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Abstract

We propose a data-analytic method for detecting cellwise outliers. Given
a robust covariance matrix, outlying cells (entries) in a row are found by the
cellHandler technique which combines lasso regression with a stepwise applica-
tion of constructed cutoff values. The penalty term of the lasso has a physical
interpretation as the total distance that suspicious cells need to move in order to
bring their row into the fold. For estimating a cellwise robust covariance matrix,
we construct a detection-imputation method which alternates between flagging
outlying cells and updating the covariance matrix as in the EM algorithm. The
proposed methods are illustrated by simulations and on real data about volatile
organic compounds in children.

Keywords: anomalous cells, cellHandler, detection-imputation method, marginal out-
liers, volatile organic compounds.

1. Introduction
It is a fact of life that most real data sets contain outliers, that is, elements that do not
fit in with the majority of the data. These outliers can be annoying errors, but may also
contain valuable information. In either case, finding them is of practical importance.
In statistics this is called outlier detection, and in the computer science literature it is
also called anomaly detection or exception mining (Chandola et al. 2009).

http://dx.doi.org/10.52933/jdssv.v1i3.18
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The most common paradigm is that of casewise outliers, which assumes that most cases
were drawn from a certain model distribution but some other cases were not. The latter
are also called rowwise outliers, since data often comes in the form of a table (matrix)
in which the rows are the cases and the columns represent the variables. In computer
science, one often uses outlier detection methods based on Euclidean distances, which
by construction are invariant for orthogonal transformations of the rows. In statistics,
many outlier detection methods are also invariant for affine transformations, that is,
nonsingular linear transforms combined with shifts.
The study of cellwise outliers is a more recent research topic. This is the situation
where some individual cells (entries) of the data matrix deviate from what they should
have been. Alqallaf et al. (2009) first formulated this paradigm. Note that cells are
intimately tied to the coordinate system, whereas orthogonal or other linear trans-
formations would change the cells. To illustrate the difference between the rowwise
and cellwise approaches, consider the standard multivariate Gaussian model in dimen-
sion d = 4 with the suspicious point (10, 0, 0, 0). By an orthogonal transformation of
the data, this point can be moved to (

√
50,

√
50, 0, 0) or to (5, 5, 5, 5), and therefore

any orthogonally invariant rowwise detection method will yield the same result in
all three situations. But in the cellwise paradigm, (10, 0, 0, 0) has one outlying cell,
(
√

50,
√

50, 0, 0) has two, and (5, 5, 5, 5) has four.
For an illustration of cellwise outliers see Figure 1. It depicts part of a dataset that will
be described later. The rows are cases and the columns are variables. The regular cells
are shown in yellow. Red colored cells indicate that their value is higher than expected,
while blue cells indicate unusually low values.
When the model has substantially correlated variables, the cellwise outliers need not
be marginally outlying, and then it can be quite hard to detect them. Van Aelst et al.
(2011) proposed one of the first methods, based on an outlyingness measure of the
Stahel-Donoho type. Farcomeni (2014) looks for the cells that, when put to missing,
yield the highest Gaussian partial likelihood. Agostinelli et al. (2015) and Leung et al.
(2017) use a univariate or bivariate filter on the variables to flag cellwise outliers,
followed by S-estimation. Rousseeuw and Van den Bossche (2018) predict the values
of all cells and flag the observed cells that differ much from their prediction. Debruyne
et al. (2019) consider rowwise outliers and ask which variables contribute the most to
their outlyingness. The O3 plot of Unwin (2019) visualizes cases that are outlying in
lower dimensions.
There has also been substantial work to estimate the covariance matrix underlying the
model in the presence of cellwise outliers, which will be briefly reviewed in Section 3.1.
Most of the statistical research on cellwise outliers has focused on the FICM contami-
nation model of Alqallaf et al. (2009) which assumes that the outlying cells come from
a single distribution, and typically this distribution has all its mass in a single value γ.
Here we will not restrict ourselves to that setting, and in the simulations we will allow
for the cellwise outlying values to depend on which cells are contaminated, creating
structured cellwise outliers. This is a more challenging problem, and it is clear that the
underlying covariance structure will play a role.
Note that the multivariate setting is very different from regression with a univariate
response. In regression, having a robust fit is sufficient for flagging outlying responses,
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Figure 1: Illustration of cellwise outliers. Red squares indicate cells with unexpectedly
high values, and blue squares indicate unusually low values. Regular cells are yellow.

because their residuals from the robust fit will be large in absolute value. In the
multivariate situation it is much harder: even if we knew the true pre-contamination
covariance matrix Σ, how would we find the anomalous data cells? Currently, no
method is available to do this. Our aim is to fill that gap by constructing such a method
called cellHandler, described in Section 2. To estimate a cellwise robust covariance
matrix Σ̂, Section 3 constructs the detection-imputation algorithm which alternates
between cellHandler and re-estimating Σ as in the EM algorithm. In Section 5 the
performance of this approach is studied by simulation, and Section 6 analyzes real data
on volatile organic compounds in children.

2. The cellHandler Method
In this section, we construct a method to detect outlying cells when the true positive
definite covariance matrix Σ is known. In reality Σ is usually unknown, but this method
is a major component of the algorithm proposed in the next section for estimating Σ.
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2.1. Ranking Cells by their Outlyingness
We start by standardizing the columns (variables) of the dataset, using robust uni-
variate estimates of location and scale such as the median and the median absolute
deviation. This also ensures that the result will be equivariant to shifting and rescaling
of the original variables. The resulting d-variate cases are denoted as zi for i = 1, . . . , n .
For a given case z, the central question in this section is how we can identify the cells
that are most likely to be contaminated. Any set of cells in z may be contaminated,
and while it may be tempting to somehow investigate all 2d subsets of z, this quickly
becomes infeasible due to the exponential complexity in d. Therefore, we need a dif-
ferent approach to provide candidate cells that may be contaminated while avoiding
an insurmountable computational cost. Note that the squared Mahalanobis distance
MD2(z, µ, Σ) = (z − µ)′Σ−1(z − µ) measures how far z lies from the uncontaminated
distribution. The idea is to reduce the Mahalanobis distance of z by changing only a
few cells. Mathematically, we look for a d-variate vector δ such that MD2(z − δ, µ, Σ)
is small. Interestingly, this problem can be rewritten in an elegant form, as presented
in the following proposition.

Proposition 1. Modifying cells to reduce the Mahalanobis distance of their row can be
rewritten using the sum of squares in a linear model.

