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Abstract

From medical diagnosis to autonomous vehicles, many critical applications
rely on the integration of multiple heterogeneous data modalities. Multimodal
Variational Autoencoders offer versatile and scalable methods for generating un-
observed modalities from observed ones. Recent models using mixture-of-experts
aggregation suffer from theoretical limitations that reduce generation quality on
complex datasets. In this article, we propose a novel latent-variable model which
is able to learn both joint and conditional distributions without introducing mix-
ture aggregation. Our model follows a multistage training process; after learning
the joint distribution with variational inference, we learn the conditional dis-
tributions using normalizing flows and a new, theoretically grounded objective
function. Importantly, we also propose extracting the semantic content shared be-
tween modalities in a pre-training stage and incorporating these representations
into the inference distributions to enhance generative coherence. Our method
achieves state-of-the-art results on several benchmark datasets.
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1. Introduction
In many real-world applications, including medicine, autonomous driving, or robotics,
information is conveyed through heterogeneous modalities—such as images, signals,
or text. In the medical field, for instance, a patient’s condition is described through
sonograms, MRI, blood tests results, and clinical notes. Leveraging these diverse views
jointly leads to richer representations and deeper insights into the underlying phenom-
ena. Two central challenges in multimodal machine learning are: (i) learning relevant
joint representations and (ii) generating coherent and diverse samples, conditionally or
jointly, across modalities.
Multimodal variational autoencoders are latent generative models that can address both
challenges simultaneously. In recent years, several approaches have been proposed to
extend the variational autoencoder (Kingma and Welling 2014) (VAE) to efficiently
model multimodal data. Some of them suggest training coordinated VAEs with a sim-
ilarity constraint between latent spaces (Higgins et al. 2018; Yin et al. 2017). In other
works, a single latent space is used to jointly represent all modalities (Suzuki et al. 2016;
Wu and Goodman 2018; Shi et al. 2019). Among these models, one popular approach
is to aggregate modalities using a simple function such as product-of-experts (Wu and
Goodman 2018), or mixture-of-experts (Shi et al. 2019). Aggregation approaches are
computationally efficient and scalable, but come with critical limitations (Daunhawer
et al. 2022; Sutter et al. 2021). For instance, the product-of-experts approach can lead
to imbalances between modalities, allowing one to dominate or override information
from others (Shi et al. 2019). On the other hand, recent theoretical work (Daunhawer
et al. 2022) shows that mixture-based models introduce an irreducible inference gap,
which degrades sample quality. More specifically, such models tend to generate samples
close to the expectation, failing to capture the diversity of the true distribution.
To address these issues, we propose an original multi-stage modeling approach
that avoids aggregation entirely. First, we learn the joint distribution. Then, we
use normalizing flows (NF) (Rezende and Mohamed 2016) and a principled objective
function to learn the conditional distributions. This decoupled strategy bypasses the
theoretical limitations of mixture-based models.
Crucially, we further enhance conditional generation by incorporating shared repre-
sentations, extracted in a pre-training step via contrastive learning (Poklukar et al.
2022) or Deep Canonical Correlation Analysis (DCCA)(Andrew et al. 2013). These rep-
resentations capture the semantic content shared across modalities and are used
to guide the approximation of the posteriors, ensuring that cross-modal generations
remain semantically coherent, thereby improving generative quality.
Previous multimodal variational autoencoders (VAEs) have primarily sought to disen-
tangle shared semantic content from modality-specific information through the intro-
duction of additional latent variables and modifications to the VAE loss function (Lee
and Pavlovic 2021; Sutter et al. 2021; Palumbo et al. 2023, 2024). In contrast, our
approach uses techniques explicitly designed for extracting shared information in a
pre-training stage.
We demonstrate the effectiveness of our method on several benchmark datasets. Our
model outperforms existing approaches, particularly on challenging settings such as the
Translated PolyMNIST dataset.
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2. Background
Let’s assume that we observe multimodal samples X = (x1, x2, . . . , xM) with M modal-
ities from an unknown distribution p(X). We aim to approximate this joint distribution
as well as the conditional distributions with parametric ones pθ(X), pθ(xj|xi) for any
1 ≤ i ̸= j ≤M . pθ(xj|xi) refers to the distribution of modality xj given xi.
In the VAE framework, one assumes that there exists a shared latent representation z,
from which all modalities can be generated with parametric distributions (pθ(xj|z))j

called decoders. For instance, for an image modality x1, pθ(x1|z) can be a Gaussian
distribution N (µθ(z), Σθ(z)) whose mean and variance are given by a neural network.
Following previous work (Suzuki et al. 2016), each modality is supposed to be condi-
tionally independent of the others given z, such that the joint model writes:

pθ(X, z) = pθ(X|z)pθ(z) = pθ(z)
M∏

j=1
pθ(xj|z), (1)

where pθ(z) is a prior distribution over the latent variable and θ refers to all parameters
used to model the prior and the decoders. In that framework, the two goals mentioned
above (model the joint and conditional distributions) translate as follows: firstly, we
want to learn the best possible θ to model the observations. Secondly, we want to
approximate the inference distributions pθ(z|(xj)j∈S) to infer the latent variable from
any given subset of modalities S ∈ P(M), where P(M) = {S|S ⊂ [|1, M |] and S ̸= ∅}.
If we can infer z from observed modalities, we can then generate unobserved modalities
with the decoders (pθ(xj|z))1≤j≤M . In the rest of the article, we note xS := (xj)j∈S to
simplify notations.

2.1. Estimating the generative model’s parameters
Given N multimodal observations (X(i))1≤i≤N , a natural objective to estimate θ is to
optimize the log-likelihood of the data (Kingma and Welling 2014):

θ∗ ∈ argmax
θ

N∑
i=1

log pθ(X(i)) = argmax
θ

N∑
i=1

(
log

∫
z

pθ(X(i), z)dz
)

.

Since this objective is intractable, one can resort to Variational Inference (Jordan et al.
1998; Kingma and Welling 2014) by introducing an auxiliary parametric distribution
qϕ(z|X) allowing us to derive an unbiased estimate of the likelihood of the data:

p̂θ(X, z) = pθ(X, z)
qϕ(z|X) such that pθ(X) = Eqϕ(z|X) [p̂θ]. (2)

Then, using Jensen’s inequality allows us to derive a lower bound on log pθ(X), referred
to as the Evidence Lower Bound (ELBO).

log pθ(X) = logEqϕ(z|X) [p̂θ]
≥ Eqϕ(z|X) [log pθ(X|z)]−KL(qϕ(z|X)||pθ(z)) = L(X; θ, ϕ), (3)

where KL(qϕ(z|X)||pθ(z)) refers to the Kullback-Leibler (KL) divergence between the
joint posterior and the prior distribution.
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This bound is tractable and can be optimized through stochastic gradient descent
(Kingma and Welling 2014). Noteworthy, the first term can be seen as a reconstruction
error and the second as a regularization term encouraging latent embeddings to follow
the prior distribution (Ghosh et al. 2020). The distribution qϕ(z|X) is generally called
the encoder and one may prove that:

L(X; θ, ϕ) = log pθ(X)−KL(qϕ(z|X)||pθ(z|X)). (4)

This implies that maximizing L(X; θ, ϕ) with respect to ϕ leads to minimizing the
Kullback-Leibler divergence between the true posterior pθ(z|X) and its variational ap-
proximation qϕ(z|X) (Kingma and Welling 2014). Some models also rely on variations
of Equation (3) to learn θ. (Sutter et al. 2021; Palumbo et al. 2023) add a β factor to
weigh the KL term in Equation (3). That hyperparameter can be tuned to promote
disentanglement in the latent space (Higgins et al. 2017); by increasing the KL term, it
increases pressure on the latent variables to be independent, so that a single unit might
encode a single generative factor. Other models use a k-sampled importance weighted
estimate of the log-likelihood (IWAE bound) (Shi et al. 2019; Palumbo et al. 2023) or
replace the KL with a Jensen-Shannon divergence (Sutter et al. 2020).

2.2. Choice of the approximate inference distribution
A simple choice is to model the approximate posterior qϕ(z|X) as a Gaussian distribu-
tion N (µϕ(X), Σϕ(X)), where a dedicated joint encoder network takes all modalities
as input and outputs the parameters µϕ(X), Σϕ(X). By maximizing L, we obtain an
estimation of θ and an approximation of the joint posterior pθ(z|X) with qϕ(z|X). How-
ever, we do not have access to the remaining subset posteriors (pθ(z|xS))S∈P(M) which
are intractable. To estimate these posterior distributions, two approaches have been
proposed, which we detail in the following paragraphs.

2.3. Surrogate distributions and learning objectives
Firstly, a few models such as JMVAE (Suzuki et al. 2016), or TELBO (Vedantam
et al. 2018) introduce surrogate parametric distributions (qϕS

(z|xS))S∈P(M) and train
them with an additional loss function to approximate the desired posterior distribu-
tions. However, those models use a large number of parameters since the joint posterior
qϕ(z|X) and each approximate posterior (qϕS

(z|xS))S∈P(M) use a dedicated network en-
coder. The number of parameters then scales with the number of subsets |P(M)| = 2M .
For this reason, this type of model was less explored, especially since they produced
less coherent results than aggregated models proposed afterwards.

