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Abstract

In recent years, the size of datasets has dramatically increased. This has en-
couraged the use of subsampling, where only a subset of the full dataset is used
to fit a model in a more computationally efficient manner. Existing methods do
not provide much guidance on how to find optimal subsamples for a linear model
when the variance of the errors depends on the model covariates through an un-
known function. This paper presents three main contributions that aid in finding
optimal subsamples in the case of heteroscedastic errors. First, a kernel-based
method is proposed for estimating the error variances in the full dataset based on
a Latin Hypercube subsample. Second, a generalized version of the Information-
Based Optimal Subdata Selection (IBOSS) algorithm is introduced that uses the
variance estimates to find subsamples with high D−efficiency. Third, an Ap-
proximate Nearest Neighbor Simulated Annealing (ANNSA) algorithm is used to
find subsamples that are efficient under the I−optimality criterion, which seeks
to minimize integrated prediction error variance. Simulations show that the pro-
posed subsampling algorithms have better D− and I−efficiencies than existing
methods. The subsampling methods are used to analyze an airline dataset with
over 7 million rows.

Keywords: Design of experiments, I−optimality, optimal subsampling, heteroscedastic-
ity.
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1. Introduction
The rapid growth of data availability in modern scientific research and computation
has led to increasingly large datasets across many fields. In particular, studying linear
relationships through regression analysis remains a fundamental task. A typical linear
regression model involves a response vector of size N × 1 and a covariate matrix of
size N × (p + 1), with p covariates and an intercept. As the sample size N grows, the
computational cost associated with matrix operations such as matrix multiplication and
inversion becomes increasingly expensive without adequate computational resources.
One practical approach to alleviate this computational burden is subsampling, where
only a subset of observations is selected from the full dataset for model fitting (Yao
and Wang 2021). By reducing the effective sample size, subsampling can dramatically
decrease computation time while still capturing key information from the data (Wang
et al. 2018). In this project, we focus on developing and studying subsampling strategies
in the presence of heteroskedasticity, where the variability of the response depends on
the covariates. Accounting for heteroskedasticity is crucial to ensure that the subsample
remains informative and that statistical efficiency is not unduly compromised.

In many real-world scenarios, the size of available data can overwhelm computational
resources, making subsampling an attractive solution. For example, the chemical sensor
array dataset (Fonollosa et al. 2015) consists of N = 4,208,261 observations with 15 vari-
ables, capturing time-series data from gas sensors exposed to turbulent environments.
An airline on-time performance dataset from the 2009 ASA Data Expo contains over
N = 123,534,969 records with 29 variables, documenting commercial flight operations
in the United States over multiple decades (Wang et al. 2019). Similarly, the SUSY
dataset (Baldi et al. 2014), derived from high-energy physics simulations of supersym-
metric particle collisions, includes N = 5,000,000 observations with 18 features, de-
signed to benchmark classification algorithms in distinguishing signal from background
events. These large-scale datasets exemplify situations where subsampling methods can
greatly enhance computational feasibility while preserving statistical efficiency.

Various subsampling strategies have been proposed to alleviate the computational bur-
den of fitting models to massive datasets. Early approaches include leverage-based
subsampling, which assigns sampling probabilities proportional to leverage scores de-
rived from the projection matrix of the design matrix (Drineas et al. 2006). More
recent developments focus on optimal subsampling, where sampling probabilities are di-
rectly derived by minimizing specific statistical optimality criteria. For example, Wang
et al. (2018) proposed OSMAC, which is a probabalistic method that uses weights to
search for A-optimal and L-optimal designs. In 2016, the information-based optimal
subdata selection (IBOSS) method was introduced, which focuses on D-optimality by
selecting covariate extremes deterministically (Wang et al. 2019). IBOSS has recently
been extended to logistic regression Cheng et al. (2020) and cluster-wise linear regres-
sion (Liu et al. 2023). IBOSS has also been considered in a high-dimensional LASSO
framework, where the true set of informative predictors in the dataset are unknown
(Singh and Stufken 2023). Optimal subsampling strategies have also been proposed for
prediction-oriented criteria. Deldossi and Tommasi (2021) proposed an Optimal Design-
Based (ODB) method for finding subsamples that are efficient under the A−, D−, and
I−optimality criteria for linear models with constant variance. Cia-Mina et al. (2025)
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proposed a subsampling scheme that minimizes the J−optimality criterion, which mini-
mizes the expected prediction error for homoscedastic linear models under a Random-X
framework, which also treats covariates (in addition to responses) as random variables.
Much work has been done on optimal subsampling for linear models and generalized
linear models (GLMs). In a GLM, the variance is not necessarily constant, as the
variance of the response depends on the mean of the response via a known link function.
However, even in linear models, the true relationship between the covariates and the
error variance is not always known, and strategies for optimal subsampling should
be explored in this case. In this paper, a subsample of size n (where n is the total
number of points in the subsample) is constructed in two stages. The first n1 < n
subsamples are selected using a Latin Hypercube technique. A kernel-based estimation
procedure is proposed that uses the first n1 points in the subsample to quickly estimate
the error variances for all points in the full dataset. A weighted IBOSS algorithm
is proposed that uses these variance estimates to select the remaining n2 = n − n1
subsamples in a way that is efficient under the D−optimality criterion. Furthermore, an
Approximate Nearest Neighbors Simulated Annealing Algorithm (ANNSA) is proposed
that takes the weighted IBOSS subsample and chooses the remaining n2 subsamples
to have lower integrated prediction variance. Together, these methods provide tools
for modern data analysts to quickly find informative subsamples that can be useful for
parameter estimation and also for prediction.
In Section 2, preliminary information on optimal subsampling methods, existing algo-
rithms for finding optimal designs and subsamples, and methods for finding approxi-
mate nearest neighbors will be reviewed. In Section 3, new methods for quickly finding
subsamples that are efficient under the D− and I−criteria will be proposed for linear
models with heteroscedasticity. In Section 4, empirical results will show that the pro-
posed subsamples are efficient and produce fitted models with desirable properties. In
Section 5, the proposed subsampling methods will be applied to real datasets where
there is heteroscedasticity in the variance in linear models. Section 6 concludes the
paper.