Proof. Observe that

MD2(z − δ, µ, Σ) = (z − δ − µ)′Σ−1(z − δ − µ)
= ||Σ−1/2(z − δ − µ)||22
= ||Σ−1/2(z − µ) − Σ−1/2δ||22
= ||Ỹ − X̃δ||22 (1)

which is the objective of a regression without intercept with known response vector
Ỹ := Σ−1/2(z − µ) and predictor matrix X̃ := Σ−1/2 with coefficient vector δ. Here
Σ−1/2 is the unique PD inverse root of Σ.

It is clear that the ordinary least squares (OLS) solution to (1) is δ̂LS = z − µ since
it makes the sum of squares zero. However, using δ̂LS would replace the entire row by
the vector µ, which would lose the information in the non-outlying cells. We prefer
to change as few cells as possible, so we want a sparse coefficient vector δ̂. A natural
choice for this problem is the lasso (Tibshirani 1996), given by the minimization of

||Ỹ − X̃δ||22 + λ||δ||1 (2)

where ||δ||1 = |δ1| + . . . + |δd| . Lasso regression penalizes ||δ||1 which yields a path
of sparse solutions to the regression problem for decreasing value of λ. Note that
the penalty term ||δ||1 has a concrete physical meaning in this setting: it is the total
distance which the corresponding cells of z need to travel in order to bring z into the
fold. This is unusual, as the L1 term is typically included as a device to induce sparsity
without a specific subject-matter interpretation.
The description is not yet complete, because we have to take special care of cells zj that
lie far away. Moving such cells into place requires large components δj which inflate the
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penalty term, so these zj would appear rather late in the lasso path. Fortunately such
far marginal outliers zj are easy to spot, as they have a large univariate outlyingness
Oj = |zj − µj|/

√
Σjj . Therefore, we downweight the δj in the penalty term by a

factor wj = min(1, 1.5/Oj) which is the weight associated with the univariate Huber
M-estimator. This replaces ||δ||1 in (2) by ||W δ||1 where W := diag(w1, . . . , wd) . Note
that this weighted lasso can be rewritten as a plain lasso as follows. Since all the weights
are strictly positive, W is invertible, so we can write X̃δ = (X̃W −1)(W δ) = Ẋβ
where Ẋ := X̃W −1 and β := W δ. This merely changes the units of the variables in
X̃, so we minimize

||Ỹ − Ẋβ||22 + λ||β||1 (3)

followed by transforming β̂ back to δ̂. The penalty term ||β||1 keeps its interpretation
in the new units determined by the wj.
Note that lasso steps do not only add variables: sometimes they take a variable out
of the model. But in our context, it is natural to impose that once a cell is flagged it
stays flagged, meaning that a selected regressor stays in the model. By imposing this
constraint, we arrive at the elegant and fast least angle regression (LAR) algorithm of
Efron et al. (2004). This is the option type="lar" in the R-package lars (Hastie and
Efron 2015), and its performance turned out to be very similar to that of type="lasso"
in our setting. Using LAR also simplifies and speeds up the next step of cellHandler in
Section 2.2.
The way LAR works in our problem is intuitive. The gradient of MD2(z − δ, µ, Σ) =
||Ỹ −Ẋβ||22 with respect to β is ∇ = −2Ẋ

′(Ỹ −Ẋβ). This gradient ∇ = (∇1, . . . , ∇d)
is zero at the minimum of MD2, when β is the OLS fit (Ẋ ′

Ẋ)−1ẊỸ = W (z − µ).
LAR first takes the coordinate with highest |∇j| and moves βj , that is, cell j, to
reduce |∇j| until it equals the second largest |∇h|. Then it moves cells j and h such
that |∇j| = |∇h| decrease together, until it reaches the third largest |∇m|, and so on.
For each row z, we have now obtained a ranking of its cells, corresponding to the order
in which they occurred in the path for reducing MD2(z − δ, µ, Σ). Each row z can
have its own δ.

2.2. Handling Outlying Cells
After k steps of LAR, we have a set of k candidate cells. The question is whether
these candidate cells are sufficient. In other words, is it possible to edit these k cells
while keeping the remaining d − k cells intact, in such a way that the edited row
behaves like a clean row? To this end, we will edit the k candidate cells to maximize
the Gaussian likelihood given the remaining cells. Suppose without loss of generality
that the candidate cells are the first k entries of z. Then we can denote z′ = [z′

1 z′
2]

and µ′ = [µ′
1 µ′

2] where z′
1 and µ′

1 have length k. Also write Σ11 for the upper left
submatrix of Σ of size k × k and so on. As in the E step of the EM algorithm (see for
instance Little and Rubin (1987)), maximizing the Gaussian likelihood implies that z1
should be shifted to Eµ,Σ[Z1|Z2 = z2] = µ1 + Σ12Σ−1

22 (z2 − µ2).
This imputation appears to require inverting the submatrix Σ22 of Σ. However, it can
also be obtained by OLS regression in the model (1) of Proposition 1 but restricted to
the set of k candidate variables. This is shown in the following proposition, the proof
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of which is given in Section A of the Appendix.

Proposition 2. Let the k-variate θ̂1 be the OLS fit to the regression problem given by

argminθ ||Σ−1/2(z − µ) − (Σ−1/2)·1θ1||22

where (Σ−1/2)·1 denotes the first k columns of the matrix Σ−1/2. Then

z1 − θ̂1 = µ1 + Σ12Σ−1
22 (z2 − µ2) .

In the implementation of cellHandler, these vectors θ̂1 are obtained as a byproduct of
the LAR algorithm without extra computational cost; see Section C of the Appendix.
This means that it carries out the above computation for k = 1, . . . , d without having
to invert any matrix.
We now have a sequence of length d of cells in z, with their possible imputations at
every stage k. The question remains where to stop in this path, that is, how many cells
should we actually flag? For that we use the following proposition:

Proposition 3. For every 1 ⩽ k ⩽ d we have:

1. The residual sum of squares RSSk = ||Σ−1/2(z −µ)−(Σ−1/2)·1θ̂1||22 of the OLS fit
θ̂1 to the first k cells in the path equals the squared partial Mahalanobis distance
MD2(z2, µ2, Σ22) = (z2 − µ2)′Σ−1

22 (z2 − µ2) .

2. For Gaussian data, the difference between two subsequent RSS follows the χ2

distribution with 1 degree of freedom, that is, ∆k := RSSk−1 − RSSk ∼ χ2(1).

