.

For MNIST and Fashion MNIST we consider ten different setups. In each setup, one
of the ten classes was designated as the regular images. Next, outliers were generated
by randomly sampling images from the remaining classes. The MNIST-C data already
contained outliers. For each digit and for each corruption type, the original digit images
were treated as non-outliers, while the corresponding corrupted versions were considered
as outliers. This resulted in a total of 140 different experimental setups (10 digits by
14 corruption types).

In addition to these image datasets we also consider a dataset from Campos et al.
(2016), the PageBlocks data. It is about blocks in document pages, and has continuous
variables. The regular data correspond to blocks of text, and the blocks with images
are considered as outliers.

To investigate the performance under varying outlier percentages, we considered three
contamination rates: 5%, 10% and 20%. In all experiments we set the sample size n to
1000, and the results were averaged over 5 replications.

An issue with experiments of this type is that for real data there is no absolute ‘ground
truth’. In the image datasets, we observed that some of the supposedly clean images
looked very strange, and some of the methods indeed flagged them as outlying. On
the other hand, some of the supposedly contaminated images looked as if they could
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belong to the main class, explaining why they were not always flagged. This raises the
important issue of mislabeling in classification, which is an active research topic, see
e.g. Raymaekers et al. (2022) and the references cited therein.

For some other datasets, such as the PageBlocks data, there is a semantic justification
why some cases are outlying, but is it really certain that the variables that have been
measured give enough information about the difference between clean and outlying
cases? For instance, medical datasets that contain many healthy people and some sick
persons may have recorded many variables, but do they really discriminate between
healthy and sick? And might not the healthy set contain people that are outlying for
other reasons? Moreover, the diagnosis of the study participants may be subject to
mislabeling also.

The choice of kernel significantly impacts the performance of kernel-based methods, as
it determines the feature space in which outlyingness is computed. We used the RBF
kernel for all image datasets, with the parameter σ selected by the median heuristic
given in (4). The RBF kernel is a reasonable choice due to its demonstrated success on
image datasets. For the PageBlocks dataset, we used the linear kernel, but using the
RBF kernel did not substantially change the performance of KOD.

Table 2: Comparison of outlier detection methods applied to four real datasets, with
varying contamination percentage. The entries are the averaged P@N, normalized by
its highest value per column.

MNIST MNIST-C Fashion MNIST PageBlocks

Contamination Contamination Contamination Contamination

5% 10% 20% 5% 10% 20% 5% 10% 20% 5% 10% 20%

KOD 0.80 0.92 0.95 0.80 0.80 0.83 0.80 0.90 0.97 0.60 0.66 0.88

KRPD 0.64 0.80 0.87 0.66 0.66 0.71 0.89 0.92 0.94 0.68 0.73 0.92

KMRCD 0.68 0.92 1.00 0.66 0.66 0.72 0.89 0.95 0.99 0.41 0.55 0.83

OCSVM 0.68 0.83 0.84 0.69 0.69 0.68 1.00 0.98 0.96 0.40 0.43 0.55

KNN k =
√
n 0.78 0.92 0.94 0.78 0.76 0.77 0.96 0.97 0.94 0.73 0.79 0.84

KNN k = log n 0.85 0.95 0.94 0.69 0.73 0.76 0.77 0.73 0.75 0.76 0.80 0.81

LOF k = 20 0.97 0.93 0.87 0.59 0.62 0.65 0.48 0.35 0.38 0.82 0.91 0.91

LOF Pmax 1.00 1.00 0.95 0.66 0.68 0.72 0.68 0.54 0.46 1.00 1.00 1.00

IForest Default 0.64 0.78 0.83 0.94 0.94 0.96 0.98 1.00 1.00 0.68 0.73 0.85

IForest Density 0.61 0.75 0.76 1.00 1.00 1.00 0.75 0.78 0.79 0.51 0.60 0.65

Table 2 shows the performance of KOD and the competing methods in terms of P@N,
which has been normalized by dividing each P@N entry by the highest P@N in its
column. The performance of KOD was fairly reliable. The performance of some other
methods was more variable across settings. Note that KOD does not require tuning of
hyperparameters, making it easy to apply.

The Appendix contains an additional table in which the performance is measured by
the Matthews correlation of (13) instead of P@N. There KOD is only compared to the
three other methods that provide cutoff values. The results are qualitatively similar.
Also a figure with computation times is provided there.
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5. Conclusion

In this paper, we introduced a new anomaly detection method called kernel out-
lier detection (KOD), designed to address the challenges of outlier detection in high-
dimensional settings. Our research was motivated by limitations of existing methods,
some of which assume underlying distribution types, or rely on hyperparameters that
are hard to tune, or struggle when data exhibit nonlinear structures, or whose com-
putation does not scale well for larger datasets. By combining kernel transformations
with a new ensemble of projection directions, KOD provides a flexible and lightweight
framework for outlier detection.

From a methodological viewpoint, our work contributes two main enhancements. First,
we introduced the Basis Vector type of direction, that is handy in kernel-induced feature
spaces. And second, we introduced a new way to combine the information from different
direction types.

