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Abstract

Non-linear dimensionality reduction (NLDR) methods such as t-distributed
stochastic neighbour embedding (t-SNE) are ubiquitous in the natural sciences.
However, the appropriate use of these methods is difficult because of their com-
plexity; analysts must make trade-offs in order to identify structure in the visu-
alisation of an NLDR technique. We present visual diagnostics for the usage of
NLDR methods by combining them with a technique called the tour. A tour is a
sequence of interpolated linear projections of multivariate data onto a lower di-
mensional space. The sequence is displayed as a dynamic visualisation, allowing
a user to see the shadows the high-dimensional data casts in a lower dimensional
view. By linking the tour to an NLDR view, we can preserve global structure
and through user interactions like linked brushing observe where the NLDR view
may be misleading. We display several case studies from both simulations and
single cell transcriptomics, that shows our approach is useful for cluster orienta-
tion tasks and for correcting an NLDR embedding. The implementation of our
framework is available as an R package called liminal.
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1. Introduction
High-dimensional data is increasingly prevalent in the natural sciences and beyond but
presents a challenge to the analyst in terms of data cleaning, pre-processing and visual-
ization. Methods to embed data from a high-dimensional space into a low-dimensional
one now form a core step of the data analysis workflow where they are used to ascertain
hidden structure and de-noise data for downstream analysis.
Choosing an appropriate embedding presents a challenge to the analyst. How does an
analyst know whether the embedding has captured the underlying topology and geom-
etry of the high-dimensional space? The answer depends on the analyst’s workflow.
Brehmer et al. (2014) characterized two main workflow steps that an analyst performs
when using embedding techniques: dimension reduction and cluster orientation. The
first relates to dimension reduction achieved by using an embedding method, here an
analyst wants to characterize and map meaning onto the embedded form, for example
identifying batch effects from a high throughput sequencing experiment, or identifying
a gradient or trajectory along the embedded form like changes in cell development or
species abundance (Nguyen and Holmes 2019). The second relates to using embeddings
as part of a clustering workflow. Here analysts are interested in identifying and naming
clusters and verifying them by either applying known labels or coloring by variables
that are a-priori known to distinguish clusters like the expression of a marker gene to
identify a cell type. Once clusters are identified they are used for further analysis to
identify what features in the data make them distinguishable. Both of these work-
flow steps rely on the embedding being representative of the original high-dimensional
dataset, and becomes much more difficult when there is no underlying ground truth.
As part of a visualization workflow, it is important to consider the perception and
interpretation of embedding methods as well. Sedlmair et al. (2013) showed that scatter
plots were mostly sufficient for detecting class separation, however, they also noted
that often multiple embeddings were required. For the task of cluster identification,
Lewis et al. (2012) showed experimentally that novice users of non-linear embedding
techniques were more likely to consider clusters of points on a scatter plot to be the
result of a spurious embedding compared to advanced users who were aware of the
inner workings of the embedding algorithm.
There is no one-size fits all; finding an appropriate embedding for a given dataset is a
difficult and a somewhat poorly defined problem. For non-linear methods, there are a
lot of parameters to explore that can have an effect on the resulting visualization and
interpretation. While there has been much work on the algorithmic details of embed-
ding methods; there are relatively few tools designed to assist users to interact with
these techniques: when is an embedding sufficient for the task at hand? Several interac-
tive interfaces have been proposed for evaluating or using embedding techniques. Buja
et al. (2008) used tours to guide analysts during the optimization of multidimensional
scaling methods by extending their interactive visualization software called XGobi and
GGobi into a new tool called GGvis (Swayne et al. 1998, 2003; Swayne and Buja 2004).
Their interface allows the analyst to dynamically modify and check whether an MDS
configuration has preserved the locality and closeness of points between the configu-
ration and the original data. Ovchinnikova and Anders (2020) created the Sleepwalk
interface for checking non-linear embeddings in single cell RNA-seq data. It provides
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a click and highlight visualization for coloring points in an embedding according to
an estimated pairwise distance in the original high-dimensional space. Similarly, the
TensorFlow embedding projector is a web interface to running some non-linear embed-
ding methods live in the browser and it provides interactions to color points, and select
nearest neighbors (Smilkov et al. 2016). Finally, the work by Pezzotti et al. (2017)
provides a user guided and modified form of the t-SNE algorithm, that allows users to
modify optimization parameters in real-time.
A complementary approach for visualizing structure in high-dimensional data is the
tour. A tour is a sequence of projections of a high-dimensional dataset onto a low-
dimensional basis matrix, and is represented as an animated visualization (Asimov
1985; Buja and Asimov 1986). Given the dynamic nature of the tour, user interaction
is important for controlling and exploring the visualization; the tour has been used
previously by Wickham et al. (2015) for exploring statistical model fits and by Buja
et al. (1996) for exploring the space of factorial experimental designs.
The approach used in this paper is to augment the results of an NLDR method with the
tour with ourR package called liminal. Interfaces for evaluating embeddings require in-
teraction but should also be able to be incorporated into an analysts workflow. Here we
implement a more pragmatic workflow by incorporating interactive graphics and tours
with embeddings that allows users to see a global overview of their high-dimensional
data, allowing them to adjust an NLDR view and assist them with cluster orientation
tasks.
The rest of the paper is organized as follows. The next section provides background
on dimension reduction methods, including an overview of the tour. Then we describe
the visual design of liminal, followed by implementation details. Next we provide case
studies that show how our interface assists in using embedding methods. Finally, we
describe the insights gained by using liminal and plans for extensions to the software.
Throughout the paper when we refer to high-dimensional data, we mean it in a broad
sense not specifically referring to the case of small N large p data.