The proof is in Section B of the Appendix. The distributional assumption in Part 2 is
unrealistic in our setting, but at least the result provides a rough yardstick that we can
use in our data-analytic procedure. Following the path for 1 ⩽ k ⩽ d, we will compare
the ∆k to a cutoff q, say the 0.99 quantile of χ2(1), and flag the cells with ∆k > q.
We illustrate cellHandler by two simple bivariate examples. The left part of Figure 2
assumes that the true µ = 0 and that Σ is the identity matrix, so the correlation ρ
is zero. For any point z = [z1 z2]′, we can then run cellHandler to see which of these
cells, if any, are flagged. In the central square no cells are flagged, to its left and right
z1 is flagged, above and below it z2 is flagged, and in the outer regions both z1 and
z2 are flagged. Things get more eventful when Σ has 1 on the diagonal and ρ = 0.9
elsewhere. In the right panel of Figure 2, we see that no cells are flagged when z lies
in part of an elliptical region. The domain where only z1 is flagged now has a more
complicated form, and the same holds for z2 , whereas the region in which both are
flagged is similar to before. Of course, the main purpose of cellHandler is to deal with
higher dimensions, which are harder to visualize.

2.3. Simulation Study
To evaluate the performance of cellHandler we run a small simulation study in which the
uncontaminated data are d-variate Gaussian with µ = 0. Since cellwise methods are
neither affine or orthogonal invariant, we consider underlying covariance matrices Σ of
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Figure 2: Bivariate domains where no cells are flagged, where only z1 is flagged, where
only z2 is flagged, and where both are flagged, when the true correlation is ρ = 0 (left
panel) and when ρ = 0.9 (right panel).

two types. Type ALYZ are the randomly generated correlation matrices of Agostinelli
et al. (2015) which typically have relatively small correlations. Type A09 is given by
Σjh := (−0.9)|j−h| and contains both large and small correlations.
The outlying cells are generated as follows. The positions of the cells to be contami-
nated are obtained by randomly drawing nε indices in each column of the data matrix.
Then we look at each row (z1, . . . , zd) with such cells, and denote the indices of those
cells as the set K = {j(1), . . . , j(k)} of size k. Next, we replace (zj(1), . . . , zj(k)) by the
k-dimensional row v = γ

√
k u′/ MD(u, µK , ΣK) where µK and ΣK are restricted to

the indices in K and where u is the eigenvector of ΣK with smallest eigenvalue. This
procedures generates v which are structurally outlying in the subspace of the coordi-
nates in K, while many of these cells will not be marginally outlying. This produces
cellwise outliers that are more challenging than in the earlier literature, which used
v = (γ, . . . , γ).
Figure 3 shows the performance of cellHandler on samples of size n = 400 in d = 20
dimensions with ε = 20% of cellwise outliers, using the covariance matrix estimated
by the algorithm DDCW.DI described in Section 3.2. The other curves are from three
existing techniques for flagging cells. The first one is the univariate Gervini-Yohai filter
(GY) specified in (Agostinelli et al. 2015). The second is the multivariate DetectDe-
viatingCells (DDC) algorithm of Rousseeuw and Van den Bossche (2018), available in
the cellWise package (Raymaekers et al. 2020) as the function DDC. The third is the
default filter of the 2SGS method in (Leung et al. 2017), which is a combination of a
bivariate GY filter with DDC. The top panels in Figure 3 show the recall, which is the
fraction of generated cellwise outliers that are flagged as such. The data in the left plot
were generated by the contaminated ALYZ model, and on the right by the contami-
nated A09 model. We see that cellHandler has the highest recall at each γ. When γ
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increases, the cellwise outliers become marginally outlying, making them easier to flag.
The middle row of the figure shows the precision, which is the fraction of cells flagged
as outlying that were generated as such. We see that cellHandler does not have the best
precision among competing methods at high γ, which is due to the tradeoff between
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Figure 3: Comparison of methods for detecting cellwise outliers on data generated
by the contaminated ALYZ model (left) and the contaminated A09 model (right), for
n = 400 points in d = 20 dimensions. The plots show recall (top), precision (middle),
and F-score (bottom).
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precision and recall. Finally, the bottom row shows the F-score, also called the Dice
coefficient (Dice 1945), which summarizes the performance of a binary classification
through the harmonic mean of precision and recall. Based on this summary measure,
cellHandler performs best.

3. Cellwise Robust Estimation of a Covariance Matrix

3.1. Existing Approaches
The previous section described a method for flagging cellwise outliers when the true
center µ and covariance matrix Σ are known. Of course these are rarely given in
practice, so they have to be estimated. The center µ can be estimated quite easily
by applying a robust estimator (like the median) to each coordinate. Estimating the
covariance matrix Σ is the hard part. There exist several approaches to this problem.
A popular technique is to compute robust covariances between each pair of variables,
and to assemble them in a matrix. To estimate these pairwise covariances, Öllerer
and Croux (2015) and Croux and Öllerer (2016) use rank-based methods such as the
Spearman and normal scores correlations. Tarr et al. (2016) instead propose the use
of the robust pairwise correlation estimator of Gnanadesikan and Kettenring (1972) in
combination with the robust scale estimator Qn of Rousseeuw and Croux (1993). As
the resulting matrix is not necessarily positive semidefinite (PSD), they then compute
the nearest PSD matrix by the algorithm of Higham (2002). All of these pairwise
covariance estimators are fast to compute. We will compare the performance of these
methods in Section 5.
A second approach is the snipEM procedure proposed by Farcomeni (2014) and imple-
mented in the R package snipEM of Farcomeni and Leung (2019). Its first step flags
cellwise outliers in each variable separately using a boxplot rule, and then "snips" them,
which means making them missing. The second step tries many interchanges that un-
snip a randomly chosen snipped cell and at the same time snip a randomly chosen
unsnipped cell, and only keeps an interchange when it increases the partial Gaussian
likelihood. This procedure is slower than the pairwise covariance approach.
The current state of the art to deal with complex cellwise outliers is the two-step
generalized S-estimator (2SGS) of Agostinelli et al. (2015) and Leung et al. (2017)
implemented in the R package GSE (Leung et al. 2019). In a first step, the method uses
a filter (called 2SGS in Figure 3 above) to detect cellwise outliers. These cells are then
set to missing, and the generalized S-estimator of Danilov et al. (2012) is run. A short
survey of cellwise robust covariance estimators can be found in Sections 6.13 and 6.14
of Maronna et al. (2019).