2.4. Aggregated models
Aggregated models compute the joint posterior qϕ(z|X) as an aggregation of unimodal
encoders qϕj

(z|xj) for 1 ≤ j ≤ M . Wu and Goodman (2018) uses a product-of-
experts (PoE) operation qϕ(z|X) ∝ pθ(z)∏M

j=1 qϕj
(z|xj) while Shi et al. (2019) uses

a mixture-of-experts (MoE). Many variants were then introduced such as mixture-of-
product-of-experts (Sutter et al. 2021) or generalized product-of-experts (Lawry Aguila
et al. 2023). During inference, each subset posterior pθ(z|xS) is approximated with the
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subset aggregation of the unimodal encoders (qϕj
(z|xj))j∈S. For instance, with a PoE

approach: pθ(z|xS) is approximated by qϕ(z|xS) ∝ ∏
j∈S qϕj

(z|xj). This approach has
the advantage of scaling linearly with the number of modalities. However, although the
ELBO objective implies that qϕ(z|X) will approximate the true joint posterior pθ(z|X)
in the KL sense (as seen in 2.1), there is no theoretical garanty that the subset
aggregations qϕ(z|xS) will approximate the subset posteriors pθ(z|xS).
Furthermore, Daunhawer et al. (2022) show that all mixture-based models suffer from
a fundamental limitation that caps their generative quality. More precisely, for these
models, there is a generative discrepancy ∆(X) between the log-likelihood of the data
and the ELBO:

Ep̂(X)(log(pθ(X))) ≥ Ep̂(X)(L(X; θ, ϕ)) + ∆(X), (5)

where p̂(X) is the observed empirical distribution. ∆(X) is strictly positive and only
depends on the law of X and the mixture components (Daunhawer et al. 2022). Using
log(pθ(X))− L(X; θ, ϕ) = KL (qϕ(z|X)||pθ(z|X)), one can rewrite (5) as:

Ep̂(X) (KL(qϕ(z|X)||pθ(z|X))) ≥ ∆(X). (6)

This lower bound implies that the approximate joint posterior qϕ(z|X) can only ap-
proach the true joint posterior pθ(z|X) up to ∆(X) > 0. Daunhawer et al. (2022) detail
in extensive experiments how these generative discrepancy results in a diminished qual-
ity of generated samples.
Aggregated models that are only based on a product-of-experts such as MVAE (Wu and
Goodman 2018) or MVTCAE (Hwang et al. 2021), avoid this issue but generally show
lower generative coherence than mixture-based models (Sutter et al. 2021; Palumbo
et al. 2023), especially when sampling from a single modality.

2.5. Other approaches and recent developments

Coordinated VAEs. Using the terminology of Suzuki and Matsuo (2022), coordi-
nated VAEs—such as those proposed by Higgins et al. (2018) and Yin et al. (2017)—are
multimodal models that impose a similarity constraint between the latent representa-
tions of each modality. They are not aggregation-based; instead, they aim to align the
individual posteriors (qϕj

(zj|xj))1≤j≤M . Since they do not approximate the joint poste-
rior pθ(z|X) or any subset posteriors pθ(z|xS) for S containing more than one modality,
inference conditioned on multiple modalities is not supported by this approach.
Additional latent spaces. To improve the diversity of the generations, methods have
been proposed with more complex generative models including multiple, hierarchical
(Vasco et al. 2022) or independent (Sutter et al. 2021; Lee and Pavlovic 2021; Daun-
hawer et al. 2021) latent spaces. An additional goal of these models is to separate into
different latent spaces the information shared across modalities from modality-specific
factors. Palumbo et al. (2023) show that these models are sensitive to the shortcut issue,
referring to shared information leaking into the modality specific latent spaces. They
propose the MMVAE+ model with an amended ELBO loss and modalities’ specific
priors to limit that phenomenon. However, while (Lee and Pavlovic 2021; Daunhawer
et al. 2021) were based on PoE, the MMVAE+ suffers from the limitations that come
with mixture aggregation.
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Enhanced generation with diffusion models. Palumbo et al. (2024) propose a
hierarchical multimodal VAE with diffusion decoders to improve the generation quality.
Interestingly enough, the proposed diffusion decoder improvement can be applied to
many VAE based methods including the one presented in this article. However, their
CMVAE model is still based on a mixture aggregation which limits its expressivity.
In contrast, Bounoua et al. (2024) propose to learn separate representations for each
modality and use a multimodal diffusion model to capture their interactions. Their
method bypasses the limitations of mixture-based models but does not learn a joint
fused representation across modalities.

3. Proposed Method
As mentioned in 2.3, the JMVAE and TELBO models use a joint encoder for modelling
qϕ(z|X) and therefore avoid the inference gap of mixture-based models. We propose a
new method in the same line of work but solving the scalability issue and improving
generative quality. Our method decouples the training of the joint generative
model and the approximation of the posteriors in two separate steps:

• Step 1: Train a variational autoencoder to learn the generative model pθ(X) as
well as an approximation of the joint posterior qϕ(z|X).

• Step 2: For conditional generation, approximate the unimodal posteriors pθ(z|xj)
with normalizing flows (Rezende and Mohamed 2015) based distributions qϕj

(z|xj)
for 1 ≤ j ≤M using a novel learning objective.

For the subset posteriors, we show that, for any S ∈ P(M), we can approximate
pθ(z|xS) with a product-of-experts ∏j∈S qϕj

(z|xj)/pθ(z)|S|−1. This way, no additional
network needs to be trained and our framework scales linearly with the number of
modalities. Note that this PoE is only used during inference which means that it
doesn’t suffer from the same limitations as PoE aggregated models. In the following
subsections, we detail each step of our method, and then we introduce an improvement
for the second step that leverages information shared across modalities.

3.1. Step 1: Training the joint generative model
For learning the generative parameter θ, we optimize the ELBO (see Equation (3)) with
a β factor weighting the regularization term. We model the joint encoder qϕ(z|X) as
a Gaussian distribution N (µϕ(X), Σϕ(X)), with µϕ(X) and Σϕ(X) given by a neural
network taking all modalities as inputs. This step is exactly similar to training a
unimodal VAE, and every improvement that was proposed for the unimodal case could
be seamlessly adapted here.

3.2. Step 2: Learning the posterior distributions
Once the generative model is learned, we freeze the generative model pθ(X|z) and the
joint encoder qϕ(z|X). For 1 ≤ j ≤ M we introduce a surrogate distribution qϕj

(z|xj)
to approximate the unimodal posterior pθ(z|xj) that is intractable. We propose to
maximize the following objective to fit this parametric distribution:
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Lj(X; ϕj) = Eqϕ(z|X)
(
log qϕj

(z|xj)
)
. (7)

The expectation inside the sum can be estimated by sampling z ∼ qϕ(z|X). Equa-
tion (7) shows that during training, the unimodal encoders are informed by the joint
encoder: a latent variable z is sampled from qϕ(z|X) and then log qϕj

(z|xj) is maxi-
mized. Intuitively, maximizing Equation (7) encourages qϕj

(z|xj) to cover all the rel-
evant modes or support of the trained posterior qϕ(z|X). To further see the relevance
of the proposed objective function, we provide the following result:

Proposition 1 Let 1 ≤ j ≤M and XCj
the set of all modalities but xj. p̂ refers to the

empirical distribution of the data. If qϕj
(z|xj) is bounded by a constant C, maximizing

Ep̂(X)(Lj(X, ϕj)) with regard to ϕj is equivalent to minimizing:

Ep̂(xj)
(
KL(q(avg)

ϕ (z|xj)||qϕj
(z|xj))

)
,

where q
(avg)
ϕ (z|xj) =

∫
XCj

qϕ(z|X)p̂(XCj
|xj)dXCj

.

To understand why q
(avg)
ϕ (z|xj) serves as a meaningful target distribution, note that

if qϕ(z|X) = pθ(z|X) and pθ(X) = p̂(X) then q
(avg)
ϕ (z|xj) is exactly equal to the true

distribution pθ(z|xj). Consequently, if the joint VAE from step 1 is well trained, the
unimodal encoders will approximate the true posteriors closely. The proof of this
proposition is provided in Appendix C and mostly relies on the Fubini theorem and
the fact that qϕ(z|X) is already trained and frozen in our method. By decoupling the
approximation of the generative model and the posteriors, we were able to propose a
principled objective for the unimodal encoders.
We use normalizing flows to define the parametric distributions (qϕj

(z|xj))j as they
allow flexible modeling of complex distributions (Rezende and Mohamed 2015). A flow
is an invertible smooth transformation f that can be applied to an initial distribution
to create a new one, such that if Z is a random vector with density q(z), then Z ′ = f(Z)
has a density given by:

q′(z′) = q(z)
∣∣∣∣∣det ∂f−1

∂z′

∣∣∣∣∣ = q(z)
∣∣∣∣∣det ∂f

∂z

∣∣∣∣∣
−1

. (8)

Combining K transformations zK = fK◦fK−1◦· · ·◦f1(z0) allows us to gain in complexity
of the final distribution. In our case, for each modality 1 ≤ j ≤ M , we model the
approximate posterior qϕj

(z|xj) with the following log-density:

log qϕj
(z|xj) = log q

(0)
ϕj

(z0|xj)−
K∑

k=1
log

∣∣∣∣∣∣det ∂f
(j)
k

∂zk−1

∣∣∣∣∣∣, (9)

where q
(0)
ϕj

(z0|xj) is a simple parametrized Gaussian distribution, the parameters of
which are given by neural networks, and (f (j)

k )1≤k≤K are masked autoregressive flows
(Papamakarios et al. 2017). In Section (4.1), we illustrate that this expression allow us
to approximate much more precisely the true unimodal posteriors than using a simple
multivariate Gaussian. Because of the joint training of normalizing flows during this
step, we refer to this model as JNF.



8 Bridging the Inference Gap in Multimodal Variational Autoencoders

3.3. Sampling from the subset posteriors
Recall that one of our goals is to be able to infer the latent variable z from any sub-
set of modalities S ∈ P(M). Until now, we have estimated the joint posterior with
qϕ(z|X) and the unimodal posteriors with qϕj

(z|xj) for any j ∈ [|1, M |]. Using the
same derivation as (Wu and Goodman 2018), we prove that we can approximate any
subset posterior using the trained unimodal encoders.
Let S ∈ P(M) and xS = (xj)j∈S:

pθ(z|xS) = pθ(xS|z)pθ(z)
pθ(xS) =

pθ(z)∏j∈S pθ(xj|z)
pθ(xS) =

pθ(z)∏j∈S{pθ(xj, z)/pθ(z)}
pθ(xS) (10)

=
∏

j∈S pθ(z|xj)pθ(xj)
pθ(z)|S|−1pθ(xS) = 1

Z

∏
j∈S pθ(z|xj)
pθ(z)|S|−1 ≈ 1

Z

∏
j∈S qϕj

(z|xj)
pθ(z)|S|−1 (11)

where 1/Z = {∏j∈S pθ(xj)}/pθ(xS) is a normalizing constant. We use Equation (1)
in the second equality. To sample from this distribution at inference time, we use
Hamiltonian Monte Carlo (HMC) sampling (Betancourt 2018) that enables sampling
from any distribution with a differentiable density function known up to a multiplicative
constant. We recall the algorithm for HMC in Appendix F.

