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Abstract

We developed an interactive web-based, decision support application that
can adapt to the rapid pace of change in region-specific pandemic related vari-
ables and knowledge, thereby providing timely, accurate insights to inform a
large healthcare system’s proactive response to COVID-19 hospital resource plan-
ning. We designed the COVID-19 Utilization and Resource Visualization Engine
(CURVE) app to be adaptable to real-time changes as the pandemic evolved,
enabling decisions to be supported by contemporary local data and accurate
predictive models. To demonstrate this flexibility, we sequentially implemented
a Susceptible-Infected-Removed (SIR) model that incorporates social-distancing
and imperfect detection (SIR-D2), an extended-state-space Bayesian SIR model
(eSIR), and a time-series model (ARIMA). CURVE improves upon other pan-
demic forecasting solutions by providing adaptable decision support that gener-
ates locally calibrated forecasts aligned to health system specific data to guide
COVID-19 pandemic planning. The app additionally enables systematic moni-
toring of forecast model performance and realignment that keeps pace with the
pandemic’s volatile spread and behavior. CURVE provides a flexible pandemic
decision support framework that places the most accurate, locally relevant infor-
mation in front of decision makers to enable health systems to be proactive and
prepared.

Keywords: COVID-19, R Shiny, pandemic, forecasting, SIR model, ARIMA, resource
utilization.

1. Background
The emergence of coronavirus disease 2019 (COVID-19) resulted in a global pandemic
with significant morbidity and mortality (World Health Organization 2020, 2021; Zhu
et al. 2020). As of July 16, 2021, there were 188,332,972 confirmed COVID-19 cases
and 4,063,453 deaths reported worldwide (World Health Organization 2020). In the
United States (US), COVID-19 has spread to all 55 jurisdictions with 33,797,400 total
confirmed cases and 605,905 deaths (Centers for Disease Control and Prevention 2021;
Johns Hopkins University & Medicine 2021). As COVID-19 continues to spread and
case numbers rise, health systems have strained to keep pace with demands for hospital
and critical care services, while managing potentially scarce resources (Moghadas et al.
2020). Therefore, the ability for health systems to predict increased utilization and
proactively plan effective resource allocation, including when and how much to expand
access to hospital beds, intensive care unit (ICU) beds and ventilators, (Emanuel et al.
2020; Grasselli et al. 2020) has become essential.
Many studies have utilized the basic susceptible-infected-removed (SIR) model to fore-
cast how potential COVID-19 cases might impact the capacity of healthcare systems
(Anastassopoulou et al. 2020; Binti Hamzah et al. 2020; Fanelli and Piazza 2020; Fer-
guson et al. 2020; Kermack and McKendrick 1927; Kucharski et al. 2020; Li et al. 2020;
Massonnaud et al. 2020; Murray 2020; Predictive Healthcare at Penn Medicine 2020;
Tsai TC 2020; Wu et al. 2020). These studies provide limited utility because they rely
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on models using national and international projections to provide insights for other
countries, states, or regions and most do not: (a) take into consideration variation in
infection and removal rates based on local population characteristics and geographic
differences; (b) apply control measures or interventions from local healthcare systems
and governments; or (c) account for constantly changing local community resource
availability such as virtual and field hospitals (Atrium Health 2020). Additionally, de-
spite their widespread application in the COVID-19 pandemic, basic SIR models were
not developed to forecast hospitalizations, resulting in uncertainty about their accuracy
(Murray 2020).
In response to the need for actionable data insights to guide proactive pandemic re-
sponses, we developed a web-based application, or ‘app’, that embeds COVID-19 fore-
casting models and uses local data to provide decision support. The COVID-19 Utiliza-
tion and Resource Visualization Engine (CURVE) app provides health system leaders
access to forecast predictions and near real-time observed hospital resources, such as,
hospital beds, ICU beds, and mechanical ventilators, alongside contemporary estimates
of existing and planned surge capacity. Here, we present our decision support app as a
framework that can be deployed to provide relevant, timely insights to inform proactive
planning for the current and future pandemics.