3.2. The Detection-Imputation Algorithm
Our algorithm for constructing a cellwise robust covariance matrix starts by standard-
izing the columns of the dataset as in the beginning of Section 2.1. Next, we compute
initial estimators µ̂0 and Σ̂0. For this we can use the 2SGS estimator of Leung et al.
(2017) described above. We will also try a different initial estimator called DDCW,
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which is a combination of the DDC method (Rousseeuw and Van den Bossche 2018)
and the wrapped covariance matrix of Raymaekers and Rousseeuw (2019). This initial
estimator is described in Section D of the Appendix.
The detection-imputation (DI) algorithm then alternates the D-step and the I-step,
both described below.
D-step: detecting outlying cells across all rows.
The D-step first applies the cellHandler method of Section 2 to each row (zi1, . . . , zid)
based on the estimates µ̂t−1 and Σ̂t−1 from the previous iteration step. This creates
a path with steps k = 1, 2, . . . , d and their ∆k . Note that ∆1, . . . , ∆d is not necessar-
ily monotone, but we create the nonincreasing sequence Dk := max{∆k, . . . , ∆d} for
k = 1, 2, . . . , d. Missing cells are put in front of the path, with Dk := +∞. Finally, we
create an n × d matrix C whose i-th row contains the Dk values of (zi1, . . . , zid), in fact
Cij = Dk when cell zij is obtained in step k.
Should some columns have too many flagged cells (including NA’s), it could become
difficult to estimate a correlation between them, especially if the flagged sets overlap
little. Even worse, flagging all cells in a column would remove all information about
that variable. Therefore, we impose a maximal number of flagged cells in each column,
including the NA’s. This number is n maxCol where the input parameter maxCol is
set to 25% by default. Note that this is a constraint on the columns, whereas we are
flagging cells by row. We resolve this with the following algorithm:

- sort the criterion values Cij of all cells in the matrix in decreasing order;
- walk down this list. If a Cij lies below the cutoff value q we “lock” row i, meaning

that no cells of row i can be flagged any more. If Cij > q the cell is flagged, unless it
belongs to a column which already has n maxCol flagged cells. In the latter case, row
i is locked also.
This procedure yields a (possibly empty) list of flagged cells in each row, which overall
contains the most outlying cells subject to the maxCol constraint.

I-step: Re-estimate µ and Σ .
The I-step is basically one step of the EM algorithm which considers the flagged cells
as missing. However, it is computationally more efficient since it reuses results that
are already available. In each row, the set of flagged cells is one of the active sets
considered by LAR in cellHandler, so its coefficient θ̂1 from Proposition 2 is known.
This makes it trivial to impute the flagged cells, so the E-step of EM requires no
additional computation. Next, µ̂t and Σ̂t are computed as in the M-step, as described
in more detail in Section E of the Appendix. This iterative procedure stops when both
µ̂t − µ̂t−1 and Σ̂t − Σ̂t−1 are small. At the end of the DI algorithm, we unstandardize
µ̂ and Σ̂ using the univariate location and scale estimates of the original data columns.
The time complexity of the DI algorithm is O(Tnd3), where T is the number of iteration
steps. This is the same complexity as that of the classical EM algorithm for covariance
estimation with missing data.
Note that for the DI method to work, the initial covariance matrix (whether 2SGS or
DDCW) and those in all iteration steps need to be invertible. This requires that n > d,
so for now the approach does not allow for d ⩾ n. Possible extensions are a topic for
further research, and would likely require penalization or other forms of regularization.
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4. Measuring Scatter Matrix Discrepancy
In the simulation study in the next section, we want to measure how much an estimated
scatter matrix deviates from the true underlying positive definite (PD) scatter matrix.
For this we need a discrepancy measure for scatter matrices. Here we will construct
a pre-existing discrepancy measure from first principles, in order to dispel a common
misconception that this measure would only make sense when the underlying data
follow a multivariate normal (Gaussian) distribution.
Suppose we want to measure how much a scatter matrix A deviates from a reference
scatter matrix B, where the d × d matrix B is PD but A only needs to be positive
semidefinite (PSD). A simple measure of this type is

||A − B||2 =
( d∑

i=1

d∑
j=1

(aij − bij)2
)1/2

(4)

but it is insufficiently suited to our scatter matrix context, as it does not tell us whether
A is singular. And this is important, since a singular scatter matrix A cannot be used
as an approximation of B, for instance when computing a Mahalanobis-style statistical
distance as in (1) which requires the inverse matrix.
In order to stay in the realm of scatter matrices, we instead compute

S = B−1/2A B−1/2 .

(The matrix S can be seen as the scatter A in the coordinate system where B is
sphered/whitened, since B−1/2B B−1/2 = I.) Note that A = B if and only if S = I,
so we want to measure how far S is from I in a way that is relevant for scatter matrices.
Since the matrix S is PSD, its eigenvalues are nonnegative, so we can denote them as
η1 ⩾ . . . ⩾ ηd ⩾ 0. We want the discrepancy measure to be zero if all ηj = 1, to go to
+∞ when S explodes in the sense that η1 → +∞, and also when S implodes, that is,
ηd → 0. Concentrating on a single eigenvalue η we want a continuous function h(η) on
all η ⩾ 0 with the properties h(η) ⩾ 0, h(1) = 0, and h(η) → +∞ when η → +∞ or
η → 0. Many such functions can be constructed. One of them is h(η) = η − 1 − log(η).
Note that h(η) ⩾ 0 since log(η) is concave and η − 1 is its tangent line at η = 1. The
function h decreases on [0, 1[, reaches its minimum in 1 with h(1) = 0, and increases
on ]1, +∞[. Therefore, it makes sense to define the discrepancy of A relative to B as

D(A, B) :=
d∑

j=1
h(ηj) =

d∑
j=1

(ηj − 1 − log(ηj)) (5)

which is nonnegative since each term is. Note that A = B is equivalent to D(A, B) = 0,
and that a singular A attains D(A, B) = +∞.
The entire construction of D(A, B) above only uses the PSD property of scatter ma-
trices, and is not at all restricted to multivariate normally distributed data. That
confusion is due to the following property:

Proposition 4. In the special case where X and Y are d-variate random vectors
distributed as X ∼ N(0, A) and Y ∼ N(0, B) in which both A and B are PD, the
discrepancy D(A, B) coincides with the Kullback-Leibler divergence KL(X, Y ).
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The proof is in Section F of the Appendix. Note that when both A and B are PD,
D(B, A) exists also, but it does not equal D(A, B). Instead we obtain, along the same
lines, D(B, A) = ∑d

j=1 h(1/ηj). However, it is possible to symmetrize the discrepancy
D(., .) by replacing the h in (5) by a function h̃ for which h̃(1/η) = h̃(η) for all η > 0,
such as h̃(η) = η +1/η −2. One could also use the function h̃(η) = | log(η)| so D(A, B)
becomes the L1 norm of (log(η1), . . . , log(ηd)).