2. Overview of Dimension Reduction
To begin, we suppose the data is in the form of a rectangular matrix of real numbers,
X = [x1, . . . , xn], where n is the number of observations in p dimensions. The purpose
of any dimension reduction (DR) algorithm is to find a low-dimensional representation
of the data, Y = [y1, . . . , yn], such that Y is an n × d matrix where d ≪ p. The hope
of the analyst is that the DR procedure to produce Y will remove noise in the original
dataset while retaining any latent structure.
DR methods can be classified into two broad classes: linear and non-linear methods.
Linear methods perform a linear transformation of the data, that is, Y is a linear trans-
formation of X. One example is principal components analysis (PCA) which performs
an eigen-decomposition of the estimated sample covariance matrix. The eigenvalues
are sorted in decreasing order and represent the variance explained by each component
(eigenvector). A common approach to deciding on the number of principal components
to retain is to plot the proportion of variance explained by each component and choose
a cut-off. When working with linear transformations, we often need more than two di-
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mensions to capture the latent structure. In this case we can use tour methods (Asimov
1985; Buja and Asimov 1986) to show interpolated sequences of projections, providing
the viewer with intuition about structure in more than two dimensions, as described
below.
For non-linear methods, Y is generated via a pre-processed form of the input X such as
the k-nearest neighbors graph or via a kernel transformation. Multidimensional scaling
(MDS) is a class of DR methods that aims to construct an embedding Y such that the
pair-wise distances (inner products) in Y approximate the pair-wise distances (inner
products) in X (Torgerson 1952; Kruskal 1964a). There are many variants of MDS,
such as non-metric scaling which amounts to replacing distances with ranks instead
(Kruskal 1964b). A related technique is Isomap which uses a k-nearest neighbor graph
to estimate the pair-wise geodesic distance of points in X then uses classical MDS to
construct Y (Silva and Tenenbaum 2003). Other approaches are based on diffusion
processes such as diffusion maps (Coifman et al. 2005). A recent example of this
approach is the PHATE algorithm (Moon et al. 2019).
A general difficulty with using non-linear DR methods for exploratory data analysis
is selecting and tuning appropriate parameters. For concreteness here, we focus on
t-distributed stochastic neighbor embedding (t-SNE), and we will examine its under-
pinning in some detail below (van der Maaten and Hinton 2008). Similar considerations
hold for related methods, for example UMAP (McInnes et al. 2018).