2. Methods

2.1. Study context and setting
Atrium Health is a large, vertically integrated, not-for-profit healthcare system with
over 50 hospitals and 900 care locations in North Carolina, South Carolina, and Geor-
gia. The health system is headquartered in Charlotte, North Carolina, the largest
metropolitan region in the Carolinas. In response to the COVID-19 pandemic, Atrium
Health activated its Corporate Incident Command (CIC) structure on March 6, 2020,
three days after the first case of COVID-19 was reported in North Carolina and five
days before Atrium Health diagnosed its first case of COVID-19. The primary goal of
the CIC is to coordinate resource planning, preparedness, and decision making, while
maintaining regular clinical operations, and protecting patients and staff. To effec-
tively achieve this goal, the CIC leaders required real-time data insights into current
and predicted hospital resource utilization.
The development and deployment of the CURVE app was designed for the greater
Charlotte region that includes Anson, Cabarrus, Catawba, Cleveland, Gaston, Iredell,
Lincoln, Mecklenburg, Rowan, Stanly and Union counties. The population of this
region is around 2.5 million. App creation was divided into two phases. The first
phase required the development of COVID-19 infection prevalence forecast modeling
(Turk et al. 2020). The second phase involved user interface construction, emphasizing
information accessibility to health system leaders, and configuration with the host
server.
We collected bed capacity information from Atrium Health’s electronic healthcare
records (EHR), as well as daily counts of COVID-19 patients in the ICU, and on
ventilators. Unique occupied beds were defined as an occupied bed in a calendar day
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regardless of the number of patients that used the bed during the day. Unique beds
were derived from the hospital, nursing location, room number, and bed number. No
restrictions were placed (e.g., department type, observation encounter) on the calcula-
tion of total occupied beds per day. App development was guided by a broad group of
stakeholders including executive leadership, Information and Analytics Services lead-
ers, and clinical experts. Stakeholder feedback guided the development team to focus
CURVE’s user interface on projected hospital and ICU bed use and capacity, along
with ventilator use and capacity over time.

2.2. Phase I—forecasting model development
To forecast demand for in-hospital resources during the COVID-19 pandemic, it is im-
portant to accurately estimate the daily hospital “census” days or weeks ahead. In this
paper, the COVID-19 hospital census is the daily aggregate number of beds occupied by
COVID-19 patients at midnight across the subset of 11 Atrium Health hospitals in the
greater Charlotte region, plus a virtual hospital (Atrium Health Hospital at Home).
The virtual hospital uses telemedicine to treat patients who require only a minimal
level of care. Early in the pandemic, limited hospitalization data meant that time se-
ries models could not be used directly, so health systems had to rely on epidemiological
models that were then adapted to also “predict” hospital resources (for example, see
Predictive Healthcare Team, P. M. (2020)). Adopting the same approach, we first de-
ployed a conventional epidemic SIR model where, for a given time, S is the number
of individuals that are susceptible to infection in the population, I is the number of
individuals that are infected, and R is the number of individuals that are removed from
the population via recovery or death from infection.
As the pandemic progressed and mitigation policies gained traction, the predictive
performance of the SIR model declined. Hence, we deployed a more refined model that
incorporated the effect of social distancing and imperfect detection (SIR-D2, deployed
4/11/2020). The theoretical details of this SIR-D2 model are well-detailed by Turk
et al. (2020) for the interested reader. As the pandemic progressed and its behavior
became more dynamic, we later deployed a Bayesian Hidden Markov Model based on
SIR dynamics with a time-varying force of infection consistent with the epidemiology
and reality of the evolving situation in our region. This latter extended-state-space
SIR model (eSIR, deployed 4/25/2020) predicted time-varying population proportions
of susceptible, infected, and removed components using Markov Chain Monte Carlo
methods to collect draws from the posterior distributions for calculating estimates,
conducting inference, and generating credible intervals for the unknown parameters.
Because this model also has a time-varying infection rate, it is quite tractable with
respect to accommodating dynamic pandemic behavior. As before, the interested reader
can refer to Wang (2020) for more details.
In the case of the three SIR-type models, a time series of infection prevalence predictions
was produced. Note these models merely served as an engine to generate “input” into
the app early in the pandemic when there was little data. This approach allows for
flexibility for the user to try their own model. Infection prevalence predictions were
then passed on to the main engine of the app to deterministically derive time series for
hospital metrics. Specifically, using assumptions based on scientific expertise, published
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experience in other countries, and statistical arguments, the subsequent steps were
taken.
First, the user sets the proportion of COVID-19 cases that require hospitalization.
In conjunction with a standard binomial argument and an assumed average illness
duration of 14 days, a hospitalization admission rate (per person per day) can be
determined. The infection prevalence predictions are multiplied by the hospitalization
admission rate, the market share proportion, and the survivor proportion to generate
daily hospital admissions, with the latter two factors being user-defined. Market share
proportion is the proportion of the general population in the area thought to be served
by the health system, while the survivor proportion is the complement of the proportion
of admitted COVID-19 patients that will be lost due to mortality. Once the daily
hospital admissions are determined, and the user defines the length of stay, we can
determine the daily hospital COVID-19 census.
Then, using inputs for the proportion of COVID-19 patients in the ICU, proportion of
ICU COVID-19 patients on ventilators, and corresponding length of stays, the adjusted
daily censuses (for death and recovery) for COVID-19 patients in the ICU and on
ventilators are derived.
Lastly, we developed an autoregressive integrated moving average (ARIMA; deployed
5/23/2020) model to improve predictive performance of hospitalizations as the pan-
demic evolution became increasingly erratic, more data became available for direct
stochastic modeling, and the correlation between infection prevalence and hospital cen-
sus became weaker. Leveraging an ARIMA model allowed us to shift away from the
requirement of using input from the SIR–type models in the initial stages of the deter-
ministic approach and to sunset these latter models. The ARIMA model is controlled
by three meta-parameters: order of the autoregressive process, degree of differencing in-
volved, and order of the moving average process (Hyndman and Athanasopoulos 2018).
CURVE utilizes an algorithm due to Hyndman and Khandakar (2008) that returns the
best ARIMA model according to an information criterion, such as Akaike’s Information
Criterion (AIC). The algorithm conducts a search over possible models within order
constraints provided.