5. Simulation Results
We simulate the estimators of covariance matrices discussed in the previous section.
The data is generated as in Subsection 2.3, with dimensions d = 10, 20 and 40. The
fraction of contaminated cells is ε = 0.1, 0.2 in which γ varies from 1 to 10. In each
replication, we compute the discrepancy (5) of the estimate Σ̂ from the underlying Σ,
and then average the discrepancy over all replications. We show the results for ε = 0.2,
since this is the most challenging scenario. The results for ε = 0.1 were qualitatively
similar.
Figure 4 compares the proposed methods to the existing approaches described in Sub-
section 3.1, for d = 10. Since ε = 0.2, there are on average two cellwise outliers per
row. Gaussian rank (Grank) and Spearman refer to the covariance matrices of Öllerer
and Croux (2015) and Croux and Öllerer (2016) using those rank correlations. The
Gnanadesikan-Kettenring procedure of Tarr et al. (2016) is labeled GKnpd. Next, the
snipEM method of Farcomeni (2014) and the 2SGS estimator of Leung et al. (2017)
are plotted. The method 2SGS.DI uses 2SGS as initial estimator followed by the new
DI method of Section 3.2. The initial estimator DDCW described in Section D of the
Appendix is also shown, as well as DI applied to it.

ALYZ model, 20% outliers, d = 10
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A09 model, 20% outliers, d = 10
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Figure 4: Discrepancy D(Σ̂, Σ) of estimated covariance matrices for d = 10, n = 100.

We see that the three pairwise methods Grank, Spearman and GKnpd pay for their
fast computation by a high discrepancy. The snipEM method does better for high γ, in
part because the boxplot rule in its first step snips marginally outlying cells. The three
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pairwise methods do not use such a rule to flag marginally outlying cells, so high γ
values impact them more. The state of the art method 2SGS does substantially better,
and is improved by applying DI to it, both in the ALYZ and A09 models. The same
holds for DDCW and DDCW.DI. Note that DI improves the results more under A09
than ALYZ, because A09 has bigger correlations so DI has more opportunities to make
a difference.
We now consider higher dimensions, starting with d = 20 in the top panels of Figure 5.
The curves of Grank, Spearman, GKnpd and snipEM were much higher in this case, so
we only show the four best performing methods in order to see the differences between
them. Here the DI algorithm substantially improves upon the initial estimators also.
The improvement is largest under A09 which contains some high correlations. For
d = 40 (bottom panels) we see similar patterns.
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A09 model, 20% outliers, d = 20
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ALYZ model, 20% outliers, d = 40
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A09 model, 20% outliers, d = 40

2 4 6 8 10

10
20

30
40

50

γ

di
sc

re
pa

nc
y

2SGS
2SGS.DI
DDCW
DDCW.DI

Figure 5: Discrepancy D(Σ̂, Σ) given by (5) of estimated covariance matrices for d = 20
and n = 400 (top panels) and for d = 40 and n = 800 (bottom panels).
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Section I of the Appendix shows the results of a simulation in which the data are
contaminated by 10% of cellwise outliers generated as above, plus 10% of rowwise
outliers. In this particular setting "rowwise outliers" refers to rows in which all cells
are contaminated in the same way as before, that is, rows with d cellwise outliers. The
initial estimators 2SGS and DDCW attempt to downweight or discard such rows. The
results are qualitatively similar to those in Figures 4 and 5.

6. Example: Volatile Organic Compounds in Children
We study a dataset of volatile organic compounds (VOCs) in human urinary samples.
The data was taken from the publicly available website of the National Health and
Nutrition Examination Survey (NHANES 2019), using the most recent available epoch.
Such VOC metabolites are commonly monitored since chronic exposure to high levels of
some VOCs can lead to a number of health problems such as cancer and neurocognitive
dysfunction. The original dataset consists of 29 VOC metabolites, but we focus on a
subset of 16 variables obtained by removing columns with a lot of missing values and/or
zero median absolute deviation. Section J in the Appendix contains a table with the
VOCs analyzed. In order to obtain a relatively homogeneous subset, we selected the
data for children aged 10 or younger. The final dataset contained 512 subjects. We
log-transformed the concentrations to make the variables roughly Gaussian (apart from
possible outliers).
We estimated the covariance matrix of the data by the DI algorithm, starting from the
DDCW initial estimator. The algorithm converged after 7 steps. Using the resulting
covariance estimate, we ran the cellHandler algorithm with cutoff

√
χ2

1,0.99 ≈ 2.57 to
detect outlying cells. The corresponding cellmap of the first 20 children in the list
was shown as Figure 1 in the introduction. Each row of the cellmap corresponds to
a child, with inlying cells colored yellow. Red cells indicate that their value is higher
than predicted given the inlying cells of that row, while blue cells indicate lower than
predicted values. The more extreme the residual, the more intense the color.
One variable that stood out was URXCYM (N-Acetyl-S-(2-cyanoethyl)-L-cysteine) in
which cellHandler indicated 11% of large cell residuals. This was particularly striking
since that variable had fewer than 2% of marginal outliers using the same cutoff

√
χ2

1,0.99
on the absolute standardized values, and these were rather nearby (note that even for
perfectly Gaussian data there would already be 1% of absolute standardized values
above this cutoff). Figure 6 plots the cell residuals (which are zero for cells that were
not flagged) versus the robustly standardized marginal values, with the cutoffs indicated
by horizontal and vertical lines. Most of the outlying cellwise residuals correspond to
inlying marginal values. These children have extreme URXCYM values relative to their
other VOCs.
Interestingly, URXCYM is a well-known biomarker for identifying smokers among
adults (Chen et al. 2019), since it typically results from the metabolization of acryloni-
trile, a volatile liquid present in tobacco smoke. But in this example we are studying
children, who are not supposed to smoke. In search of an explanation, we combined the
VOC data with the questionnaire data available on the same website (NHANES 2019).
Among many other things, these data contain information on the smoking status of
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Figure 6: Plot of standardized cell residuals of log(URXCYM) obtained by cellHandler,
versus the robustly standardized values of log(URXCYM) on its own.

the adults (usually parents) in the same household. These fell into four categories:
only nonsmoking adults, smoking adults who do not smoke inside the home, one adult
smoking in the home, and two adults smoking in the home. The blue curve in Figure 7
shows the percentage of children with URXCYM cell residuals above the cutoff, in each
of these categories. They go from 4.7% in households with only nonsmoking adults
up to 72.7% in homes where two adults smoke, indicating that passive smoking has
a measurable effect on children. On the other hand, if we were to look only at the
marginal URXCYM values (red curve), no such effect is visible.