3.4. An improvement of our method leveraging shared infor-
mation
So far, we have not made any assumption regarding the interactions between modal-
ities (x1, x2, . . . , xM). However, in many multimodal datasets, there is typically some
amount of shared semantic information between modalities. For instance, in the MNIST-
SVHN dataset (Lecun et al. 1998; Netzer et al. 2011), both images share the same
digit as their core semantic content, even though other aspects—like background and
style—are modality-specific, meaning they do not influence the other modality. In
such settings, to generate an unobserved modality, only the shared semantic
content is necessary; the modality-specific details of the observed modalities
are not required. If we can effectively disentangle shared semantics from modality-
specific information, we could reduce some of the noise and data variance when learning
conditional distributions such as pθ(x1|x2) by only considering the relevant information
in x2 to predict x1. Extracting the shared information can simplify the task of modeling
pθ(x1|x2) in order to increase generative coherence.
Formally, let us assume that for any 1 ≤ j ≤M we have a projector gj such that:

∀i ∈ [|1, M |], pθ(xi|xj) = pθ(xi|gj(xj)). (12)

Morally speaking, gj extracts the information shared across modalities while tuning
out the modality specific information. Then, we can write:

pθ(xi|gj(xj)) =
∫

z
pθ(xi|z)pθ(z|gj(xj))dz. (13)

That is, to generate modality xi from modality xj, we can learn to approximate
pθ(z|gj(xj)) which might be simpler than approximating pθ(z|xj) if we use relevant
functions (gj)1≤j≤M .
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(a) Aggregated Models (b) JNF model (c) JNF-Shared model

Figure 1: Graphical models in the case M = 2. Dashed lines represent decoders,
solid lines represent encoders, and red arrows represent the projectors that were jointly
pretrained to extract shared information. “NF” refers to normalizing flows.

We propose an improvement of our method, in which we use functions (gj)1≤j≤M pre-
trained to extract shared information across modalities and model the distributions
qϕj

(z|gj(xj)) instead of qϕj
(z|xj). In that case, we model qϕj

(z|gj(xj)) with normalizing
flows and use the adapted loss function for step 2 (Section (3.2)):

L(shared)
j (X; ϕj) = Eqϕ(z|X)

(
log qϕj

(z|gj(xj))
)
. (14)

The proof of Proposition 1 can be adapted to show that maximizing L(shared)
j over

the training set, leads to minimizing the KL-divergence between qϕj
(z|gj(xj)) and

q
(avg)
ϕ (z|gj(xj)) =

∫
X qϕ(z|X)p̂(X|gj(xj))dX. This is detailed in Appendix C.

Extracting information shared across modalities. How can we learn relevant
functions (gj)1≤j≤M that would verify Equation (12)? Many methods have been pro-
posed to extract information shared across modalities, and since the best method may
vary depending on the dataset, we treat this as a flexible and data dependent com-
ponent of our approach. In our experiments, we tried two general methods: Deep
Canonical Correlation Analysis (DCCA) (Andrew et al. 2013) and contrastive learning
(CL) (Poklukar et al. 2022). In both cases, the projectors (gj)1≤j≤M are trained jointly
to learn similar representations across modalities. For the projections (gj(xj))1≤j≤M to
be similar across modalities, the projectors have to extract shared information while
discarding unrelated information. The notion of similarity is defined differently in both
methods: DCCA maximizes the correlation between projections Corr(gi(Xi), gj(Xj))
while CL optimizes cosine similarity {gi(Xi)T gj(Xj)}/(||gi(Xi)||||gj(Xj)||) for each pair
i, j of modalities. We detail each method in Appendix B. We conjecture that using these
methods, we can extract meaningful statistics (gj(xj))1≤j≤M verifying Equation (12)
and check this assumption in our experiments. Results presented in Section (4) and
Appendix D.7 support this hypothesis.
We refer to this improvement of our method as JNF-Shared. To the best of our knowl-
edge, this is the only work proposing to model posterior distributions conditioned on
pretrained semantic representations rather than the entire data. In Figure 1, we sum-
marize our models in the case M = 2.
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4. Experiments
In this section, we first illustrate our method on a toy dataset, and then compare results
against state-of-the-art methods on 4 benchmark datasets.

4.1. Toy dataset
We construct a toy dataset with two black-and-white image modalities: x1 (a square)
and x2 (a circle), whose sizes vary independently. Each shape is either full or empty,
and this binary class label is shared across modalities—if the circle is full, so is the
square. Figure 2.a presents samples of this toy dataset. We perform the first step
of our method on this dataset (see 3.1), which is training a simple joint VAE with a
two-dimensional latent space that we can visualize. In Figure 2, we can see how this
joint latent space is structured, with the full shapes on one side (blue dots) and the
empty shapes on the other side (red dots). In Figure 2 ,the intensities of the colors
indicate the size distribution with larger squares encoded away from the center.
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Figure 2: (a) Samples from the toy dataset. (b,c,d) Embeddings in the 2-dimensional
latent space. Each point encodes a pair of images (x1, x2). The color of each point,
indicates the size and class of the encoded square. We try to approximate the posterior
pθ(z|x1) (for x1 shown in the top left), that corresponds to dark blue dots in the latent
space. In (b), we use a diagonal Gaussian distribution and in (c) we use normalizing
flows that capture a more realistic posterior. The Gaussian’s support is too large, lead-
ing to unrealistic samples framed in red. (d) Using DCCA, we extract the information
shared across modalities, which is the shape class: full or empty. We learn qϕ1(z|g1(x1))
and see that it approximates well the part of the latent space which encodes full shapes.
We present circles generated with the learned posterior on the right side of each plot.
Both (c) and (d) produce relevant and diverse samples.

Using this well-structured latent space we then train qϕ1(z|x1) to approximate pθ(z|x1)
using our objective L1 (Equation (7)). We display an example distribution qϕ1(z|x1)
that we obtain for x1 being a large full square. We compare results when modeling
qϕ1(z|x1) with either a Gaussian or normalizing flows (NF). The latter provides a more
realistic approximation and generate coherent and diverse samples of circles. In the
last plot of Figure 2, we first extract the information shared across modalities (here
the emptiness or fullness of the shape) with a projector g1(x1) and then approximate
qϕ1(z|g1(x1)). g1 and g2 are neural networks trained with the DCCA objective. We
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see in the right panel of Figure 2, that qϕ1(z|g1(x1)) covers well the part of the latent
space corresponding to full samples and generates coherent and diverse samples. This
shows that we have been able to capture both the shared information and the posterior
distribution. On this toy dataset, both pθ(z|x1) and pθ(z|g1(x1)) are well approximated
but on benchmark datasets, it appears that the latter is often easier to approximate
than the former because of its larger support.

4.2. Benchmark datasets and evaluation metrics
We evaluate JNF and JNF-Shared on four benchmark datasets:

• MNIST-SVHN introduced in (Shi et al. 2019) that contains paired images from
MNIST (Lecun et al. 1998) and SVHN dataset (Netzer et al. 2011). The latter
contains natural images of digits with diverse backgrounds and sometimes cropped
distracting digits on the sides of the digit of interest.

• PolyMNIST introduced in (Sutter et al. 2021) with five image modalities built
from MNIST images with complex backgrounds. This dataset allows to test the
scalability of our method.

• Translated PolyMNIST introduced in (Daunhawer et al. 2022) to demonstrate
the limitations of mixture-based models. It is made of downscaled and translated
digits with the same backgrounds as PolyMNIST. In (Daunhawer et al. 2022) the
authors point out that the generative performance is very degraded for mixture-
based models on this dataset.

• Multimodal Handwritten Digits dataset (MHD) (Vasco et al. 2022) containing
images, sound’s spectrograms and trajectories.

We provide additional details and samples for each dataset in Appendix A. We focus
on conditional and unconditional generation and we evaluate:

• the coherence of multimodal samples. Using pretrained classifiers, we evaluate
whether the generated samples are consistent across modalities—that is, whether
they are assigned the same label. A multimodal sample is considered coherent
if all modalities receive the same predicted label. We report the proportion of
coherent samples among the generated data for both conditional and joint gen-
erations.

• the diversity of generated samples. To assess sample diversity, we follow the
evaluation protocols of (Palumbo et al. 2023) and (Vasco et al. 2022). For
MNIST-SVHN and PolyMNIST, we compute the Fréchet Inception Distance
(FID) (Heusel et al. 2017) between true and generated samples. For the MHD
dataset—where modalities are not natural images and Inception features are un-
suitable—we instead use pretrained, class-based, modality-specific autoencoders
to extract features, and compute the Mean Fréchet Distance (MFD).
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4.3. Comparison to previous work
We compare our method to several models: JMVAE (Suzuki et al. 2016) that also uses a
joint encoder, mixture-based models such as MMVAE (Shi et al. 2019), MoPoE (Sutter
et al. 2021), and MMVAE+(Palumbo et al. 2023), the MVTCAE model (Hwang et al.
2021) using a PoE aggregation, and two hierarchical models Nexus (Vasco et al. 2022)
and CMVAE (Palumbo et al. 2024). We use implementations that were first validated
by reproducing previous results. For a fair comparison, we use the same architectures
and the same latent capacity across models except for the MMVAE, MMVAE+ and
CMVAE for which we use smaller latent spaces due to memory limitations from the K-
sampled objective. We detail all hyperparameters in Appendix E. We train all models
with a β-weighted ELBO and keep the β ∈ {0.5, 1, 2.5} that maximizes average coher-
ence for each model. Each experiment is repeated with four different seeds. We try
training the projectors (gj) for our model JNF-Shared with CL or DCCA pre-training
and report results for both.

4.4. Experimental results
In Figure 3, we present generated samples and in Table 1, we present quantitative
results for the MNIST-SVHN dataset.