2. Preliminaries
In order to discuss the proposed methodology, two topics need to be reviewed. Section
2.1 provides an overview of existing optimal subsampling methods. Section 2.2 reviews
the concept of a k-d tree, which is a helpful data structure that can be used to quickly
identify neighboring rows in a massive dataset. The k-d tree is used in Algorithm 3,
which is introduced in Section 3.3.

2.1. Optimal subsampling
To explain optimal subsampling, we must first review criteria for optimal experimental
designs. These optimality criteria are often the same criterion used to select a set of
points to include in an experimental design. Suppose that the set of available points
for fitting a linear regression model is {x1, . . . , xN}. An approximate subsample has
the form ξ = {(xi, ωi) : i = 1, . . . , N}, where ωi ∈ (0, 1) for all i = 1, . . . , N and∑N

i=1 ωi = 1. Each ωi represents a weight for the point xi. This work focuses on exact
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subsamples, which are subsamples of exactly n points chosen from the N available
data points. For exact subsamples, nωi is an integer for each i = 1, . . . , N , where
n < N . In this case, we may write the design matrix as an n × (p + 1) matrix Z,
whose rows belong to the set {f(xi) | ωi > 0, 1 ≤ i ≤ N}. An optimal design matrix
is Z∗ = argminZ∈D ϕ(Z), where ϕ(·) is an optimality criterion, and D is the space of
possible n×(p+1) design matrices. One of the most popular criterion is D−optimality,
which maximizes the determinant of the normalized information matrix. If the error
variance is constant, then this criterion is ϕD(Z) = |ZT Z/n|1/(p+1). This is a popular
criterion to use in deterministic or nearly-deterministic computer experiments, where
the variance is assumed to be constant. In this case, points would be selected that min-
imize the generalized variance of the regression coefficients in a linear model (Becerra
and Goos 2021; Sambo et al. 2014; Li and Deng 2021). Similarly, other optimality
criteria have been examined, such as A−optimality in Kiefer (1974), which aims at
minimizing the average variance of the parameter estimates. Of more recent interest
is I−optimality (Goos et al. 2016), which selects designs that minimize the integrated
prediction variance over a region of interest χ ⊆ Rp. For a linear model fit to an approx-
imate subsample, this criterion is

∫
x∈X f(x)(∑N

i=1 ωig
−1(xi)f(xi)f(xi)T )−1f(x) dx, where

g(xi) is the variance of the response at xi. In the case of exact subsampling, this sim-
plifies to ϕI(Z) =

∫
x∈X f(x)T (ZT Σ−1Z/n)−1f(x) dx, where Σ = diag(g(z1), . . . , g(zn)).

Optimal subsampling aims to select a “best” subsample with respect to an information-
based optimality criterion. Many existing optimal subsampling methods focus on
D−optimality. Wang et al. (2019) proposed an Information-Based Optimal Subsam-
pling (IBOSS) method for linear regression models that can find subsamples of size
n < N . The IBOSS algorithm for linear regression models examines each covariate
of the full dataset, selects rows with the r = ⌊n/(2p)⌋ lowest and r highest values of
the covariate, and places the 2r rows into the subsample. The idea behind IBOSS
was to select extreme points for the subsample, as these provide the most information
for fitting a linear model and would be the closest to maximizing the D−optimality
criterion. IBOSS has been extended to logistic regression models (Wang et al. 2018;
Cheng et al. 2020), cluster-wise linear regression models (Liu et al. 2023), and LASSO
models (Singh and Stufken 2023). Recently, Deldossi and Tommasi (2021) proposed
Optimal-Design Based (ODB) subsampling, which constructs optimal subsamples in
two phases. In the first phase, an optimal approximate design with k < n support
points is constructed via the R package OptimalDesign (Harman and Filova 2025). If
these weights do not form an exact design, a rounding procedure is applied. In the
second phase, the subsample is formed by selecting points that are the closest to each
of the k support points in the subsample.
There are several similarities between finding optimal subsamples for GLMs and linear
models with heteroscedasticitiy. This work focuses on studying linear models where
Var[y | x] = g(x) for an unknown function g. In this case, an approximate subsample
has an information matrix of the form

N∑
i=1

ωig
−1(xi)f(xi)f(xi)T , (1)

where ∑N
i=1 ωi = 1 and ωi ≥ 0 for each i = 1, . . . , N . In the case of a GLM, the
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information matrix is
N∑

i=1
ωivif(xi)f(xi)T , (2)

where vi = (∂µi/∂xT
i β)2/Var[yi | xi]. This has motivated several two-step approaches

to optimal subsampling for GLMs (Wang et al. 2018; Cheng et al. 2020), where in the
first step, a random sample is used to estimate β, and then this estimate is used to
find an optimal subsample. The main difference is that in (2), each point is weighted
by an unknown variance function g, which does not have a known parametric form.

2.2. k-d Trees
A k-d tree (short for k-dimensional tree) is a data structure which stores k-dimensional
points as nodes of a binary tree, containing information to be retrieved by associative
search. To construct a k-d tree, the point closest to the median value among the first
coordinates of all points is selected as a root node. The remaining points are split into
two subtrees. The left subtree contains points whose first coordinate is less than the
median, and the right subtree contains the points whose first coordinates are greater
than the median. The procedure is repeated for both subtrees, using the median of the
second coordinate to find the root node of each subtree, and splitting the remaining
nodes into additional left and right subtrees. This procedure continues recursively
(looping back to the first coordinate after the kth coordinate is used) until all nodes are
placed in the tree. An example of a k-d tree constructed for 9 points in a 2-dimensional
space is given in Figure 1. More details on these data structures can be found in Mangla
(2024).