The example shows that the effect of exposing children to tobacco smoke could be un-
derestimated when only performing univariate analyses on biomarkers. This illustrates
that cell residuals obtained by cellHandler may add valuable information to a dataset.

7. Conclusion

The proposed cellHandler method is the first to detect cellwise outliers based on robust
estimates of location and covariance. It is also a major component of the detection-
imputation (DI) algorithm that computes such cellwise robust estimates. Note that
both methods can deal with missing values in the data, since these are imputed along
the way.

The performance of cellHandler and DI was illustrated by simulation. A real example
illustrated that the common medical practice of comparing individual biomarkers to
their tolerance limits can benefit from the use of cellwise residuals.
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Figure 7: The blue curve shows the percentage of elevated URXCYM cell residuals
in function of the smoking status of adult family members. The red curve shows the
percentage of elevated marginal URCYM values.
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A. Proof of Proposition 2

Proof. We first split up the relevant matrices into blocks. Denote

Σ−1 =
[
Σ∗

11 Σ∗
12

Σ∗
21 Σ∗

22

]
and Σ−1/2 =

[
Σ̃11 Σ̃12
Σ̃21 Σ̃22

]
.

Let the k-variate θ̂ be the solution to the ordinary least squares regression problem

argminθ ||Σ−1/2(z − µ) − (Σ−1/2)·1θ||22
where (Σ−1/2)·1 denotes the first k columns of the matrix Σ−1/2.
Then we know that

θ̂ =
([

Σ̃11
Σ̃21

]′ [Σ̃11
Σ̃21

])−1 [
Σ̃11
Σ̃21

]′

Σ−1/2(z − µ)

= (Σ∗
11)−1

[
Σ̃11
Σ̃21

]′

Σ−1/2(z − µ).

Now observe that

z1 − θ̂ = z1 − (Σ∗
11)−1

[
Σ̃11
Σ̃21

]′

Σ−1/2(z − µ)

= z1 − (Σ∗
11)−1[Σ∗

11 Σ∗
12][z1 − µ1 z2 − µ2]

= z1 − [Ik (Σ∗
11)−1Σ∗

12][z1 − µ1 z2 − µ2]
= z1 − (z1 − µ1) − (Σ∗

11)−1Σ∗
12(z2 − µ2)

= µ1 + Σ12Σ−1
22 (z2 − µ2)

where the last equality follows from −(Σ∗
11)−1Σ∗

12 = Σ12Σ−1
22 iff −Σ∗

12Σ22 = Σ∗
11Σ12 iff

[Σ∗
11 Σ∗

12][Σ12Σ22]′ = 0 which follows from Σ−1Σ = I.

B. Proof of Proposition 3

Proof. We will use the notation θ̂1 = argminθ1 ||Σ−1/2(z − µ) − (Σ−1/2)·1θ1||22 for the
OLS fit, and RSSk = ||Σ−1/2(z − µ) − (Σ−1/2)·1θ̂1||22.

Part 1.
For k = d, we know from (1) that RSSd = 0. Now let 1 ⩽ k ⩽ d − 1. We want to show
that RSSk = (z2 − µ2)′ Σ−1

22 (z2 − µ2). Let θ̂ := [θ̂′
1 0 . . . 0]′ be the d-variate vector

with coefficients θ̂1 followed by d − k zeroes.
We now have that

RSSk = ||Σ−1/2(z − µ) − (Σ−1/2)·1θ̂1||22
= ||Σ−1/2(z − µ) − Σ−1/2θ̂||22
= (z − µ − θ̂)′ Σ−1(z − µ − θ̂)
= [z1 − µ1 − θ̂1 z2 − µ2]′ Σ−1 [z1 − µ1 − θ̂1 z2 − µ2] .
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Following Page 47 of Petersen and Pedersen (2012), we can write Σ−1 = ABA′ with

A :=
[

I 0
−Σ−1

22 Σ21 I

]
and B :=

[
C−1

1 0
0 Σ−1

22

]

where C1 := Σ11 − Σ12Σ−1
22 Σ21 . We now have that

[z1 − µ1 − θ̂1 z2 − µ2]′ A = [z1 − µ1 − θ̂1 − (z2 − µ2)Σ−1
22 Σ21 z2 − µ2]′

= [0 z2 − µ2]′

using the result of Proposition 2. Therefore,

RSSk = [z1 − µ1 − θ̂1 z2 − µ2]′ Σ−1 [z1 − µ1 − θ̂1 z2 − µ2]
= [0 z2 − µ2]′ B [0 z2 − µ2]
= (z2 − µ2)′ Σ−1

22 (z2 − µ2) .

Part 2.
We will now show that the differences in RSS follow a χ2(1) distribution, that is,
∆k := RSSk−1 − RSSk ∼ χ2(1) assuming that z = [z′

1 z′
2]′ is multivariate Gaussian

with mean µ and covariance matrix Σ. For k = 0, we set by convention θ̂ := 0 and
RSS0 := ||Σ−1/2(z − µ)||22.
We show the result for k = 1 as the subsequent steps are analogous. The reasoning
below is similar to Appendix A.2 of Danilov (2010) where the cells were not yet ranked
from most to least outlying. As in Part 1 of the proof, we can write Σ−1 = ABA′

with
A =

[
1 0

−Σ−1
22 Σ21 I

]
and B =

[
C−1

1 0
0 Σ−1

22

]

where this time C1 = Σ11 − Σ12Σ−1
22 Σ21 is a scalar. We can then write

RSS0 = (z − µ)′ Σ−1(z − µ)
= (z − µ)′ ABA′ (z − µ)
= [z1 − µ1 − (z2 − µ2)Σ−1

22 Σ21 z2 − µ2]′ B [z1 − µ1 − (z2 − µ2)Σ−1
22 Σ21 z2 − µ2]

= ((z1 − µ∗
1)/σ∗

1)2 + (z2 − µ2)′ Σ−1
22 (z2 − µ2)