JMVAE MMVAE MMVAE+ MVTCAE MoPoE JNF JNF-CL

Figure 3: First row: generation from MNIST to SVHN. Second row: generation from
SVHN to MNIST. Third row: generation from SVHN to SVHN (unimodal reconstruc-
tion). In orange, we frame samples containing unidentifiable or uncoherent digits. In
yellow, we frame generations lacking diversity. In red, we frame reconstructions for the
SVHN images where the background is well reconstructed but not the digit. JNF-CL
refers to our model JNF-Shared with CL. Note that for this model, when reconstruct-
ing SVHN, we sample z ∼ qϕ2(z|g2(x2)) and therefore the background information is
filtered by the projector g2(x2) and cannot be reconstructed. However, the digit is well
preserved which is what is required for cross-modal generation.

Our model JNF-Shared (CL) is the only one to reach competitive values for all metrics
on this dataset. As displayed in Figure 3, most models (except MoPoE and JNF-
Shared) struggle to generate coherent MNIST images from SVHN images. We interpret
this phenomenon by looking at reconstructed SVHN images; for many models, the
background is well reconstructed but not the digit which is not well inferred using
qϕ2(z|x2) (where x2 is the SVHN modality). With JNF-Shared, the background is



Journal of Data Science, Statistics, and Visualisation 13

Table 1: Results on MNIST-SVHN. We present coherence for joint generation, con-
ditional generation from MNIST (M) to SVHN (S) and vice-versa. FID values are
computed on 50,000 SVHN images generated from MNIST. Best values are in bold and
second-best are underlined.

Model Joint M −→ S S −→ M FID (↓)

JMVAE 0.43± 0.10 0.73± 0.07 0.53± 0.05 57± 3
MMVAE (k = 10) 0.35± 0.02 0.80± 0.01 0.70± 0.01 130± 5
MVTCAE 0.44± 0.02 0.81± 0.01 0.52± 0.02 48± 2
MoPoE 0.36± 0.01 0.12± 0.01 0.72± 0.01 359± 12
MMVAE+ (k = 10) 0.43± 0.05 0.60± 0.09 0.58± 0.04 63± 5
CMVAE (k = 10) 0.48± 0.18 0.57± 0.18 0.57± 0.09 101± 54

JNF (Ours) 0.51± 0.01 0.82± 0.01 0.52± 0.01 54± 2
JNF-Shared (DCCA) (Ours) 0.51± 0.01 0.75± 0.03 0.69± 0.05 53± 2
JNF-Shared (CL) (Ours) 0.51± 0.02 0.81± 0.01 0.75± 0.02 49± 1

tuned out by the projector g2 and the digit information is therefore better preserved
when sampling z ∼ qϕ2(z|g2(x2)). We further notice that MMVAE and MoPoE both
produce SVHN samples that look ’averaged’ resulting from the quality gap analyzed in
(Daunhawer et al. 2022).
In Figure 4, we present coherence and diversity results on PolyMNIST and Translated
PolyMNIST. We observe that our models reach the best coherences while maintaining
low FID values. In (Daunhawer et al. 2022), the authors observed that MMVAE and
MoPoE show degraded coherence on TranslatedPolyMNIST. We extend their observa-
tions to the MMVAE+ and CMVAE that also have a conditional coherence close to
0.10, corresponding to random digit association. This is a direct consequence of the
mixture aggregation, which limits generative quality on complex datasets (Daun-
hawer et al. 2022). However, all models fail on the unconditional generation task:
MMVAE and MoPoE have high coherence but high FID because they only generate
the first digit (see Appendix D). On the contrary, our models have low FID values but
very low coherence. We present in Section (4.5) a simple direction to improve joint
coherence. In Table 2, we present results on the MHD dataset. The performance gain
is less noticeable on this dataset than on the previous ones but we still notice that our
model JNF-Shared is the only one to obtain the best or second best value accross the
four metrics showing that they offer a good compromise between coherence and diver-
sity. The CMVAE model reaches higher joint coherence which is due to the fact that
they use a Gaussian mixture (GM) prior where other models use a standard Gaussian.
We show in Section (4.5) that we can improve the joint coherence of our model up to
0.81 by also sampling from a GM fitted on the training embeddings.
In the end, our models reach competitive performance on the four datasets presented,
with significant gains on MNIST-SVHN, PolyMNIST, and in the more complex setting
of TranslatedPolyMNIST. We note that, in general, CL pretraining appears to be more
effective than DCCA for our method, JNF-Shared. Although our models have more
parameters than aggregated approaches—since they model both joint and individual
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(b) Translated PolyMNIST
MMVAE

JMVAE

MoPoE

MVTCAE

MMVAE+

CMVAE

JNF (Ours)

JNF-Shared (DCCA) (Ours)

JNF-Shared (CL) (Ours)

Figure 4: In the two left columns, we present results for conditional generation when
varying the number of conditioning modalities. In the right column, we display co-
herence and FID for unconditional generation. Each point correspond to a different
training seed. For these plots, best models having high coherence and low FID are in
the top left corner. The FID is computed on 10,000 samples of the first modality.

posteriors separately—JNF-Shared remains relatively compact due to the use of light-
weight projector architectures (gj)j. Additional experimental insights—including vi-
sualizations, a discussion on parameter counts, and training times—are provided in
Appendix D. Ablation studies, presented in Appendix D.7, further explore the contri-
bution of each component of our methods.

4.5. Improving the joint coherence with a posteriori sampling.
In all results above, joint generation quality is evaluated by sampling latent codes
from the prior, as this aligns naturally with the probabilistic model. However, VAEs
are known to produce latent codes that deviate from the prior distribution. Ghosh
et al. (2020) argue that the standard Gaussian prior acts mostly as a regularizer and
propose ex post density estimation, which involves fitting a simple distribution such as
a Gaussian mixture (GM) to the training embeddings. We apply the same method to
multimodal VAEs by fitting a GM to the joint embeddings to generate unconditional
samples.
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Table 2: Experimental results on the MHD dataset. We present average coherence and
MFD results for each model, for conditional and unconditional generation. Best values
are in bold and second-best values are underlined.

Coherence (↑) MFD (↓)

Joint Conditional Joint Conditional

JMVAE 0.57± 0.02 0.86± 0.01 1.32± 0.01 0.29± 0.02
MMVAE 0.63± 0.01 0.86± 0.01 1.63± 0.05 0.76± 0.01
MMVAE+ 0.57± 0.01 0.89± 0.01 1.58± 0.07 0.55± 0.08
MVTCAE 0.38± 0.01 0.87± 0.01 1.31± 0.02 0.13± 0.01
MoPoE 0.44± 0.02 0.74± 0.01 1.56± 0.03 2.17± 0.03
Nexus 0.13± 0.01 0.34± 0.01 2.98± 0.04 3.36± 0.03
CMVAE 0.89± 0.02 0.93± 0.01 1.30± 0.02 0.46± 0.03

JNF(Ours) 0.67± 0.01 0.89± 0.01 1.32± 0.02 0.23± 0.02
JNF-Shared(CL)(Ours) 0.65± 0.02 0.93± 0.01 1.35± 0.04 0.21± 0.03
JNF-Shared(DCCA)(Ours) 0.66± 0.01 0.92± 0.01 1.37± 0.04 0.23± 0.03

In Table 3, we show how using this technique for generating unconditional samples
greatly improves the joint coherence on all datasets. The same method can be applied
on almost all models: additional results are presented in Appendix D.5.

5. Discussion and Perspectives
In this work, we introduced a novel VAE-based framework for modeling and generating
multimodal data. Our approach relies on a multistage modeling strategy that enhances
both the generative and inference models by employing principled objective functions.
Additionally, we proposed a method for learning unimodal posteriors conditioned on
a summary statistic capturing information shared across modalities. The proposed
models demonstrate strong performance across four benchmark datasets, with notable
gains in the particularly challenging Translated PolyMNIST setting.
Several components of our framework are modular and adaptable. For instance, the
initial stage uses a standard VAE which can be seamlessly replaced with more expressive
VAE variants (Tomczak and Welling 2018; Kingma et al. 2017; Burda et al. 2016).
Similarly, the mechanism for extracting shared cross-modal information is general and

Table 3: Joint coherence of the JNF-Shared (CL) model when sampling from the prior
distribution versus a GM fitted on the training embeddings.

MNIST-SVHN PolyMNIST Translated PolyMNIST MHD

prior 0.51± 0.02 0.36± 0.02 0.0005± 0.0003 0.67± 0.01

GM 0.75± 0.04 0.56± 0.04 0.032± 0.003 0.81± 0.02
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can be substituted with domain-specific alternatives. For example, kernel canonical
correlation analysis (KCCA) has shown effectiveness in areas like functional imaging
and genomics (Alam et al. 2018). Finally, for complex applications, the normalizing
flows used to model the posterior distributions could be replaced with more expressive
methods such as conditional diffusion models (Ho et al. 2020), offering a promising
direction for future work.

Computational details
For reproducibility, we provide a python implementation of our methods online: https:
//anonymous.4open.science/r/JNF_VAE/README.md. Our implementation uses py-
torch (Paszke et al. 2019), matplotlib (Hunter 2007), numpy (Harris et al. 2020), pan-
das (Wes McKinney 2010), seaborn (Waskom 2021), multivae (Senellart et al. 2025).
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A. Details on the Datasets Used in the
Experiments

A.1. The MNIST-SVHN dataset
To create this dataset, we paired images from the MNIST dataset (Lecun et al. 1998)
and the SVHN dataset (Netzer et al. 2011). Previous work (Shi et al. 2019) paired each
image in MNIST with 30 different images in SVHN to create a train set of 1,682,040
samples. To create a more challenging and realistic dataset, we only paired each image
5 times to have a smaller (yet still large) training dataset of 280,340 samples.

A.2. PolyMNIST and translated PolyMNIST dataset
In Figure 5, we plot example images of the PolyMNIST and Translated PolyMNIST
dataset used in the experiments in Section (4). For the Translated PolyMNIST dataset,
we downscale the digit by a factor 0.75 and add a random translation. Each dataset
contains 60,000 training samples and 10,000 test samples.

(a) PolyMNIST. (b) Translated PolyMNIST.

Figure 5: Eight multimodal samples for the PolyMNIST and TranslatedPolyMNIST
dataset: each row correspond to a modality.