Figure 1: An example of a k-d tree for k = 2 with 9 points. Figures are taken from
(Mangla 2024).

This data structure is a computationally efficient way to identify approximate neighbors
for a set of points in k-dimensional space. For huge and high-dimensional datasets, it
is computationally inefficient to compute the Euclidean distance between every pair
of data points. Instead, Approximate-Nearest Neighbors (A-NN) can be found for a
given point. Let x ∈ Rk. To find the approximate nearest neighbors of x, the A-NN
algorithm attempts to insert x into a leaf node of the k-d tree. This can be done by
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comparing the first coordinate of x to the root node; if it is less than the root node,
it goes into the left subtree; otherwise, it goes into the right subtree. This continues
recursively (using the appropriate coordinates of x) until x is placed in a leaf node of
the k-d tree. Once x is placed in a leaf node, the algorithm selects points in the current
node that are within a search radius of x. The A-NN algorithm also considers points
in nearby nodes if the distance between x and the boundary to the node is less than
the radius times 1/(1 + α), where α > 0 and larger values of α give a smaller search
radius. Once this is complete, a set of the ℓ closest points (of the selected points) to
x are returned by the A-NN algorithm. In this article, the k-d Trees are built with
Python of scipy.spatial.cKDTree function from Virtanen et al. (2020) library.

3. Proposed Methods
Suppose we have a full dataset (xi, yi), i = 1, . . . , N , where N is very large, xi =
[xi1, . . . , xip]T is a vector of p real covariates, and yi ∈ R is a univariate response. Let
f(xi) = [1, xT

i ]T . Let the full matrix of covariates be denoted as X = [f(x1), . . . , f(xN)]T .
Suppose that the data follow the model

yi = β0 + xT
i β + ϵi, E[ϵi] = 0, Var[ϵi] = σ2

i , i = 1, . . . , N, (3)
where β ∈ Rp is an unknown vector of regression coefficients and σ2

i = g(xi). That
is to say, the variance of the error terms depends on a subset of the covariates in
the dataset. In practice, the function g that relates the variance to the covariates is
generally unknown, which creates difficulty in selecting a subsample to estimate the
unknown coefficients.
If g were known, one could re-weight the points accordingly and use weighted least
squares to estimate the unknown parameter vector β. Let (z1, y1), . . . , (zn, yn) be a
subsample of size n from the full data. Let Z = [f(z1), . . . , f(zn)]T , with correspond-
ing responses y = [y1, . . . , yn]T . Let Σ = diag(g(z1), . . . , g(zn)). Then, the optimal
weighted least squares estimator for the coefficients is β̂wls = (ZT Σ−1Z)−1ZT Σ−1y,
which has a normalized information matrix of (1/n)ZT Σ−1Z. It is straightforward to see
that the D−optimality criterion for a subsample Z is ϕD(Z) = |(1/n)ZT Σ−1Z|1/(p+1).
Suppose we wanted to evaluate the I−optimality criterion over an experimental region
X ⊂ Rp. Using this estimator, the I−optimality criterion can be written as

ϕI(Z) =
∫

x∈X
f(x)T

(
ZT Σ−1Z

n

)−1

f(x) dx = trace
(ZT Σ−1Z

n

)−1

B

, (4)

where B =
∫

x∈X f(x)f(x)T dx. Again, lower values of the I−optimality criterion are de-
sirable, since they correspond to smaller prediction variance over the region of interest.
In this paper, it is assumed that the region of interest X is the region occupied by the
rows of the full dataset X; i.e., we wish to make accurate predictions for any point in
the neighborhood of any point currently in the full dataset. Formally, this region can
be written as X = ∪N

i=1{x ∈ Rp | ||x − xi||22 ≤ δ} for some small δ > 0. In this case, we
approximate B by replacing the integral with the following average over the set of full
data points:

B ≈ 1
N

N∑
i=1

f(xi)f(xi)T . (5)
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The matrix B only needs to be computed once for the full dataset, and then it can
be used in subsequent methods. For ease of notation, equation (5) will be used as the
definition of B from here onward.
Suppose that the variance of the error terms can be estimated. Let Σ̂ = diag(ĝ(z1), . . . ,
ĝ(zn)). Then, the I−optimality criterion of interest becomes

ϕI(Z) = trace


ZT Σ̂

−1
Z

n

−1

B

. (6)

This work will focus on answering three questions:

1. How can we efficiently and effectively estimate the error variances σ2
1, . . . , σ2

N?

2. How can we find subsamples (of a given size n2 < N) that have very high
D−optimality?

3. How can we find subsamples (of a given size n2 < N) that have very low
I−optimality?

3.1. Estimation of variances
In order to find optimal subsamples, variance estimates σ̂2

i , i = 1, . . . , N need to be
computed. The main idea is to use a space-filling technique to select the first n1 points
of the subsample, fit a local linear model to the first n1 points of the subsample, and
then use the fitted model to construct a weighted estimator for the variance of an
arbitrary point in the full dataset. To do this, Algorithm 1 is used. This algorithm
first uses a Latin Hypercube Design McKay et al. (1979) to select n1 points d1, . . . , dn1

in the space of data points χ. The LHD partitions χ into n1 equally sized blocks.
LHDs have the property that, when projected into any of the p dimensions, there is
exactly one observation in each of the n1 blocks. This makes them well-suited for the
estimation of unknown functions (Stein 1987), such as the unknown variance function
g(·). A random LHD is drawn by selecting (at random) a point inside each of the n1
selected blocks. For each i = 1, . . . , n, a k-d tree is used to find the approximate nearest
neighbor of di from the data points {x1, . . . , xN}. This is how the first n1 points in
the subsample are selected. Denote the first n1 points of the subsample as {(x̃i, ỹi)n1

i=1},
and for any x ∈ Rp, let

m(x) = E(y|x) (5)