2.3. Phase II— user interface construction and CURVE app
development
We developed the interactive CURVE app using R Shiny (RStudio, PBC 2020) with the
schematic of the reactivity diagram as shown in Figure 1. The app contains four main
parts— mod_fun.R, global.R, ui.R, and server.R files. The global.R file serves
as an initiation placeholder for importing and wrangling data, and declaring global
variables and default parameters. This file enables data such as model results (e.g.,
infection prevalence), default settings, parameters, current bed and ventilator counts,
surge beds and additional ventilators, days for preparing additional resources, and
stored records in a Comma Separated Values (csv) file to easily be modified without
hard coding in the app. Then, global.R feeds the default values and parameters to the
input components, followed by calling mod_fun.R to calculate the forecasted numbers,
such as initial hospital census, incidence, and new admissions. The generated initial
dataset is pushed into a main data hub as a reactiveValues object that can notify
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any reactive functions that depend on it. The reactive functions configure outputs that
update the tables, charts, and plots the user sees. When users change input values,
an observeEvent object is triggered; this pushes the changes to a reactive object for
configuration, and then updates the main dataset via the mod_fun.R file. Finally, the
main data in the reactiveValues object is altered, followed by a series of updating
processes that cascade modifications throughout all outputs.

Figure 1: Schematic of the proposed CURVE app R Shiny reactivity diagram

Dynamically changing input parameters cause results to cascade through the following
charts: 1) hospital census by day which shows the projected number of COVID-19
patients in the hospital; 2) the forecasted hospital census against capacity by day, in-
cluding additional surge beds, to indicate if forecasted hospitalization requirements will
exceed the health system’s capacity; 3) the observed ICU proportion of hospitalization
and observed mechanical ventilator occupancy status with 95% confidence intervals;
4) new daily admissions; and 5) the observed hospital census against the projected
hospital census (Figure 2).
During the early weeks of the pandemic when very little was known about COVID-19,
we constructed three scenarios (best-, moderate-, and worst-case) with corresponding
settings to show a range of potential impacts on the hospital system and account
for the uncertain nature of the COVID-19 pandemic (Table 1). We adjusted inputs
(e.g., hospitalization rate) for scenario-based forecasting using estimates taken from the
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Figure 2: The output of the CURVE app deployed on 5/23/2020 and updated on
8/1/2020.

most recent scientific literature, and local data once we accumulated enough patients
(Ferguson et al. 2020; Murray 2020; Verity et al. 2020).