A.3. Multimodal handwritten dataset

a) Trajectory b) Image c) Sound

Figure 6: The MHD dataset that we use contains three modalities.

The “Multimodal Handwritten Digits” (MHD) introduced in (Vasco et al. 2022) con-
tains 4 modalities (including label):

• Image: gray digit images of size (1,28,28)

• Audio: spectrograms images with shape (1,32,128)
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• Trajectory: flat arrays with 200 values

• Label : 10 categorical values

In our experiments, we don’t use the label as a modality to make the task more chal-
lenging. This dataset contains 50,000 samples for training and 10,000 for testing.

A.4. Toy dataset with circles and squares
The images of circles and squares used in the toy experiment are of size (32,32) with
black and white pixels. All circles and squares are centered in the middle of the image
with a minimum width of 10 pixels and a maximum width of 28 pixels. This dataset
contains 200,000 pairs of circles and squares. Half are empty and half are full.

B. Methods to Learn Shared Information
Across Multiple Modalities

Here, we detail two methods we have used to train the projectors (gj)1≤j≤M to ex-
tract information shared across modalities. The projectors (gj)1≤j≤M are trained before
training our multimodal VAE JNF-Shared that uses them.

B.1. Deep canonical correlation analysis
Deep Canonical Correlation Analysis (Andrew et al. 2013) (DCCA) aims at finding
correlated neural representations for two complex modalities such as images. It is
based upon the classical Canonical Correlation Analysis (CCA) (Hardoon et al. 2004)
which we briefly recall here. Let (X1, X2) ∈ Rn1 × Rn2 two random vectors, Σ1, Σ2
their covariances matrices and Σ1,2 = Cov(X1, X2). CCA’s objective is to find linear
projections aT X1, bT X2 that are maximally correlated :

(a∗, b∗) = arg max
aT Σ1a=bT Σ2b=1

aT Σ1,2b.

Once these optimal projections are found, we can set (a1, b1) = (a∗, b∗) and search for
subsequent projections (ai, bi)2≤i≤k with the additional constraint that they must be
uncorrelated with the previous ones. We can rewrite the problem of finding the first k
optimal pairs of projection as finding matrices A ∈ R(n1,k), B ∈ R(n2,k) that solve:

(A∗, B∗) = arg max
AT Σ1A=BT Σ2B=I

Tr(AT Σ1,2B). (15)

If we further have k = n1 = n2 then the maximum value for Tr(AT Σ1,2B) is F (X1, X2) =
Tr(T ⊤T )1/2 with T = Σ1/2

1 Σ1,2Σ1/2
2 . This value is the total CCA correlation of the ran-

dom vectors X1, X2. It can also be seen as the sum of the singular values of T , each sin-
gular value representing the correlation of the embeddings along a direction. Note that
this optimal value F (X1, X2) only depends on the covariance matrices (Σ1, Σ2, Σ1,2).
In the DCCA method, we consider two neural networks g1, g2 so as to optimize the
total CCA correlation F (g1(X1), g2(X2)). The gradient of this objective with respect
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to the parameters of g1, g2 can be derived in order to use gradient descent. In practice,
to compute F we can use the singular value decomposition of T and sum the first k
singular values of T . Furthermore the singular values are interesting since they give an
information of how much correlation is contained in each projection. That information
can be used to analyse the data and choose an optimal dimension k for the projection.
When considering more than two modalities, a proposed extension to the CCA is to
optimize the sum of the pairwise CCA objectives (Kanatsoulis et al. 2019). We adapt
this idea to the DCCA framework and train DCCA encoders for m modalities by
maximizing ∑i<j∈[|1,m|] F (gi(Xi), gj(Xj)).
Our implementation is based upon https://github.com/Michaelvll/DeepCCA.

B.2. Multimodal contrastive learning
Contrastive learning methods have emerged as a powerful tool to learn descriptive,
transferable representations of high dimensional data such as images or text (Radford
et al. 2021).
In the two-modalities case, we aim at learning two embbeding functions g1(x1), g2(x2)
that brings together “positive pairs” observed from the joint distribution x1, x2 ∼
p(x1, x2) and separates “negatives pairs” observed from the product of the marginal
distributions x1, x2 ∼ p(x1)p(x2).
Formally, considering a batch of multimodal samples (xi

1, xi
2)1≤i≤K , the loss function

writes:

L =
K∑

i=1
L1,2(i) + L2,1(i) (16)

L1,2(i) = − log
 simγ(xi

1, xi
2)∑K

j=1 simγ(xi
1, xj

2)

 ∀1 ≤ i ≤ K (17)

L2,1(i) = − log
 simγ(xi

2, xi
1)∑K

j=1 simγ(xi
2, xj

1)

 ∀1 ≤ i ≤ K, (18)

where simγ(x1, x2) = exp((1/τ)(g1(x1))/(||g1(x1)||) · (g2(x2)/||g2(x2)||)) is the exponen-
tial cosine similarity between the embeddings,τ is a hyperparameter and γ parameterize
the embedding functions g1, g2 that we aim to optimize. τ = 0.1 in our experiments.
For any 1 ≤ i ≤ K, the pair (x(i)

1 , x
(i)
2 ) is a positive pair which should have high similarity

and the pairs (x(i)
1 , x

(j)
2 )1≤j ̸=i≤K , (x(j)

1 , x
(i)
2 )1≤j ̸=i≤K are negative pairs that should have

low similarity.
In order to bring together positive pairs in the embedding space and separate negative
pairs, the projectors (gj)1≤j≤M have to extract the information between modalities.
For a larger number of modalities: M ≥ 2, we can compute the sum of all pairwise
losses and minimize them jointly (Tian et al. 2020).

https://github.com/Michaelvll/DeepCCA
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C. Interpretation of the Objective
In this appendix, we provide the proof of Proposition 1 as well a similar proposition
for the Lshared

j objective.

C.1. Proof of Proposition 1.
We show that, for j ∈ [|1, M |], Lj brings the unimodal encoder qϕj

(z|xj) close to an
average distribution qavg(z|xj) =

∫
XCj

qϕ(z|X)p̂(XCj
|xj)dXCj

that is close to pθ(z|xj)
provided that the joint encoder is well fit.
When maximizing Lj over the entire dataset, we actually optimize the expectation of
this term over the empirical distribution p̂(X);

Ep̂(X)(Lj) = Ep̂(X)
(
Eqϕ(z|X)

(
log(qϕj

(z|xj))
))

. (19)

We can decompose p̂(X) = p̂(xj)p̂(XCj
|xj) where we note XCj

= (xi)1≤i̸=j≤M the set
of modalities from which we exclude xj.

Ep̂(X)(Lj) = Ep̂(xj)
(
Ep̂(XCj

|xj)
(
Eqϕ(z|X)

(
log(qϕj

(z|xj))
)))

. (20)

We suppose the density qϕj
(z|xj) bounded by a constant C, which allows us to use

Fubini’s theorem and exchange the expectations.

Ep̂(X)(Lj) = Ep̂(xj)

(
Ep̂(XCj

|xj)

(
Eqϕ(z|X)

(
log

(
qϕj

(z|xj)
C

))))
+ log(C) (21)

= Ep̂(xj)

(∫
XCj

∫
z

log
(

qϕj
(z|xj)
C

)
qϕ(z|X)p̂(XCj

|xj)dzdXCj

)
+ log(C) (22)

= Ep̂(xj)

(∫
z

log
(

qϕj
(z|xj)
C

)∫
XCj

qϕ(z|X)p̂(XCj
|xj)dXCj

dz

)
+ log(C) (23)

= Ep̂(xj)

(
E

q
(avg)
ϕ

(z|xj)

(
log

(
qϕj

(z|xj)
C

)))
+ log(C) (24)

= Ep̂(xj)
(
−KL

(
q

(avg)
ϕ (z|xj)||qϕj

(z|xj)
))

+ H(q(avg)
ϕ (z|xj)) + log(C), (25)

where q
(avg)
ϕ (z|xj) :=

∫
XCj

qϕ(z|X)p̂(XCj
|xj)dXCj

. We use Fubini’s theorem at line (24)
since all terms in the integral are positive.
Since H(q(avg)

ϕ (z|xj)) is also a constant term, we see that maximizing Lj reduces to min-
iming the Kullback-Leibler divergence between qϕj

(z|xj) and this average distribution
q

(avg)
ϕ (z|xj).

C.2. Interpretation of the loss when conditioning on the shared
information
Once again, let’s take 1 ≤ j ≤M . In the case, where we aim to approximate pθ(z|gj(xj))
instead of pθ(z|xj), we can easily adapt the proof above to show that maximizing
L(shared)

j brings qϕj
(z|gj(xj)) close to q

(avg)
ϕ (z|gj(xj)) =

∫
X qϕ(z|X)p̂(X|gj(xj))dX.
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We can decompose p̂(X) = p̂(gj(xj))p̂(X|gj(xj)).

Ep̂(X)(L(shared)
j ) = Ep̂(gj(xj))

(
Ep̂(X|gj(xj))

(
Eqϕ(z|X)

(
log(qϕj

(z|gj(xj)))
)))

. (26)

We suppose the density qϕj
(z|gj(xj)) bounded by a constant C, which allows us to use

Fubini’s theorem and exchange the expectations.

Ep̂(X)(L(shared)
j ) = Ep̂(gj(xj))

(
Ep̂(X|gj(xj))

(
Eqϕ(z|X)

(
log
(

qϕj
(z|gj(xj))

C

))))
+log(C) (27)

= Ep̂(gj(xj))

(∫
X

∫
z

log
(

qϕj
(z|gj(xj))

C

)
qϕ(z|X)p̂(X|gj(xj))dzdX

)
(28)

+ log(C)

= Ep̂(gj(xj))

(∫
z

log
(

qϕj
(z|gj(xj))

C

)∫
X

qϕ(z|X)p̂(X|gj(xj))dXdz

)
(29)

+ log(C)

= Ep̂(gj(xj))

(
E

q
(avg)
ϕ

(z|gj(xj))

(
log

(
qϕj

(z|gj(xj))
C

)))
+ log(C) (30)

= Ep̂(gj(xj))
(
−KL

(
q

(avg)
ϕ (z|gj(xj))||qϕj

(z|gj(xj))
))

(31)

+ H(q(avg)
ϕ (z|gj(xj))) + log(C),

where q
(avg)
ϕ (z|gj(xj)) :=

∫
X qϕ(z|X)p̂(X|gj(xj))dX. We use Fubini’s theorem at line

(29) since all terms in the integral are positive. Note that if qϕ(z|X) = pθ(z|X) and
p̂(X) = pθ(X), then q

(avg)
ϕ (z|gj(xj)) = pθ(z|gj(xj)).