2.1. Introduction to t-SNE
The t-SNE algorithm estimates the pair-wise similarity of points in a high dimensional
space based on their (Euclidean) distances using a Gaussian distribution. A configura-
tion in the low dimensional embedding space is then estimated by modelling similarities
using a t-distribution with 1 degree of freedom (van der Maaten and Hinton 2008).
There are several subtleties of the algorithm that are revealed by stepping through its
machinery.
To begin, t-SNE transforms pair-wise distances between xi and xj to similarities using
a Gaussian kernel:

pi|j = exp(−∥xi − xj∥2/2σ2
i )∑

k ̸=i exp(−∥xj − xk∥2/2σ2
i ) .

The conditional probabilities are then normalized and symmetrized to form a joint
probability distribution via averaging:

pij = pi|j + pj|i

2n
.

The variance parameter of the Gaussian kernel is controlled by the analyst using a fixed
value of perplexity for all observations:

perplexityi = exp(− log(2)
∑
i ̸=j

pj|i log2(pj|i)).
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As the perplexity increases, σ2
i increases, until its bounded above by the number of

observations , n − 1, in the data, corresponding to σ2
i → ∞. This essentially turns

t-SNE into a nearest neighbors algorithm, pi|j will be close to zero for all observations
that are not in the O(perplexityi) neighborhood graph of the ith observation (van der
Maaten 2014).
Next, in the target low-dimensional space, Y , pair-wise distances between yi and yj are
modeled as a symmetric probability distribution using a t-distribution with one degree
of freedom (Cauchy kernel):

qij = wij

Z
where wij = 1

1 + ∥yi − yj∥2 and Z =
∑
k ̸=l

wkl.

The resulting embedding Y is the one that minimizes the Kullback-Leibler divergence
between the probability distributions formed via similarities of observations in X, P
and similarities of observations in Y , Q:

L(P , Q) =
∑
i ̸=j

pij log pij

qij

.

Re-writing the loss function in terms of attractive (right) and repulsive (left) forces we
obtain:

L(P , Q) = −
∑
i ̸=j

pij log wij + log
∑
i ̸=j

wij.

Minimizing the loss function corresponds to large attractive forces, that is, the pair-
wise distances in Y are small when there are non-zero pij, i.e., xi and xj are close
together. The repulsive force should also be small, that is, overall the pair-wise distances
in Y should be large regardless of the magnitude of the corresponding distances in
X. As a result, clusters that are separate in X will be placed far from each other
in Y . This minimization is done via stochastic gradient decent, and introduces a
number of hyperparameters, for example, the number of iterations, the learning rate,
and early exaggeration, a multiplier of the attractive force used at the beginning of the
optimization.
Taken together, these details reveal the sheer number of decisions that an analyst
must make. How does one choose the perplexity and the parameters that control
the optimization of the loss function? It is a known problem that t-SNE can have
trouble recovering topology and that configurations can be highly dependent on how the
algorithm is initialized and parameterized (Wattenberg et al. 2016; Kobak and Berens
2019; Melville 2020). If the goal is cluster orientation a recent theoretical contribution
by Linderman and Steinerberger (2019) proved that t-SNE can recover spherical and
well separated cluster shapes, and proposed new approaches for tuning the optimization
parameters. However, the cluster sizes and their relative orientation from a t-SNE view
can be misleading perceptually, due to the algorithms emphasis on locality.
Another recent method, UMAP, has seen a large rise in popularity (at least in single
cell transcriptomics) (McInnes et al. 2018). It is a method that is related to LargeVis
(Tang et al. 2016), and like t-SNE acts on the k-nearest neighbor graph. Its main
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differences are that it uses a different cost function (cross entropy) which is optimized
using stochastic gradient descent and defines a different kernel for similarities in the low
dimensional space. Due to its computational speed it is possible to generate UMAP
embeddings in more than three dimensions. It appears to suffer from the same per-
ceptual issues as t-SNE, however, it supposedly preserves global structure better than
t-SNE (Coenen and Pearce 2019).