Our empirical evaluations on both synthetic and real datasets illustrated the effective-
ness of KOD. On three small datasets with challenging structures we saw how different
projection direction types capture various aspects of the data, with their combination
improving outlier detection under diverse geometric structures. We also studied outlier
detection on four large benchmark datasets. On the high-dimensional image datasets
MNIST, MNIST-C, and Fashion MNIST we saw that KOD performed among the best
methods, illustrating its reliability in practical applications.

We end with a cautionary note. In spite of the good performance of KOD in these
examples, there are no guarantees. Indeed, no method can produce good results in all
situations. This is because the clean data can have many different distributions, and
the outliers can take many forms. What constitutes an outlier also depends on the
kind of analysis that is being carried out. For instance, a case may be an outlier in a
linear fit but not in a quadratic fit or a regression tree. In that sense anomaly detection
methods are only a first step, that should be followed by interpreting its results.

Supplementary Material

The R code of the proposed method and an example script are in https://wis.

kuleuven.be/statdatascience/code/kod_r_code_script.zip .
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A. An Additional Dataset

In addition to the ‘toy’ datasets Salt-Pepper Ring, Circle-Cluster and Inside-Outside
we also considered another, the Moons data. This dataset consists of two interleaving
half moon shapes, as seen in Figure 11. It is widely used to demonstrate the limitations
of linear separation and to motivate the use of kernel-based approaches. Here the upper
half circle (in green) contains most of the cases, while the lower one (in black) has 10%
of the cases. The latter are therefore outlying relative to the majority.

Figure 11: The Moons dataset.

Let us now apply the KOD method, starting with the RBF kernel. Figure 12 shows
some results. The first four panels display the normalized outlyingness values
outltype/medj(outltype(f̂j)) for each type of direction. The last panel shows their max-
imum, which is the final KO.

Figure 12: Outlyingness values obtained from each direction type and the combined
KO outlyingness on the Moons dataset with 10% contamination.

In Figure 12 we see that the Random directions failed to separate the outliers from the
regular points. The other three types did better, but none of them in a perfect way.
The combined KO values in the last panel do separate the outliers from the inliers,
with the cutoff line nicely in between.
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Figure 13: Heatmaps of the outlyingness values obtained from each direction type and
the combined KO, on the Moons dataset with 10% contamination.

The differences between the direction types can also be seen in the heatmaps of the
SDO in Figure 13. The white region in each shows where points would be considered
regular, and it varies greatly across direction types. For instance, Random considers
part of the lower half circle as regular. Fortunately the heatmap of the combination, in
the rightmost panel, is quite accurate.

B. Additional Table with Matthews Correlation

In the main text the comparisons between methods were reported using the P@N
measure given by (14). Here is an additional table in which the performance is instead
measured by the Matthews correlation of (13). But now we can only make comparisons
between KOD and the three other methods that provide cutoff values.

Table 3: Comparison of outlier detection methods applied to four real datasets, with
varying contamination percentage. The entries are the averaged MCC.

MNIST MNIST-C Fashion MNIST PageBlocks

Contamination Contamination Contamination Contamination

5% 10% 20% 5% 10% 20% 5% 10% 20% 5% 10% 20%

KOD 0.44 0.45 0.33 0.46 0.47 0.41 0.42 0.44 0.41 0.26 0.34 0.37

KRPD 0.31 0.33 0.20 0.36 0.35 0.24 0.43 0.41 0.21 0.27 0.36 0.44

KMRCD 0.31 0.34 0.28 0.35 0.35 0.34 0.35 0.37 0.30 0.20 0.33 0.27

OCSVM 0.21 0.28 0.34 0.10 0.14 0.19 0.20 0.28 0.38 -0.02 -0.04 -0.07

Table 3 shows the MCC results for the four real datasets. The first thing we notice is
that the MCC values are quite low overall, because here we did not standardize each
column by its maximal value. The datasets are indeed quite challenging due to their
complexity, and as mentioned before there is no ‘absolute ground truth’ for real data.
The performance of KOD relative to the other three methods with a built-in decision
rule for flagging outliers is qualitatively similar to the situation for the P@N measure.
We see that OCSVM struggled a bit with MNIST-C and PageBlocks.
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C. Computation Time

We could not really compare the computation times of the methods in the study because
some were coded in Python, some in R, and some used R with certain components in
compiled C++. Instead we investigated the computation time of the proposed method
on the three image datasets. These runs were part of the simulation leading to Table 2
in the main text and Table 3 here. The data dimension was the number of pixels
per image, yielding p = 196, p = 784 and p = 3136. We varied the sample size over
n = 250, 500, 1000, 2000.

Figure 14: Computation time of KOD. The wall-clock time is shown in function of the
sample size n. The three curves correspond to different dimensions. Experiments were
run under Windows 11 Enterprise on an HP EliteBook 865 G10 notebook equipped
with an AMD Ryzen 7 PRO 7840U CPU (8 cores and 16 threads, 3.3 GHz base) and
32 GB RAM.

Figure 14 shows the wall-clock time in function of the sample size, with separate curves
for the dimensions p = 196 (red), 784 (green) and 3136 (blue). As expected we see
that the computation time goes up with n and p, but it remains feasible. Speedups are
possible by rewriting parts of the R code in C++.
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