D. Additional Experimental Results
D.1. Additional results on MNIST-SVHN
In Figure 7, we present samples generated from the prior. JNF-CL refers to our model
JNF-Shared using Constrastive Learning (CL) to extract the shared information. This
method performed best on this dataset, to extract the shared information.

(a) JMVAE (b) MMVAE (c) MMVAE+

(d) MVTCAE (e) MoPoE (f) JNF

(g) JNF-CL

Figure 7: Unconditional generation: for each model, latent codes are sampled from the
prior and decoded jointly.
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In Table 4, we report all coherences results for different values of the parameter β. For
each model, we kept the value of β that maximises the mean coherence for the results
presented in Table 1.

Table 4: All coherences results for different values of β for each model. We indicate in
bold, the value of β that maximises average (conditional and joint) coherence for each
model and that we kept for Table 1. In 1, we presented results for our model JNF-
Shared using Constrastive Learning (CL). Here, we present additional results with the
DCCA used instead of Constrastive Learning.

Joint M −→ S S −→M

mean std mean std mean std
Model β

JMVAE 0.5 0.27 0.02 0.67 0.03 0.57 0.03
1 0.34 0.07 0.69 0.05 0.54 0.03
2.5 0.43 0.10 0.73 0.07 0.53 0.05

MMVAE 0.5 0.35 0.02 0.80 0.01 0.70 0.02
1 0.35 0.02 0.80 0.02 0.68 0.02
2.5 0.33 0.01 0.80 0.02 0.68 0.03

MMVAE+ 0.5 0.24 0.04 0.55 0.04 0.62 0.02
1 0.27 0.03 0.50 0.03 0.59 0.06
2.5 0.43 0.05 0.60 0.09 0.58 0.05

MVTCAE 0.5 0.29 0.01 0.74 0.02 0.36 0.02
1 0.35 0.02 0.75 0.05 0.44 0.02
2.5 0.44 0.02 0.81 0.01 0.52 0.02

MoPoE 0.5 0.27 0.02 0.13 0.01 0.77 0.00
1 0.32 0.01 0.12 0.00 0.75 0.01
2.5 0.36 0.01 0.12 0.00 0.72 0.01

CMVAE 0.5 0.30 0.01 0.63 0.02 0.63 0.03
1 0.30 0.02 0.49 0.02 0.63 0.04
2.5 0.48 0.18 0.57 0.18 0.57 0.09

JNF 0.5 0.37 0.01 0.80 0.01 0.47 0.01
1 0.43 0.01 0.81 0.01 0.48 0.02
2.5 0.51 0.01 0.82 0.01 0.52 0.01

JNF-Dcca 0.5 0.36 0.02 0.76 0.01 0.71 0.02
1 0.42 0.02 0.76 0.01 0.71 0.02
2.5 0.51 0.01 0.75 0.03 0.69 0.05

JNF-CL 0.5 0.36 0.03 0.78 0.02 0.79 0.01
1 0.42 0.01 0.81 0.01 0.78 0.02
2.5 0.51 0.02 0.81 0.01 0.75 0.02
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D.2. Additional results on PolyMNIST
In Figure 8, we present samples generated by conditioning on a subset of two modalities
and in Figure 9, we present samples generated from the prior (unconditional genera-
tion). Our models produce diverse and coherent images, while the MoPoE and MMVAE
models produce images that look “averaged” from using a mixture based aggregation
(Daunhawer et al. 2022).

Figure 8: We present generated samples when conditioning on the first two modalities.
The first two rows are the samples we condition on and the rest of the rows are generated
samples in each modality.

In Figure 9, we present multimodal samples generated from the prior distribution for
each model. We see that our models reach a good visual quality with most digits being
readable and coherent.

D.3. Additional results on Translated PolyMNIST
Figure 10 shows examples of generated images on TranslatedPolyMNIST and in Fig-
ure 11, we present samples generated from the prior. MMVAE and MoPoE reach a
high joint coherence on this dataset but if we look at the generated images, we realize
the generated images all look averaged, resembling a small “1” digit. The FID is very
high since the generation is not diverse.



Journal of Data Science, Statistics, and Visualisation 29

(a) JMVAE (b) MMVAE (c) MoPoE (d) MVTCAE (e) MMVAE+

(f) CMVAE (g) JNF (h) JNF-CL (i) JNF-DCCA

Figure 9: Joint generation in all five modalities when sampling a latent code from the
prior. In each image, each row corresponds to a modality. JNF-CL (resp. DCCA)
correspond to our method JNF-Shared with CL (resp. DCCA).

Figure 10: Conditional generation on Translated PolyMNIST. The first four rows are
the images we condition on and the newt rows are generated samples in the first modal-
ity. JNF-CL refers to our model JNF-Shared with CL.

(a) JMVAE (b) MMVAE (c) MoPoE (d) MVTCAE (e) MMVAE+

(f) CMVAE (g) JNF(Ours) (h) JNF-CL (Ours)

Figure 11: Unconditional generation on Translated PolyMNIST when sampling a latent
code from the prior.

In Table 5, we present coherences and FID results for different values of the parameter
β for each model. We used this table for selecting the value of β. For all models we
observe inverse tendencies between joint and conditional coherence with the value of β.
We chose to favor conditional coherence to select the best value of β for each model for
the results presented in Table 4. In this table, we also test two values for the number
of flows nflows ∈ {2, 3} for our models. After selecting β, we varied and selected the
optimal parameter nflows.
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Table 5: Coherences and FID results for different values of β. Here, we average over
all possible subsets for the conditional coherence. For almost all models, we observe
inverse tendencies for joint and conditional coherence with the value of β. For the
results presented in the main text, we chose to favor conditional generation to select
the value of β for each model. The chosen β is set in bold. For the JNF-Shared (DCCA)
we used the same β = 0.5 and 2 flows as for JNF-Shared (CL) because of the similarity
between models.

Coherence (↑) FID (↓)
Joint Conditional 1 modality to m0

Model β nflows

JMVAE 0.5 0.00 0.15 37.06
1.0 0.00 0.14 43.93
2.5 0.00 0.12 55.09

MMVAE+ 0.5 0.006 0.10 60.48
1 0.005 0.10 69.80
2.5 0.15 0.10 206.13

MVTCAE 0.5 0.004 0.13 42.35
1 0.08 0.11 121.86
2.5 0.23 0.11 178.49

MMVAE 0.5 0.63 0.10 185.97
1.0 0.49 0.10 172.44
2.5 0.58 0.10 181.08

MoPoE 0.5 0.26 0.10 195.53
1.0 0.50 0.10 199.48
2.5 0.50 0.10 199.94

CMVAE 0.5 0.42 0.10 159.62
1.0 0.05 0.10 125.78
2.5 0.24 0.10 176.98

JNF (Ours) 0.5 3 0.0004 0.17 30.91
0.5 2 0.0002 0.18 31.76
1.0 3 0.0007 0.17 33.82
2.5 3 0.06 0.12 218.75

JNF-Shared (CL) (Ours) 0.5 3 0.0002 0.21 32.09
0.5 2 0.0005 0.23 33.17
1 3 0.0008 0.20 35.30
2.5 3 0.06 0.13 217.02

D.4. Additional results on the MHD dataset
In Figure 12, we display images and spectrograms obtained when conditioning on a
given trajectory (that is not displayed here) drawing a zero digit. Our models generate
diverse and constrasted images.
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Figure 12: Samples generated when conditioning on a given trajectory.

In Table 6, we present all coherence results for different values of the parameter β for
each model. We used this table to chose β for each model. For all models we observe
inverse tendencies between joint and conditional coherence with the value of β. We
chose to favor conditional coherence to select β for each model for the results presented
in Table 2.

D.5. Improving the joint coherence of multimodal VAEs with
a posteriori sampling
In this appendix, we apply the method described in Section (4.5) to all models trained
on the MHD dataset. Table 7 show that this technique can be used to improve the
joint coherence of almost all models.

D.6. Comparison of training times
In Table 8, we present a comparison between the different methods regarding the total
number of trainable parameters and training times. The training times presented here
are all obtained on GPUs Quadro RTX 6000.

Regarding the number of parameters. Because our approach models both the
joint and individual posteriors using separate neural networks, it results in a higher
parameter count compared to aggregated models. For JNF, the total number of pa-
rameters is approximately twice that of the aggregated baselines when using the same
latent dimension and architectures. In the case of JNF-Shared, the parameter count
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Table 6: All coherence results for different values of β for each model. We indicate
in bold, the value of β that maximises conditional coherence for each model and that
we kept for Table 2. For the JNF-Shared (CL) we use the same β as for JNF-Shared
(DCCA) since the model are very similar.

.