KH(x̃i − x) = 1
(2π)p/2|H|1/2 exp

(
−1

2(x̃i − x)⊤H−1(x̃i − x)
)

, (6)

where H = h2Ip is a diagonal matrix that depends on a scalar bandwidth h > 0. The
kernel function KH(·) assigns weights to the sub-sample points as a function of their
Mahalanobis distance from the evaluation point x. Algorithm 1 is motivated by (Fan
and Yao 1998), an essential part of the algorithm is to perform local linear regression
on the random subsample to estimate the conditional expectation m(xi) = E(y|xi) for
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each i = 1, . . . , n1, which has been learned as a consistent estimator. This is done by
solving

(âi, b̂i) = argmin
a,b

n1∑
j=1

{ỹj − a − b (x̃j − x̃i)}2 · KH(x̃j − x̃i), (7)

for each i = 1, . . . , n1. This is a least squares problem with a known solution (shown
in Step 5 of Algorithm 1). Using the solution in (7), the conditional means can be
estimated as m̂(x̃i) = âi for each i = 1, . . . , n1. Algorithm 1 then computes the squared
residuals r̂2

i = (ỹi − m̂(x̃i))2 for i = 1, . . . , n1.
Compared to the variance estimation procedure from (Fan and Yao 1998), the vari-
ance σ2(x) is approximated via residual smoothing using Nadaraya-Watson Estimator
(NWE) for computational efficiency. Let σ̂2

H(x) be a weighted average of the squared
estimated residuals, i.e.,

σ̂2
H(x) :=

∑n1
i=1 KH(x̃i − x) · r̂2

i∑n1
j=1 KH(x̃j − x) . (8)

The estimator in (8) is based on the Nadaraya-Watson Estimator (NWE) for estimating
the conditional mean (Nadaraya 1964). The traditional NWE is the same as (8), except
r̂2

i is replaced with ỹi. The modified NWE can be used to find σ̂2
H(xi) for all points

i = 1, . . . , N in the full dataset.
Algorithm 1: Data-driven variance estimation.
Inputs: Data {(xi, yi)N

i=1}, a scalar h > 0, n1, and a k-d tree KD for the full data
X.

1. Generate a Latin Hypercube Design in χ with n1 points, denoted as d1, . . . ,dn1 .
For i = 1, . . . , n1, use the k-d tree KD to find the nearest neighbor x̃i of di and
the corresponding response ỹi. Denote the subsample as {(x̃i, ỹi)n1

i=1}.
2. Construct the diagonal matrix H = diag(h2, · · · , h2)n1×n1 ;
for i = 1 to n1 do

3. Let Wi = diag (KH(x̃1 − x̃i), . . . , KH(x̃n1 − x̃i)).
4. Let X̃i = [1, (x̃1 − x̃i, . . . , x̃n1 − x̃i)T ] and let ỹ = [ỹ1, . . . , ỹn1 ]T .
5. Calculate the closed-form solution[

âi

b̂i

]
=
(
X̃T

i WiX̃
)−1

X̃T
i Wiỹ

and set m̂(x̃i) := âi;
6. Store the squared residual r̂2

i = (yi − m̂(x̃i))2.
end
7. For i = 1, . . . , N , compute σ̂2

H(xi) using r̂2
1, . . . , r̂2

n1 and the expression in (8).
Return: The estimated variances σ̂2

H(xi) for i = 1, . . . , N .

The bandwidth h is a tuning parameter for the variance estimation. There are mul-
tiple choices for selecting h. In general, points that are within a distance of h of x
will have higher weight than points that are further away from x. In this sense, the
kernel estimates become “smoother” as h increases. There is extended research in the
bandwidth selection using a cross-validation scheme, or a plug-in estimators. In Theo-
rem 2 of Greblicki and Krzyzak (1980), it was proven that (under regularity conditions
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satisfied by the Gaussian kernel) if h → 0 as n1 → ∞ and n1h → ∞ as n1 → ∞, then
the traditional Nadaraya-Watson Estimator is a consistent estimator of the conditional
mean of the response. This is satisfied by several choices of h, such as h = O(n−1/(p+4)

1 ),
which was also found to be an optimal bandwidth in spatial kernel estimation problems
(Van Lieshout 2020). This provides motivation for using the modified NWE in Equa-
tion (8), since the variance of the true error terms are equal to the conditional means
of the squared true error terms.

3.2. A weighted IBOSS algorithm
In this section, a Weighted IBOSS algorithm is proposed. This algorithm aims to find a
subsample that is close to D−optimal. This means it aims to minimize the generalized
variance of the Weighted Least Squares (WLS) estimator β̂W LS, which is given by

| Var(β̂W LS)| = |(ZT Σ̂−1Z)−1|. (7)

This is equivalent to maximizing the determinant of the information matrix. This
optimization can be written in the following form:

maxZ |(ZT Σ̂−1Z)| = maxZ |(Σ̂−1/2Z)T (Σ̂−1/2Z)|. (8)

If the data are homoscedastic, then Σ = σ2In and the expression in (8) reduces to
maximizing |ZT Z|. This is the same problem that is addressed by the IBOSS algorithm
in Wang et al. (2019). Therefore, the proposed method is to re-weight each observation
by the reciprocal square root of its estimated error variance. This is a generalization of
IBOSS that accounts for the fact that observations with smaller error variance contain
more information.
Algorithm 2: Weighted IBOSS algorithm for subsampling.
Inputs: full (N × (p + 1)) data matrix X = [f(x1), . . . , f(xN)]T , error variance
estimates σ̂2

i , i = 1, . . . , N , target subsample size n, current subsample indices S
= (i1, . . . , in1).

for i = 1, . . . , N do
1. Let x∗

i = xi/σ̂i ≜ (x∗
i1, . . . , x∗

ip).
end
2. Let r = ⌊n2/2p⌋, where n1 is the length of S and n2 = n − n1.
for j = 1, . . . , p do

3. Find the indices of the rows in X containing the r smallest values of (x∗
1j,

. . . , x∗
Nj). Add these indices to S.