= ((z1 − µ∗
1)/σ∗

1)2 + RSS1

where µ∗
1 := µ1 + (z2 − µ2)Σ−1

22 Σ21 and σ∗
1 :=

√
C1. So we obtain

∆1 = RSS0 − RSS1 = ((z1 − µ∗
1)/σ∗

1)2

and this is the square of a standard Gaussian variable since z1 − µ∗
1 is Gaussian with

expectation 0 and standard deviation σ∗
1 . We thus have ∆1 ∼ χ2(1).
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C. Implementation of the cellHandler Algorithm
The LAR component of cellHandler is a regression of Ỹ on Ẋ as defined in the paper.
Since this regression has no intercept and we need to preserve the column scaling in
Ẋ, we run the function lars::lar with the options intercept=F and normalize=F.
For the imputations in Proposition 2 and the RSS in Proposition 3, we require the
OLS fits θ̂A minimizing ||Σ−1/2(z − µ) − (Σ−1/2)A θ1||22 where A is the set of active
predictor variables in every step of LAR. Fortunately, these can be obtained without
significant additional computation time because each step of LAR already carries out
the QR decomposition of (ẊA)′ ẊA where ẊA is the submatrix of Ẋ consisting of
the columns in A. The resulting OLS regression vectors β̂A obtained by LAR (which
contain zeroes for the inactive variables) are then easily rescaled to θ̂A = W −1β̂A .

D. Description of the Initial Estimator DDCW
The Detection-Imputation (DI) method of Section 3.2 needs initial cellwise robust esti-
mates µ̂0 and Σ̂0 of location and covariance. One option is to insert the 2SGS estimator
of Leung et al. (2017). We also developed a different initial estimator called DDCW,
which we describe here. Its steps are:

1. Drop variables with too many missing values or zero median absolute deviation,
and continue with the remaining columns.

2. Run the DetectDeviatingCells (DDC) method (Rousseeuw and Van den Bossche
2018) with the constraint that no more than n maxCol cells are flagged in any
variable. DDC also rescales the variables, and may delete some cases. Continue
with the remaining imputed and rescaled cases denoted as zi .

3. Project the zi on the axes of their principal components, yielding the transformed
data points z̃i .

4. Compute the wrapped location µ̂w and covariance matrix Σ̂w (Raymaekers and
Rousseeuw 2019) of these z̃i . Next, compute the temporary points ui = (ui1, ..., uid)
given by uij = max{min{z̃ij −(µ̂w)j, 2}, −2}. Then remove all cases for which the
squared robust distance RD2(i) = u′

iΣ̂
−1
w ui exceeds χ2

d,q medianh(RD2(h))/χ2
d,0.5 .

5. Project the remaining z̃i on the eigenvectors of Σ̂w and again compute a wrapped
location and covariance matrix.

6. Transform these estimates back to the original coordinate system of the imputed
data, and undo the scaling. This yields the estimates µ̂0 and Σ̂0 .

Note that DDCW can handle missing values since the DDC method in Step 2 imputes
them. The reason for the truncation in the rejection rule in Step 4 is that otherwise
the robust distance RD could be inflated by a single outlying cell. Step 4 tends to
remove rows which deviate strongly from the covariance structure. These are typically
rows which cannot be shifted towards the majority of the data without changing a large
number of cells.
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E. Step by Step Description of the DI Algorithm
We now give a step-by-step description of the DI algorithm, with some additional
details.

1. Standardize the columns (variables) as described in the beginning of Section 2.1.

2. Compute initial estimates µ̂0 and Σ̂0. The algorithm currently has two options
for this:

• the DDCW estimator described in Section D above;
• the 2SGS estimator of Leung et al. (2017), available in the R package GSE

(Leung et al. 2019).

3. D-step. Given the estimates µ̂t−1 and Σ̂t−1 where t = 1, 2, . . ., we flag outlying
cells across all rows of the dataset. This is done as described in Section 3.2 by
applying the cellHandler method of Section 2 to each row z′

i using µ̂t−1 and Σ̂t−1.
The D-step imposes a maximum on the number of flagged cells in a row, namely
n maxCol where maxCol is set to 25% by default. Since all missing values (NA’s)
are automatically flagged, the algorithm would not be able to run if there are too
many NA’s in a column. In practice, the algorithm starts by setting variables
with too many NA’s aside and giving a message about this. The D-step yields a
list of flagged cells in each row, which contains the flagged outlying cells as well
as their imputed values.

4. I-step. We re-estimate the center as µ̂t which is the mean of the dataset with
its imputed cells. For computing Σ̂t we use the formula of the M-step in the
EM-algorithm. It does not simply compute the covariance matrix of the imputed
data, which would underestimate the true variability. Instead, the EM method
adds a bias correction. This bias correction depends on which cells were imputed,
and can therefore be different for every row of the data. Suppose the first row
z1 has an imputed part z1i and an untouched part z1u , then the bias correction
matrix from that row is

Bii = 1
n

Σ̂t−1
ii − 1

n
Σ̂t−1

iu (Σt−1
uu )−1Σt−1

ui .

This correction term is known to remove the bias when the data is uncontami-
nated multivariate Gaussian with missing values generated completely at random
(MCAR), that is, independent of both the observed cells as well as the values
the missing cells had before they became unavailable. In our simulations with
contaminated data, this bias correction also turned out to improve the results.

5. Iterate steps 3 and 4 alternatingly until

||µ̂t − µ̂t−1||22 + ||Σ̂t − Σ̂t−1||22

is below a given tolerance, where the second norm is given by (4).
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6. Apply cellHandler with the converged µ̂ and Σ̂ to obtain the final list of cellwise
outliers and their imputed values.

7. Unstandardize the results using the univariate location and scale estimates of the
original data columns, used in Step 1.

F. Proof of Proposition 4

Proof. Starting from the well-known formula for KL(X, Y ) we obtain

KL(X, Y ) = tr(A B−1) − d − log det(A B−1)
= tr(A B−1/2B−1/2) − d − log det(A B−1/2B−1/2)
= tr(B−1/2A B−1/2) − d − log det(B−1/2A B−1/2)

=
( d∑

j=1
ηj

)
− d − log

( d∏
j=1

ηj

)

=
d∑

j=1
(ηj − 1 − log(ηj)) = D(A, B)

where the fourth equality used the fact that B−1/2A B−1/2 is PSD so it can be diago-
nalized; hence, its trace is the sum of its eigenvalues.

G. F-scores in Dimensions 10, 20 and 40
Figure 3 showed the precision, recall, and F-score for data generated by the contam-
inated ALYZ model and the contaminated A09 model, for n = 400 points in d = 20
dimensions. Here Figure 8 shows the F-scores for both DDCW.DI (DI starting from
DDCW) and 2SGS.DI (DI starting from 2SGS). These are byproducts of the simula-
tions in Figure 4 for (n, d) = (100, 10) and Figure 5 for (n, d) = (400, 20) and (800, 40).
Note that Step 6 of the DI algorithm in Appendix E provides the flagged cells, so the
DDCW.DI curves for d = 20 in Figure 8 correspond to those of cellHandler in the lower
panel of Figure 3.