Joint Conditional
mean std mean std

Model β

JMVAE 0.5 0.57 0.02 0.86 0.01
1.0 0.15 0.02 0.79 0.01
2.5 0.15 0.04 0.75 0.02

MMVAE 0.5 0.63 0.01 0.86 0.01
1.0 0.60 0.07 0.84 0.04
2.5 0.65 0.02 0.86 0.01

MMVAEPlus 0.5 0.58 0.03 0.89 0.02
1.0 0.64 0.05 0.82 0.03
2.5 0.47 0.15 0.50 0.08

MVTCAE 0.5 0.38 0.01 0.87 0.01
1.0 0.48 0.01 0.85 0.00
2.5 0.54 0.02 0.79 0.01

MoPoE 0.5 0.44 0.02 0.74 0.01
1.0 0.50 0.01 0.72 0.02
2.5 0.45 0.02 0.62 0.01

CMVAE 0.5 0.85 0.01 0.925 0.0031
1.0 0.89 0.01 0.93 0.02
2.5 0.77 0.03 0.83 0.01

JNF 0.5 0.67 0.01 0.89 0.01
1.0 0.71 0.02 0.86 0.01
2.5 0.72 0.02 0.81 0.01

JNF-Shared (DCCA) 0.5 0.66 0.01 0.92 0.01
1.0 0.71 0.02 0.90 0.01
2.5 0.72 0.02 0.80 0.01

JNF-Shared (CL) 0.5 0.65 0.02 0.93 0.01

depends on the architectural complexity of the projector networks (gi)i. On PolyM-
NIST, we use lightweight convolutional architectures for these projectors, resulting in
a parameter count that remains comparable to MVTCAE and MoPoE.
In both variants, the number of parameters scales linearly with the number of modal-
ities—unlike earlier joint models such as JMVAE Suzuki et al. (2016) and TELBO
Vedantam et al. (2018), where this scalability was not preserved. Note that on PolyM-
NIST, we adapted the JMVAE model using the same technique described in Sec-
tion (3.3) for modelling the subset posteriors. Otherwise the JMVAE model would
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Table 7: Unconditional coherence on the MHD dataset when sampling from the prior
distribution and when sampling from a GM (10 components) fitted after training. We
see that the GM sampling greatly improve unconditional coherence for almost all mod-
els. Note the CMVAE already has a GM as prior distribution.

Model Joint Coherence Prior Joint Coherence GM

MMVAE 0.63± 0.01 0.63± 0.02
MoPoE 0.44± 0.02 0.84± 0.01
MMVAEPlus 0.57± 0.01 0.80± 0.02
MVTCAE 0.38± 0.01 0.91± 0.02
CMVAE 0.89± 0.02

JNF (Ours) 0.67± 0.01 0.81± 0.02
JNF-Shared (CL) (Ours) 0.65± 0.02 0.82± 0.02

Table 8: Comparison of number of parameters (P ) and training times. t1 refers to the
total training time of one run on a GPU Quadro RTX 6000. t2 refers to the training
time until the best model is reached on this run. We report the results on only one
seed here.

MNIST-SVHN PolyMNIST

Model P t1 (min) t2 (min) P t1 (min) t2 (min)

MMVAE 1,106,987 151 151 18,805,903 1,135 900
JMVAE 1,988,715 113 113 70,645,923 427 175
MoPoE 1,106,947 128 76 42,515,195 593 150
MVTCAE 1,106,947 112 112 42,515,195 508 93
MMVAE+ 1,586,627 168 162 22,156,943 1,140 1,020
CMVAE 1,586,817 231 215 22,157,529 1,260 1,140
JNF 2,152,203 132 120 71,710,843 375 226
JNF-Shared (DCCA) 2,574,733 175 172 47,511,903 384 320
JNF-Shared (CL) 2,574,733 195 195 48,919,429 400 337

not scale to this dataset of 5 modalities as it would require instantiating 25 = 32 dif-
ferent encoder architectures (one for each possible subset) i.e ≈ 700,000,000 trainable
parameters.

Regarding training times. On MNIST-SVHN, the training times of all models
are rather similar. The MoPoE and MVTCAE are the fastest models to train. On
PolyMNIST, the MMVAE, MMVAE+ and CMVAE become much longer to train. We
hypothesize that this comes from the loss formulation which implies m = 5 different
reconstructions for each modality so 25 reconstructions per datapoint where other mod-
els only compute one reconstruction per modality i.e 5 reconstructions per datapoint.
We note that, while our method uses a multi-stage training, the training times remain
similar to those of other methods and shorter than those of MMVAE, MMVAE+ and
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CMVAE.

D.7. Ablation studies

Without normalizing flows
In this ablation study, we look at the impact of using normalizing flows for the encoder
distributions (qϕj

(z|xj))j and (qϕj
(z|gj(xj)))j instead of simple diagonal Gaussian dis-

tributions.
In Table 9, we present results on the MNIST-SVHN dataset, with and without using
normalizing flows. We see that using normalizing flows increase the coherence of both
the JNF and JNF-Shared models. For the JNF-Shared model, using normalizing flows
results in a gain of 12–13 % in conditional coherence.

Table 9: Ablation study on our method on the MNIST-SVHN dataset. β is set to 2.5.

Model Joint M → S S →M FID

JNF - no flows 52± 1 78± 1 46± 1 52± 1
JNF- flows 51± 1 82± 1 52± 2 54± 2

JNF-Shared (CL)- no flows 51± 1 68± 2 63± 1 54± 1
JNF-Shared (CL)-flows 51± 1 81± 1 75± 1 49± 1

JNF-Shared with Independents Projectors
In the JNF-Shared method that we propose, the projectors (gi)1≤i≤M are jointly trained
with a multimodal contrastive approach or a DCCA approach to extract the information
shared accross modalities.
In this ablation study, we train each modality projector (gi)i independently of the
others with a SimCLR (Chen et al. 2020) method to extract compact (but uncorrelated)
representations of each modality. We choose SimCLR as it is also a contrastive learning
method with a similar objective as the one we use in our multimodal contrastive learning
approach. The main difference lies in how the positive pairs are defined: in multimodal
contrastive learning, two paired modalities define a positive pair, whereas in SimCLR,
two random augmentations of a single modality define a positive pair.
For the architectures, we consider two configurations:

1. We use the same architectures as the one used in our method with multimodal
contrastive learning. The MNIST projector is a two-layer Linear network, whereas
the SVHN projector is a simple convolutional network. See the detailed architec-
tures in Table 11.

2. To obtain better representations for the SVHN modality, we replace the convolu-
tional network with a resnet18 network as is done in the original SimCLR paper
(Chen et al. 2020).
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The networks are trained for 200 epochs with a learning rate of 0.003 and a cosine
scheduler following the guidelines of Chen et al. (2020).

Table 10: Coherence results for the JNF-Shared method with independent projectors
(gi)i versus with jointly trained projectors. The architecture column specifies whether
we are using simple convolution or resnet architectures for the SVHN projector.

M → S S →M Joint FID

Architecture

1. (conv) 0.76± 0.01 0.26± 0.01 0.52± 0.02 57± 2
2. (resnet) 0.74± 0.01 0.36± 0.02 0.5± 0.01 57± 2

JNF-Shared (CL) 0.81± 0.01 0.75± 0.02 0.51± 0.02 49± 1

We present the results in Table 10. We see that the method using projectors indepen-
dently trained do not reach as good performances as JNF-Shared (CL) using jointly
pre-trained projectors. This confirms the intuition that using pretrained projectors is
beneficial not only because they extract compact representations of the modalities but
because they extract compact representations of the shared information only.

E. Architectures and Hyperparameters Used
in the Experiments

In Figure 17, we summarize the general architectures of most models used in our ex-
periments. For the Nexus model, we refer the reader to (Vasco et al. 2022).
We describe in the following sections the encoders/decoders architectures for all experi-
ments. Note that for the JNF-Shared, the projectors (gj)1≤j≤M have the same architec-
tures as the encoders of other models, and the encoders that parameterize qϕj

(z|gj(xj))
are simple two-layers MLPs taking the projections (gj)1≤j≤M(xj) as inputs.
Our implementations of normalizing flows rely on the opensource library Pythae (Chade-
bec et al. 2022).
Code and data needed for reproducing the experiments are available at https://
anonymous.4open.science/r/JNF_VAE/README.md.

E.1. On MNIST-SVHN
In Table 11, we indicate all architectures and training parameters used in the MNIST-
SVHN experiments. All models are trained until convergence. For all models, we
test three values for β ∈ {0.5, 1.0, 2.5} and for each model we kept the value that
maximized average coherence (joint and conditional). Extensive results for all values
of β are presented in Table 4. For the MMVAE and MMVAE+ model, we use Laplace
distributions for modeling prior and posterior distribution following (Shi et al. 2019).
For all others models, we use Gaussian distributions for prior and posteriors. For the
decoders distributions pθ(X|z) we use Laplace distributions. Following previous work

https://anonymous.4open.science/r/JNF_VAE/README.md
https://anonymous.4open.science/r/JNF_VAE/README.md
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Figure 13: Architectures of MM-
VAE, MoPoE and MVTCAE

Figure 14: Architecture of MM-
VAE+

Figure 15: Architecture of JNF
and JMVAE model.

Figure 16: Architecture of JNF-
Shared

Figure 17: Architectures for most models used. For the JMVAE model, it is the same
architecture as the JNF model except without the normalizing flows.

(Shi et al. 2019; Sutter et al. 2021) we rescale the likelihoods of each modality with
factors λMNIST , λSV HN in order to compensate for the different sizes of the modalities
and mitigate conflictual gradients (Javaloy et al. 2022).The values for λMNIST , λSV HN

are indicated in Table 11. Intuitively, we need to put more weight on the smaller
modalities so that they are also well reconstructed.
We give specific details for each model:

• MVTCAE: we set α = 0.9 following their recommandations in the supplemental
material in (Hwang et al. 2021).

• MMVAE: we set K=10 for the number of samples in the ELBO.

• MMVAE+: we set K=10 for the number of samples in the ELBO. The shared
latent space as well as the modality-specific latent spaces have a dimension of 10.

• JMVAE model, we set α = 0.1 as it appears as a good compromise value in
(Suzuki et al. 2016). We use annealing as in the original paper with a 100 epochs
for warmup. The joint encoder is made up of separate heads and a common
merging part where the separate heads have the same architecture as the unimodal
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encoders in Table 11. The merging part is a simple two-layer MLP with 512
neurons in each layer.

• JNF: we used Masked Autoregressive Flows with two MADE blocks (Papamakar-
ios et al. 2017). We use the same joint encoder as for the JMVAE model.

• JNF-Shared: We use the same flows and joint encoder as JNF. The projectors
used for CL or DCCA have the same architectures as the encoders in Table 11.
The encoders qϕj

(z|gj(xj)) are simple networks with two linear hidden layers.

E.2. On PolyMNIST
For the PolyMNIST experiments, we used the same Resnet (He et al. 2015) architectures
as used in (Palumbo et al. 2023). These architectures are summarized in Figure 18.
Following (Palumbo et al. 2023), we train all models as β-VAE and set β = 2.5. Each
model is trained until convergence with a batchsize of 128 and learning rate of 1e-3.
The latent dimension is set to 190 to match the total capacity of the MMVAE+ model
in (Palumbo et al. 2023).