5. Find the indices of the rows in X containing the r largest values of (x∗
1j, . . . ,

x∗
Nj). Add these indices to S.

end
Return Z = [f(xi1), . . . , f(xin)]T , where S = (i1, . . . , in).

As inputs, the Algorithm 2 takes the full covariates matrix X, the estimated error
variance, σ̂2

i for each row of X, the current row indices of the subsample, denoted as
S = (i1, . . . , in1), and the desired subsample size, n. In Steps 1 and 2 of the algorithm,
each point xi is divided by its corresponding estimated standard deviation σ̂i. Hence,
Algorithm 2 depends on the quality of the error variance estimator. For example, if
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the error variance is severely underestimated for a certain point, then Algorithm 2 will
give a much higher weight to this point’s contribution to the overall information in the
subsample. From Steps 3–6, the IBOSS algorithm developed by Wang et al. (2019) is
used to select the remaining points. Specifically, in Step 3, a value r = (n2)/(2p) is
determined. This r represents the number of observations to be selected from both the
highest and lowest tails for each of the p covariates. Steps 4 and 5 loop over each of
the p covariates and repeat the process. The algorithm implicitly selects rows without
replacement for each covariate to achieve total subsample size of n. In Step 6, the
algorithm returns the subsample covariate matrix Z.
There is some theoretical motivation for using Algorithm 2. Let σ(x) =

√
g(x). Suppose

that, for a subsample Z, the true error standard deviations σ(z1), . . . , σ(zn) were known.
Then, the information matrix of the subsample can be expressed as M∗ = Z∗T Z∗, where
Z∗ = [f(z1)/σ(z1), f(z2)/σ(z2), . . . , f(zn)/σ(zn)]T . An upper bound of the determinant
of the moment matrix of the subdata M∗ can be found by applying Theorem 2 from
Wang et al. (2019) by replacing xi with x∗

i , i = 1, . . . , N and removing the constant
variance σ2, because the variance terms are absorbed into Z∗. This allows the upper
bound to be re-expressed as:

|M∗| ≤ np+1

4p

p∏
j=1

(x∗
(n)j − x∗

(1)j)2. (9)

Similar to Theorem 2 of Wang et al. (2019), this result suggests that D−optimal sub-
samples can be obtained by selecting rows that contain extreme values of the stan-
dardized covariates. In practice, the true error standard deviations used to standardize
the covariates are unknown, but they can be estimated using the methods proposed in
Section 3.1.

3.3. Approximated nearest neighbor simulated annealing
In this section, a modified Simulated Annealing (SA) algorithm is proposed to efficiently
search for subsamples that optimize a criterion ϕ. Simulated Annealing is a metaheruis-
tic optimization algorithm that was originally proposed by Kirkpatrick et al. (1983).
SA is a probabilistic algorithm that searches for values that minimize an objective func-
tion (Bertsimas and Tsitsiklis 1993). At a high level, SA starts with an initial solution,
and then randomly generates a neighboring solution. If the neighboring solution is
better, then it is accepted; otherwise it is accepted with a probability that decreases as
the algorithm runs for more iterations. Accepting suboptimal solutions early on in the
search helps avoid local optima.
In the context of subsampling, the SA algorithm starts with a random subsample, i.e.,
a set of n row indices from {1, . . . , N}. To generate a neighboring solution, a random
row index in the current subsample is selected and exchanged with the row index of
a nearby point. The difficulty lies in finding a neighborhood of points in the dataset
for a particular row of the current subsample. It is computationally inefficient to find
the distance between all

(
N
2

)
pairs of points in the full dataset. Therefore, Approxi-

mate Nearest Neighbors (A-NN), described in Section 2.2, is used to quickly define an
approximate neighborhood for a given row of X. This algorithm, called Approximated
Nearest Neighbor Simulated Annealing (ANNSA), is summarized in Algorithm 3.



Journal of Data Science, Statistics, and Visualisation 11

Algorithm 3: Approximated nearest neighbor simulated annealing.
Input: Covariate matrix X ∈ MN,(p+1), Z1 ∈ Mn1,(p+1) and Z(1)

2 ∈ Mn2,(p+1),
where Mn,p is the set of all n × p matrices, and the rows of Z1 and Z(1)

2 are
drawn from the rows of X.

1. Generate a k-d tree for the full data X.
for i = 1, 2, . . . , imax do

2. Randomly select a data row f(z) from Z(i)
2 , and obtain 100 nearest neighbors

of it with the k-d tree.
3. Randomly select a data row f(z∗) from the 100 rows, then swap it with f(z)
to form Z(i∗)

2 .
4. Compute ϕ(Z(i)

2 ) and ϕ(Z(i∗)
2 ).

5. Generate U ∼ U(0, 1).
if U < exp(−(ϕ(Z(i)

2 ) − ϕ(Z(i)
2 ))(i + 1)) then

Z(i+1)
2 = Z(i∗)

2
else

Z(i+1)
2 = Z(i)

2
end

end
6. Store the best n − n1 points so far as Z∗

2 and the corresponding efficiency ϕ∗ =
ϕ(Z∗

2).
return Z∗ = [ZT

1 , (Z∗
2)T ]T .