H. Computation Times of DI
Table 1 shows computation times of the DI algorithm as implemented in the R package
cellWise on CRAN. This implementation contains compiled C++ code. The times
are the averaged runtimes of one replication of the simulations in Figure 4 for (n, d) =
(100, 10) and Figure 5 for (n, d) = (400, 20) and (800, 40). The times are in seconds
on a laptop with Intel Core i7-5600U at 2.60Hz. We see that DDCW.DI requires
less time than 2SGS.DI because the DDCW initial estimator is quite fast. Note that
the computation time of the D-step in DI could be reduced by executing the LARS
computations on the rows in parallel.
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Figure 8: F-scores of flagged cellwise outliers on data generated by the contaminated
ALYZ model (left) and the contaminated A09 model (right), for (n, d) = (100, 10)
(top), (n, d) = (400, 20) (middle), and (n, d) = (800, 40) (bottom).

Table 1: Computation time (in seconds) of one replication of DI in the simulation.

n and d 2SGS.DI DDCW.DI
n = 100, d = 10 1.70 0.54
n = 400, d = 20 16.42 5.38
n = 800, d = 40 110.25 35.16
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I. Simulations with Cellwise and Casewise Outliers
We now run a simulation study in which the data are contaminated by 10% of cellwise
outliers generated as in the paper, plus 10% of rowwise outliers. In this particular
setting, “rowwise outliers” refer to rows in which all cells are contaminated in the same
way as before, that is, rows with d cellwise outliers. We generate these outlying rows
by the formula v = γd

√
d u′/ MD(u, µ, Σ) where u is the eigenvector of Σ with the

smallest eigenvalue. This corresponds to the cellwise formula of Subsection 2.3 in which
the indices of the outlying cells K = {j(1), . . . , j(k)} are replaced by K = {1, . . . , d}.
Next, we replace 10% of the rows by v, and afterward sample the positions of the
cellwise outliers from the remaining 90% of the rows. The results are shown in Figures
9 and 10. They look qualitatively similar to those in Figures 4 and 5 in the paper.
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Figure 9: Discrepancy D(Σ̂, Σ) of estimated covariance matrices for d = 10, n = 100.

Note that in this section we do not plot F-scores for rowwise outliers, because the
cellHandler and DI algorithms do not have a mechanism for detecting rowwise outliers.
They are methods for cellwise outliers. If we were to try to detect both types of outliers
simultaneously, we would run into an identifiability issue. For instance, one can easily
generate rows which would be considered outliers under the rowwise paradigm, but only
contain a single cellwise outlier under the cellwise paradigm. And starting from the
cellwise paradigm, how many cellwise outliers in a row would it take before the entire
row should be considered outlying? The identifiability issue is especially complicated
in the current simulations because we generate cellwise outliers in a structured way as
explained in Section 2.3, so that they do not stand out individually.
Because of these concerns, when generating both types of outliers in this section, our
focus is on the accuracy of the covariance matrix estimate, so that it is clear what the
goal is. Afterward, the user can choose whether to employ the estimated covariance
matrix to detect rowwise outliers based on their Mahalanobis-type distance, or as an
input to the cellHandler algorithm to detect cellwise outliers.
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ALYZ, 10% cells & 10% cases,
d = 20
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A09, 10% cells & 10% cases,
d = 20
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ALYZ, 10% cells & 10% cases,
d = 40
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A09, 10% cells & 10% cases,
d = 40
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Figure 10: Discrepancy D(Σ̂, Σ) given by (5) of estimated covariance matrices for
d = 20 and n = 400 (top panels) and for d = 40 and n = 800 (bottom panels).

J. List of Volatile Organic Compounds
The volatile organic compounds (VOC’s) analyzed in Section 6 are listed below.
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Variable Name VOC name
URX2MH 2-Methylhippuric acid
URX34M 3- and 4-Methylhippuric acid
URXAAM N-Acetyl-S-(2-carbamoylethyl)-L-cysteine
URXAMC N-Acetyl-S-(N-methylcarbamoyl)-L-cysteine
URXATC 2-Aminothiazoline-4-carboxylic acid
URXBMA N-Acetyl-S-(benzyl)-L-cysteine
URXCEM N-Acetyl-S-(2-carboxyethyl)-L-cysteine
URXCYM N-Acetyl-S-(2-cyanoethyl)-L-cysteine
URXDHB N-Acetyl-S-(3,4-dihydroxybutyl)-L-cysteine
URXHP2 N-Acetyl-S-(2-hydroxypropyl)-L-cysteine
URXHPM N-Acetyl-S-(3-hydroxypropyl)-L-cysteine
URXIPM3 N-Acetyl- S- (4- hydroxy- 2- methyl- 2- butenyl)-L-cysteine
URXMAD Mandelic acid
URXMB3 N-Acetyl-S-(4-hydroxy-2-butenyl)-L-cysteine
URXPHG Phenylglyoxylic acid
URXPMM N-Acetyl-S-(3-hydroxypropyl-1-methyl)-L-cysteine

K. Analysis of the VOC Data after Preprocessing
As kindly pointed out by a referee, the concentrations of compounds in urine samples
can depend on the dilution of the urine, if the analytical chemistry technique did not
adjust for this. Therefore, the measurements might not always be comparable across
the different samples. This issue can be dealt with by applying the centered log ratio
(CLR) transform, which transforms the original data to log-ratios between the variables.
We reran the analysis of the VOC data after applying the CLR transform using the
cenLR function in the R-package robCompositions (Templ et al. 2020).
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Figure 11: Plot of standardized cell residuals of CLR-transformed URXCYM obtained
by cellHandler, versus the robustly standardized values of CLR-transformed URXCYM
on its own.



Journal of Data Science, Statistics, and Visualisation 29

Figures 11 and 12 present the results of this analysis. In the first plot, we see that
the univariate detection rule flags a few more outliers after the CLR transform than
without it. However, the red curve in the second figure still shows no effect of adult
smokers in the household on URXCYM in children. Therefore, the conclusion that
univariate outlier detection is insufficient here remains valid.
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Figure 12: The blue curve shows the percentage of elevated URXCYM cell residuals
in function of the smoking status of adult family members. The red curve shows the
percentage of elevated marginal URXCYM values. Here the URXCYM values were
preprocessed with the CLR transformation.
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