Figure 18: Encoder and decoder architectures used for the experiments on the PolyM-
NIST dataset.
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We give specific details for each model:

• MMVAE: Due to memory limitations, we set the latent dim to 64 and used K=10
for the number of samples in the ELBO.

• MVTCAE: we set α = 5/6.

• JMVAE: we set α = 0.1 and annealing with a warmup of 100 epochs. In the
original JMVAE model, a new encoder network needs to be introduced for each
subset of modalities. In our experiments, we didn’t choose that solution since it
represents a very large number of parameters. Instead, we use for the JMVAE
model, the PoE sampling solution that we also use for our models (Equation (11)).
The joint encoder is made-up of separate heads with the same architectures as
in Figure 18 and a merging neural networks with two hidden linear layers of 512
neurons.

• MMVAE+: We use 32 dimensions for the shared latent space and 32 dimension
for each modality specific space as in (Palumbo et al. 2023).

• JNF: Same joint encoder as JMVAE. We use Masked Autoregressive flows with
2 MADE blocks.

• JNF-Shared: Same joint encoder and Normalizing flows as JNF. The projectors
(gj) are simple convolutional networks similar to the SVHN encoders in 11 and
the encoders qϕj

(z|gj(xj)) are simple linear encoders as for the MNIST-SVHN
experiments: see Table 11.

E.3. On Translated PolyMNIST
For the TranslatedPolyMNIST experiments, we used similar architectures as in the
PolyMNIST experiments with a latent dimension of 200 (except for MMVAE and
MMVAE+ whose parameters are specified below). We performed experiments with
β ∈ {0.5, 1., 2.5}. For all models, we kept the value of β that maximized average con-
ditional coherence. In Table 5, we present results for different values of β and the
selected values for each model. We use a latent dimension of 200 for all models but the
MMVAE+ that has multiple latent spaces (see below). All models are trained until
convergence with learning rate 1e-3 and batchsize 128.
We give specific details for each model:

• MMVAE: Due to memory limitations, we used a latent dimension of 100 for the
MMVAE model and used K=10 for the number of samples in the ELBO.

• MVTCAE: we set α = 5/6 as in PolyMNIST.

• JMVAE: we set α = 0.1 and a warmup of 100 epochs. PoE sampling is applied for
JMVAE as in the other experiments. The joint encoder is made of separate heads
with the same architectures as in Figure 18 and we concatenate the outputs of each
head to form the joint representation. This concatenation instead of a merging
network allows to avoid conflictual gradient issues and modality collapse (Javaloy
et al. 2022).
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• MMVAE+: We use 32 dimensions for the shared latent space and 32 dimension
for each modality specific space as in (Palumbo et al. 2023). We use K=10 for
the number of samples in the ELBO.

• JNF: Same joint encoder as JMVAE. We use Masked Autoregressive flows with
3 MADE blocks.

• JNF-Shared (CL): Same joint encoder and Normalizing flows as JNF. The projec-
tors (gj) have the encoder architectures in Figure 18 and the encoders qϕj

(z|gj(xj))
are simple linear networks as for the MNIST-SVHN experiments: see Table 11.
We use Masked Autoregressive flows with 2 MADE blocks.

• JNF-Shared (DCCA): when using DCCA to extract the shared information, we
used more simple architectures for the projectors (gj) for instability reasons. We
used simple convolutional networks similar to the SVHN encoders in Table 11.
Precise architectures are given in the code. We use Masked Autoregressive flows
with 2 MADE blocks.

E.4. On MHD
Table 12 contains all relevant architectures and general training parameters.
We use the same architectures than the ones used in (Vasco et al. 2022) except that we
don’t pretrain the sound encoder and decoder. All models with a β term weighing the
Kullback-Leibler divergence in (3) and for all models, the β = 0.5 gives the best average
conditional coherence. We present additional results for all values of β in Table 6. We
used Gaussian distributions to model all posterior, prior and decoding distributions.
We use a latent dimension of 64 for all models but the MMVAE+ that has multiple
latent spaces (see below).
We use rescaling for the likelihoods of each modality following (Shi et al. 2019). It
has been shown that this limits the phenomenons of conflictual gradients and modality
collapse (Javaloy et al. 2022). The rescaling factors λimage, λaudio, λtrajectory are given in
Table 12
We train all models until convergence. We give specific details for each model:

• MMVAE: We used K=10 for the number of samples in the ELBO.

• MVTCAE: we tried α ∈ {0.75, 0.9} and kept best results obtained for α = 0.9.

• JMVAE: we set α = 0.1 and a warmup of 100 epochs. In the original JMVAE
model, a new encoder network needs to be introduced for each subset of modali-
ties. In our experiments, we didn’t choose that solution since it represents a very
large number of parameters. Instead, we use for the JMVAE model, the PoE
sampling solution that we also use for our models (Equation (11)). The joint
encoder is made-up of separate heads with the same architectures as in Table 12
and a merging neural networks with two hidden linear layers of 512 neurons.

• MMVAE+: We use 32 dimensions for the shared latent space and 32 dimension
for each modality specific space. We used K=10 for the number of samples in the
ELBO.
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• JNF: Same joint encoder as JMVAE. We use Masked Autoregressive flows with
2 MADE blocks.

• JNF-Shared: Same joint encoder and Normalizing flows as JNF. The projectors
(gj) have the encoder architectures in Figure 18 and the encoders qϕj

(z|gj(xj))
have the same architectures as for the MNIST-SVHN experiments: see Table 11.

• NEXUS : we use the same hyperparameters as used in (Vasco et al. 2022).

F. Hamiltonian Monte Carlo Sampling
In this appendix, we recall the principles of Hamiltonian Monte Carlo Sampling and
detail how we apply it in our model. The Hamiltonian Monte Carlo (HMC) sampling
belongs to the larger class of Markov Chain Monte Carlo methods (MCMC) that allow
to sample from any distribution f(z) known up to a constant (Brooks et al. 2011).
The general principle is to build a Markov Chain that will have our target f(z) as
stationary distribution. More specifically, the HMC is an instance of the Metropolis-
Hasting Algorithm (see 1) that uses a physics-oriented proposal distribution.

Algorithm 1 Metropolis-hasting algorithm.
1: Initialization : z ← z0.
2: for i := 0 → N do
3: Sample z′ from the proposal g(z′|z).
4: With probability α(z′, z) accept the proposal z ← z′.
5: end for

Sampling from the proposal distribution g(z′|z0) is done by integrating the Hamiltonian
equations : 

∂z

∂t
= ∂H

∂v
,

∂v

∂t
= −∂H

∂z
,

z(0) = z0

v(0) = v0 ∼ N (0, I),

(32)

where the Hamiltonian is defined by H(z, v) = − log f(z) + (1/2)vtv. In physics,
Eq. (32) describes the evolution in time of a physical particle with initial position z
and a random initial momentum v. The leap-frog numerical scheme is used to integrate
Eq. (32) and is repeated l times with a small integrator step size ϵ :

v
(

t + ϵ

2

)
= v(t) + ϵ

2 · ∇z(log f(z)(t)),

z(t + ϵ) = z(t) + ϵ · v
(

t + ϵ

2

)
,

v(t + ϵ) = v
(

t + ϵ

2

)
+ ϵ

2∇z log f(z(t + ϵ)).

(33)
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After l integration steps, we obtain the proposal position z′ = z(t + l · ϵ) that corre-
sponds to step 3 in Algorithm 1. The acceptance ratio is then defined as α(z′, z0) =
min(1, (exp(−H(z0, v0)))/(exp(−H(z′, v(t + l · ϵ)))). This procedure is repeated to pro-
duce an ergodic Markov chain (zn) converging to the target distribution f (Liu 2009;
Brooks et al. 2011; Girolami and Calderhead 2011). In this work, we use HMC sam-
pling to sample from the PoE of unimodal posteriors in Eq. (11). To do so we need
to compute and derivate the (log) of the target distribution given by the PoE of the
unimodal distributions:

log q(z|(xi)i∈S) = − log p(z) +
∑
i∈S

log qϕi
(z|xi). (34)

We can use autograd to automatically compute the gradient ∇z log q(z|(xi)i∈S) that is
needed in the leapfrog steps.
In our experiments, we use 100 steps per sampling.

G. Information on the Classifiers Used for Evaluation

G.1. MNIST-SVHN
In Table 13 we provide the architectures and the accuracies for the classifiers that we
use to evaluate coherence on the MNIST-SVHN dataset.

Table 13: Classifiers used for the MNIST-SVHN experiments.

SVHN MNIST

Conv2d(3,10,5) Conv2d(1,10,5)
MaxPool2d,RELU MaxPool2d,RELU
Conv2d(10,20,5), Dropout(0.5) Conv2d(10,20,5), Dropout(0.5)
MaxPool2d,RELU MaxPool2d,RELU
Linear(500,50), RELU, Dropout Linear(350,50), RELU, Dropout
Linear(50,10), Softmax Linear(50,10), Softmax

Accuracies on test

0.87 0.99

G.2. Classifiers on PolyMNIST
We use the architectures and the pretrained models available at https://github.com/
thomassutter/MoPoE (Sutter et al. 2021).
The accuracies of the classifiers for the five modalities of the test set are respectively:
0.95, 0.99, 0.99, 0.97, 0.95.

https://github.com/thomassutter/MoPoE
https://github.com/thomassutter/MoPoE
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G.3. Classifiers on Translated PolyMNIST
We pretrain classifiers on this dataset having similar architectures as in Figure 18 with
a output size of 10.
The accuracies of the trained classifiers for the five modalities of the test set are re-
spectively: 0.98, 0.97, 0.98, 0.97, 0.98.

G.4. Classifiers on MHD
We use the pretrained classifiers available at https://github.com/miguelsvasco/
nexus_pytorch/.
The accuracies of the trained classifiers on the test set are: 0.95 for the audio modality,
0.99 for the image modality and 0.99 for the trajectory modality.

https://github.com/miguelsvasco/nexus_pytorch/
https://github.com/miguelsvasco/nexus_pytorch/
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