Algorithm 3 is written to find a minimum value of ϕ(·), i.e., it is written so that
lower values of ϕ are more optimal, which is the case for the I−efficiency criterion.
This algorithm can easily be modified for the D−efficiency criterion by minimizing the
negative D−efficiency. As an input, Algorithm 3 takes an n1 × (p + 1) matrix Z1. This
represents the partial subsample collected to estimate the variance. The other input
is an (n2) × (p + 1) matrix Z(1)

2 . This matrix can be randomly sampled from the full
dataset, or can be selected using the IBOSS Algorithm.
In Step 1 of the algorithm, a k-d tree is generated for the full data X. Then, Steps 2–5
of Algorithm 3 are conducted iteratively for i = 1, . . . , imax. In Step 2, one row of the
current subsample Z(i) is randomly selected (and denoted as f(z)) from the last n − n1
rows of Z(i), and the k-d tree is used to find its 100 approximated nearest neighbors.
Next, one of the neighboring rows f(z∗) is randomly selected and swapped with f(z)
to obtain a new subsample Z(i∗). The ϕ−efficiencies of Z(i) and Z(i∗) are computed
respectively and a uniform random number U is generated. If U < exp(−(ϕ(Z(i)) −
ϕ(Z(i∗)))i), then the swap would be kept, i.e. Z(i+1) = Z(i∗). Otherwise the old design
would be kept for the next iteration. After imax iterations, the subsample Z∗ throughout
all iterations with the smallest value of ϕ is kept as the final subsample.
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4. Simulation Results

4.1. Variance estimation
In this section, we apply Algorithm 1 to estimate variances ĝ(xi), i = 1, . . . , N under
heteroskedasticity, using three distinct variance functions to evaluate the performance of
the estimation procedure. For a given subsample size n ≪ N , and number of predictors
p, the data are generated as follows. The covariates xij ∼ U(0, 1) for i = 1, . . . , N and
j = 1, . . . , p. The regression coefficients β0 and β ∈ Rp are each independently sampled
from a U(0.3, 1) distribution, rounded to one decimal place. The outcome variable yi

is then generated according to Model (3) with ϵi ∼ N (0, gk(xi)), where gk(x) is one of
four variance functions:

1. g1(x) = (1/2p)∑p
j=1(xj − 0.9)2

2. g2(x) = (1/2p)∑p
j=1(xj − 0.1)2

3. g3(x) = (1/2)x2
1 + (1/10)x2

2 + (1/5)x2
p

4. g4(x) = 1,

and xj denotes the jth element of x. The functions g2 and g3 represent cases where
the variance of the errors increases as certain values of x increase. In g3, the variance
of the errors only depends on 3 of the p total covariates, while in the g2, the variance
depends on all covariates. In g1, the variance of the errors increases the further away
each covariate is from 0.9. Since the covariates are each U(0, 1) random variables, this
will assign smaller variances to points whose entries are larger. Finally, the function
g4 assigns constant variance to all points. This function was used to see how well the
methods perform in the case where there is no heterogeneity. We compare the perfor-
mance of the variance estimates ĝ(xi) across varying subsample sizes n1 = 100,200,300
and predictor dimensions p = 5, 10. The full dataset DN consists of N = 1,000,000
observations. The bandwidth was chosen to be h = n

−1/(p+5)
1 .

For each generated dataset, 100 subsamples,each of size n1, were taken using a Latin
Hypercube Design, as described in Section 3.1. For each subsample, the value of
mediani=1,...,N |ĝ(xi) − g(xi)| was found; denote this as the Median Absolute Error
(MAE).
As shown in Table 1, when the initial subsample size n1 increased, the MAEs decreased.
When the number of covariates increases from p = 5 to p = 10, the MAE tends to
increase. The average CPU times for estimating the variances on all N = 1,000,000
points were quite fast, especially for smaller values of n1. There is a trade-off between
computation time and accuracy; smaller values of n1 leads to less CPU time, but at
the cost of higher MAEs. The MAEs were the lowest for variance functions g1 and
g3, with MAEs less than 0.10 for n1 ≥ 200 in these cases. Across all four considered
variance functions, the highest MAE occurs for the function g4 when n1 = 100. When
the variance function is g4, the errors are homoscedastic, so one might expect that the
proposed method is not accurate. However, when n1 increases from 100 to 200 (and
then 200 to 300), the average MAE is shown to decrease, leading to more accurate
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Table 1: Median Absolute Errors (MAEs) and CPU times (in seconds) for variance
estimation for n1 = 100, 200, 300 and p = 5, 10 for four variance functions.

g1 g2 g3 g4

n1 p MAE CPU MAE CPU MAE CPU MAE CPU
100 5 0.04 5.95 0.15 6.11 0.10 5.75 0.18 5.71
200 5 0.03 12.08 0.14 12.09 0.10 10.84 0.12 11.56
300 5 0.03 18.07 0.14 17.38 0.10 16.33 0.09 17.25
100 10 0.05 6.34 0.33 5.62 0.11 5.63 0.42 5.66
200 10 0.04 12.70 0.24 11.10 0.10 11.16 0.27 11.20
300 10 0.03 19.18 0.23 17.31 0.10 16.92 0.21 16.97

predictions. These results are achieved using values of n1 that are 0.01%, 0.02%, and
0.03% of N , respectively for n1 = 100,200,300.

4.2. Optimality comparison of subsampling methods
In this section, the IBOSS, Weighted IBOSS, ANNSA, and ODB subsampling methods
will be compared in terms of their D− and I−optimality criteria. These comparisons
were made using the four variance functions (g1, g2, g3, g4) discussed in Section 3.1. For
each subsample found, the D− and I−optimality criteria were then evaluated using
the true variance functions. As a reminder, subsamples with higher D− optimality
and lower I−optimality criteria are preferred. The data were generated as in Section
4.1, with N = 1,000,000 observations in the full dataset. The first n1 points in the
Weighted IBOSS and ANNSA subsamples were found using the methods described in
Section 3.1. These n1 points were used with Algorithm 1 to estimate the variances,
and then the remaining n2 points were found using Algorthms 2 and 3 for Weighted
IBOSS and ANNSA, respectively. We used n1 = 100 for the first subsampling phase
and n2 = 4p, 6p for the second (optimal) subsample. These are very small subsets of the
full dataset; n1 = 100 is 0.01% of N . As a reminder, the covariates were xij ∼ U(0, 1)
for i = 1, . . . , N and j = 1, . . . , p. The bandwidth here was chosen to be h = n