Table 1: Parameter settings across different scenarios during the early stage of the
pandemic.

Scenario
Parameter Best-Case Moderate-Case Worst-Case
Hospitalization
(% of Infections) 3 6 10
ICU(% of Hospitalization) 40 40 40
On Ventilator (% of ICU) 70 70 70
Average Hospital
Length of Stay (Days) 7 7 7
Average Days in ICU 9 9 9
Average Days on Ventilator 10 10 10

3. Discussion
We present an adaptable decision support app that generates locally calibrated fore-
casts with health system specific data to guide COVID-19 pandemic planning. The
CURVE app provides information based upon local infection patterns and allows for
frequent updates as new data or models become available. In addition to providing de-
cision support for health system leaders, the CURVE app provides development teams
real-time insights for monitoring forecast model performance in the context of local
resources. A publicly available copy of CURVE along with basic instructions for in-
stallation and usage is provided on GitHub (https://github.com/philturk/CURVE)

https://github.com/philturk/CURVE
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with the most recent ARIMA model deployment.

The volatility of the pandemic’s spread and behavior highlights the need for forecasting
apps that are constantly monitored and easily adaptable to changing situations. For
example, hospitalizations for COVID-19 patients significantly flattened after April 6,
2020, and the forecast trajectory for hospital census shifted from the moderate- to
the best-case scenario under the SIR-D2 model (Figure 3). This local flattening of the
hospitalization curve, which was likely in response to social distancing measures enacted
in the last weeks of March, was immediately apparent in the CURVE app because we
used local data with frequent recalibration to local trends. Because the CURVE app had
previously demonstrated good model fit for the moderate-scenario parameter settings
in near-real-time, health system leaders could visualize the significant flattening of
hospitalizations after April 6, 2020. This sustained shift also served as an early warning
to the modeling team that a new model may be needed maintain accurate forecasts.
The forecast helped play into decision making around surge bed and staffing planning
early in the pandemic, and then later helped guide the safe, methodical resumption of
health system patient care activities.

While there are many apps that show the results of models, here we also demonstrate
the importance of systematically monitoring model performance. We found that a
model that performed well in the early stage of the pandemic began to perform more
poorly as the pandemic progressed. This happened again after we fit the eSIR model,
which initially had good performance that declined over time. As more data became
available and direct time series modeling became an option, we fitted an ARIMA model
to each of the hospital, ICU, and ventilator censuses. The ARIMA model performed far
better compared to the derived SIR-based approaches, as shown by comparing Figures
2 and 3, and ultimately provided a very good fit to the data, which continues today.
Staying the course with the original model and not adjusting to the significant “on the
ground” changes happening with the pandemic would have led to erroneous insights and
poorly informed decisions. It is likely that more sophisticated models (e.g., Seasonal
Autoregressive Integrated Moving Average (SARIMA) or the Prophet forecast model
developed by Facebook (Facebook Open Source 2020) may have to be considered as
the pandemic behavior continues to evolve. The CURVE app allows for these more
advanced models to be easily integrated and deployed on the backend, while preserving
an easy-to-read interface for users on the frontend.

There are some limitations that should be noted. First, although the CURVE app
was developed for health systems to insert local data using either csv files or through
direct connection to their enterprise data warehouse, app developers still require R
and R Shiny proficiency to modify the app or to add tables, charts, or graphs to
the dashboard. Second, in order to provide reliable, locally relevant forecasts, app
developers must have access to local data and modeling expertise to perform frequent
model recalibration informed by local context. If such changes are not monitored
and accounted for, projections could be taken out of context, leading to erroneous
conclusions.
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Figure 3: SIR-D2 model in (a) all beds, (b) ICU beds, and (c) ventilator census with
best-case scenario, moderate-case scenario, and worst-case scenario settings. All graphs
on right hand side are zoomed in results between Mar 26 and Apr 15, 2020.
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4. Conclusion
Our interactive app provides locally relevant, dynamic, and timely information to guide
health system decision making and pandemic preparedness. App frameworks like this
will become increasingly important as health systems seek to proactively respond to
current and future pandemics, and best serve their communities using data-informed
strategies.
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