−1/(p+5)
1 ,

which is the same bandwidth used in Section 4.1.
For each combination of n, p, and true variance function, a dataset of size N was sim-
ulated using the methods described in Section 4.1. The IBOSS and ODB algorithms
were used to find a subsample of size n2, and their D− and I−optimality criteria were
calculated. For each dataset, 20 subsamples of size n were found using the Weighted
IBOSS and ANNSA algorithms. The ANNSA algorithm used the I−optimality crite-
rion. Then, the median D− and I−optimality criteria of Weighted IBOSS and ANNSA
were compared to those of IBOSS. ANNSA used imax = 5,000 iterations and 100 nearest
neighbors. The simulation was conducted this way because IBOSS is a deterministic
algorithm—given the same dataset, it will always produce the same subsample. How-
ever, the subsamples produced by the Weighted IBOSS and ANNSA algorithms can
change depending on the variance estimates, which depend on the first n1 points in
the subsample that are selected by a random Latin Hypercube design. The simulation
results are summarized in Table 2.
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Table 2: Susbample optimality comparison, N = 1,000,000, n1 = 200, p = 5, 10, n2 =
4p, 6p. WIBOSS stands for “Weighted IBOSS.” ANNSA was run using the I−optimality
criterion. Larger D−optimality values are better, and lower I−optimality values are
better.

D-optimality I-optimality
p n2 g IBOSS WIBOSS ANNSA ODB IBOSS WIBOSS ANNSA ODB
5 20 g1 1.42 2.59 2.00 1.46 0.63 0.84 0.58 1.69
5 20 g2 0.98 2.83 1.10 0.30 1.65 0.91 1.18 6.77
5 20 g3 0.71 3.88 1.31 0.56 1.38 1.04 1.05 5.27
5 20 g4 0.14 0.14 0.19 0.21 6.31 8.64 4.33 9.03
5 30 g1 1.39 2.75 1.79 1.60 0.63 0.70 0.61 1.18
5 30 g2 0.91 3.07 1.41 0.28 1.48 0.67 1.01 11.03
5 30 g3 0.78 4.77 2.95 0.56 1.21 0.86 0.84 3.72
5 30 g4 0.15 0.14 0.16 0.19 5.29 8.11 4.81 12.97

10 40 g1 0.91 0.92 1.19 1.20 1.55 1.93 1.07 1.61
10 40 g2 0.18 0.42 0.25 0.17 8.85 5.17 5.39 13.95
10 40 g3 0.63 2.45 1.19 0.87 2.52 1.39 1.55 3.79
10 40 g4 0.10 0.10 0.17 0.18 13.60 16.02 7.13 11.11
10 60 g1 1.05 1.13 1.18 1.18 1.22 1.52 1.07 1.80
10 60 g2 0.17 0.38 0.23 0.19 8.13 5.01 5.41 8.30
10 60 g3 0.54 4.26 1.24 1.03 2.50 1.01 1.36 2.55
10 60 g4 0.12 0.11 0.17 0.18 10.31 13.18 7.09 9.31

Table 2 shows the median D− and I−optimality criteria for several subsamples of size
n found using the Weighted IBOSS (WIBOSS) and ANNSA algorithms, and compares
them to the D− and I−optimality criteria of a subsample found using IBOSS and ODB
on the same dataset. When the variance function was g1, g2, or g3, the Weighted IBOSS
algorithm always provided subsamples with higher D−optimality than those provided
by IBOSS and ODB. This is consistent with the theoretical bound in Equation (9),
which argued that dividing xi by the true error standard deviation would yield sub-
samples with high D−optimality. In these cases, the simulation results show that using
a good estimator in place of the true error standard deviations also gives good results
in terms of D−optimality. The subsamples provided by ANNSA had I−optimality
criteria that were less than to those provided by IBOSS and ODB, even when there
was constant variance (g4). This is expected, since ANNSA was run to minimize the
I−optimality criterion. These results suggest that IBOSS does not always provide sub-
samples with the lowest I−optimality. For all cases, either ANNSA or WIBOSS had the
lowest I−optimality. When the variance function was g2 or g3, WIBOSS had the lowest
I−optimality; otherwise, ANNSA had the lowest I−optimality. The D−optimality for
the ANNSA subsample is greater than or equal to the D−optimality for IBOSS in all
cases. This result suggests that subsamples with low integrated prediction variance
can be found without sacrificing D−optimality that one would get from the (computa-
tionally faster) IBOSS method. When the variance function was g4, the variance was
constant. In these cases, it was expected that IBOSS and WIBOSS would have similar
D−optimality criteria, since the variance estimates used for WIBOSS should be very
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similar across all data points. Indeed, IBOSS and WIBOSS had similar D-optimality
criteria. When the variance was constant, the ODB method had the highest D−optimal-
ity value, followed by ANNSA. These results show that, even when the variance is
constant, WIBOSS performs well in terms of D−optimality.
The time cost for n = 20, p = 5, and variance function g1 was measured. It took
0.17 seconds for IBOSS algorithm and 10.4 seconds for the ODB algorithm to find
subsamples. The average time for WIBOSS and ANNSA algorithms were 11.40 and
51.24 seconds, respectively. Weighted IBOSS and ANNSA use more time because they
need to build the K-D tree and estimate the variance for all N points in the full dataset.

5. Example
In this section, an example on airline data is used to demonstrate the efficacy of the
proposed subsampling methods in a case where the variance is not constant. The full
dataset is available in the Harvard Dataverse (Harvard 2008) at https://doi.org/
10.7910/DVN/HG7NV7. Each row of the dataset corresponds to a flight in the US. In
this example, we consider flights in the year 2007. After flights with missing values
were removed, this led to a full dataset size of N = 7,275,288 flights. The response of
interest was taken to be the arrival delay (in minutes), which is negative if the flight
arrived early, and positive if the flight was late. It was of interest to see how a flight’s
elapsed time (in minutes), departure delay (in minutes), and travel distance (in miles)
impacted the flight’s arrival delay. The elapsed time, departure delay, travel distance,
and arrival delays were each mean-centered and scaled by their standard deviations
prior to analysis.
To illustrate the heteroscedasticity of the errors in this dataset, a random subsample
of size 100,000 was used to fit Model (3). The residuals were then plotted against all
p = 3 covariates, and these plots are shown in Figure 2. Figure 2 shows that as the
elapsed time, departure delay, and distance increase, the variance of the residuals tends
to decrease. This shows evidence that the variance of the errors depends on the values
of the covariates.
The dataset was randomly divided into 70% training data and 30% testing data. The
variances were estimated using training data via Algorithm 1 with a bandwidth of h = 1.
The weighted IBOSS algorithm and ANNSA were used these variance estimates. The
IBOSS, weighted IBOSS, and ANNSA algorithms were used to find subsamples with
sizes of n = 400,450,500. In each case, n1 = 200 subsamples were used to estimate
the variance, and the remaining n2 = n − n1 subsamples were found using either
IBOSS, weighted IBOSS, or ANNSA. The estimated I−optimality criteria (using the
estimated variances) the IBOSS and weighted IBOSS subsamples were compared, and
the subsample with the lower estimated I−optimality was used as the initial subsample
for ANNSA. For each of the obtained subsamples, a weighted least squares regression
model was fitted and used to predict the responses for the testing set. For IBOSS and
weighted IBOSS, the MSPE was found on the testing dataset. For each value of n in
Table 3, the ANNSA algorithm was run 50 times to produce 50 different subsamples,
each of size n. For each of these 50 subsamples, a weighted least squares model was
fit to the training data, and the MSPE was calculated on the test data. These values

https://doi.org/10.7910/DVN/HG7NV7
https://doi.org/10.7910/DVN/HG7NV7
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Figure 2: Residuals versus Predictors in a Random Subsample of size 100,000 from the
Airline Dataset. All covariates are standardized (mean-centered and scaled by standard
deviation).

were averaged to produce the values in Table 3 under the ANNSA column. The MSPEs
are summarized in Table 3. The weights used in the WLS model were the estimated
variances obtained from the training set. From Table 3, it can be seen that in this
example, ANNSA had the lowest MSPEs in all cases, and this was followed by IBOSS.

Table 3: Mean squared prediction errors (using Weighted Least Squares).

Subsampling Method
n1 n2 n IBOSS WIBOSS ANNSA
200 200 400 0.1842 0.1913 0.1701
200 250 450 0.1877 0.1949 0.1596
200 300 500 0.1996 0.2043 0.1568

It was also of interest to compare the regression coefficients obtained from each sub-
sampling method with the regression coefficients obtained by using the entire training
dataset. Table 4 below shows the coefficients obtained for each model. The first row
shows the coefficients for the full model (N = 7,275,288), and the remaining rows shows
the coefficients obtained for subsamples of size n = 400, with n1 = 200 and n2 = 200.
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Since ANNSA returns a stochastic subsample, the coefficients shown for ANNSA are
averages over 50 different subsamples.

Table 4: Mean coefficients when n1 = 200, n2 = 200.

variables IBOSS WIBOSS ANNSA full model
Intercept 0.228 0.243 0.069 0.001

Scheduled Elapsed Time 0.003 0.019 -0.121 -0.055
Departure Delay 0.914 0.914 0.892 0.935

Distance -0.040 -0.059 0.263 0.035

Table 4 shows that all three methods (IBOSS, WIBOSS, ANNSA) had similar estimates
for the effect of the departure delay, which appears to be the most important coefficient
for predicting the arrival delay. The ANNSA coefficients for elapsed time and distance
had the same signs as those found when using the full dataset, but this was not the case
for IBOSS. The effect estimates for IBOSS and WIBOSS were very similar in this case.
Among the three algorithms, ANNSA’s fitted coefficients are closest to those obtained
in the full model.

6. Conclusion and Future Work
This article introduces the Weighted IBOSS (WIBOSS) and ANNSA subsampling al-
gorithms, as well as a variance estimation algorithm based on the NWE. While the
established IBOSS algorithm from Wang et al. (2019) provides a framework for subsam-
pling from data under the assumption of homoscedasticity, it does not address scenarios
where the variance of the errors depends on the covariates. The proposed methods of-
fer reliable procedures for subsampling from large datasets with heteroskedasticity by
identifying subsamples with high D-optimality or low I-optimality. Based on the simu-
lation results, ANNSA consistently delivered subsamples with the highest D-optimality
and lowest I-optimality among three methods. The subsamples found by the weighted
IBOSS algorithm generally had higher D-optimality than those found by IBOSS. When
the variance was constant, weighted IBOSS and IBOSS had similar D-optimality. For
the real world example as shown in Section 5, which exhibits heteroskedasticity, the
ANNSA subsampling method was shown to produce weighted least squares estimates
that resulted in lower mean squared prediction error than those obtained from IBOSS
and weighted IBOSS.
While the article validates the proposed algorithms through simulations and real data
analysis, more work that can be done on this topic. One key area is the theoreti-
cal properties of the ANNSA algorithm. Future research could focus on finding the
theoretical limits of both I- and D-optimality and investigating the impact of errors
from variance estimation on ANNSA’s performance. Secondly, there is room for fu-
ture work with respect to the NWE variance estimator such as a formal derivation of
the bias. As a major component of the proposed framework, the variance estimation
algorithm could also be further optimized to speed up the computing process. For
example, weighted IBOSS requires an evaluation of the estimated variance of each data
point in the full dataset. Future work could focus on developing a subsampling method
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leveraging a subset of data. Additionally, the proposed framework was built to sub-
sample from datasets with continuous covariates. Modifying the current algorithms to
handle categorical covariates would significantly expand the versatility of the proposed
methods.
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