2.2. Tours explore the subspace of low dimensional projections

The tour is a visualization technique that is grounded in mathematical theory, and
allows the viewer to ascertain the shape and global structure of a dataset via inspection
of the subspace generated by the set of low-dimensional projections (Asimov 1985; Buja
and Asimov 1986).
As with other DR techniques, the tour assumes we have a real data matrix X consist-
ing of n observations in p dimensions. First, the tour generates a sequence of p × d
orthonormal projection matrices (bases) At, where d is typically 1 or 2. For each pair
of orthonormal bases At and At+1 that are generated, the geodesic path between them
is interpolated to form intermediate frames, giving the sense of continuous movement
from one basis to another. The tour is then the continuous visualization of the projected
data Yt = XAt, that is the projection of X onto At as the tour path is interpolated
between successive bases.
A grand tour corresponds to choosing new orthonormal bases at random; allowing a
user to ascertain structure via exploring the subspace of d-dimensional projections.
In practice, we first form our data into a sphere via principal components to reduce
dimensionality of X prior to running the tour. Instead of picking projections at random,
a guided tour can be used to generate a sequence of ‘interesting’ projections as quantified
by an index function (Cook et al. 1995). While our software,liminal is able to visualize
guided tours, our focus in the case studies uses the grand tour to see global structure
in the data.

3. Visual Design
Tours provide a supportive visualization to NLDR graphics, and can be easily incorpo-
rated into an analysts workflow with our software package, liminal. Our interface allows
analysts to quickly compare views from embedding methods and see how an embedding
method preserves or alters the geometry of their data. Using multiple concatenated
and linked views with the tour enhances interaction techniques, and allows analysts
to perform cluster orientation tasks via linked highlighting and brushing (McDonald
1982; Becker and Cleveland 1987). This approach allows our interface to achieve the
three principles for interactive high-dimensional data visualization outlined by Buja
et al. (1996): finding gestalt (identifying patterns in visual forms), posing queries, and
making comparisons.

3.1. Finding Gestalt: focus and context
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To understand the data structure, we look for Gestalt features such as (non-)linearities,
clusters or outliers. A tour display is preferred for this task, since it accurately captures
the geometry, while NLDR methods typically introduce distortions.
To investigate latent structure and the shape of a high-dimensional dataset in liminal,
a tour can be run without the use of an external embedding. It is often useful to first
run principal components on the input as an initial dimension reduction step, and then
tour a subset of those components instead, i.e., by selecting them from a scree plot.
The default tour layout is a scatter plot with an axis layout displaying the magnitude
and direction of each basis vector. Since the tour is dynamic, it is useful to be able to
pause and highlight a particular view. In addition to pause, play and reset buttons,
brushing will pause the tour path, allowing users to identify ‘interesting’ projections.
The domain of the axis scales from running a tour is called the half range, and is
computed by rescaling the input data onto d-dimensional unit cube. We bind the half
range to a mouse wheel event, allowing a user to pan and zoom on the tour view
dynamically. This is useful for peeling back dense clumps of points to reveal structure.

3.2. Posing Queries: multiple views, many contexts
The initial visualization gives an overview of the data structure, and naturally leads to
queries that investigate observed features with the aim to further characterize them.
This is an essential aspect of our framework, where we use a tour to better characterize
features observed in a NLDR display.
We have combined the tour view in a side by side layout with a scatter plot view as
has been done in previous tour interfaces XGobi and DataViewer (Buja et al. 1986;
Swayne et al. 1998). These views are linked; analysts can brush regions or highlight
collections of points in either view. Linked highlighting can be performed when points
have been previously labelled according to some discrete structure, i.e., cluster labels are
available. This is achieved via the analyst clicking on groups in the legend, which causes
unselected groupings to have their points become less opaque. Consequently, simple
linked highlighting can alleviate a known downfall of methods such as UMAP or t-
SNE; that is, distances between clusters are misleading. By highlighting corresponding
clusters in the tour view, the analyst can see the relationship between clusters, and
therefore obtain a more accurate representation of the topology of their data.
Simple linked brushing is achieved via mouse-click and drag movements. By default,
when brushing occurs in the tour view, the current projection is paused and correspond-
ing points in the embedding view are highlighted. Likewise, when brushing occurs in
the embedding view, corresponding points in the tour view are highlighted. In this
case, an analyst can use brushing for manually identifying clusters and verifying clus-
ter locations and shapes; brushing in the embedding view gives analysts a sense of the
shape and proximity of cluster in high-dimensional space.

3.3. Making comparisons: revising embeddings
Combining multiple views of a single data set allows the analyst to make meaningful
comparisons. In liminal the embedding and tour views are arranged side-by-side for
direct cross-checks.
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As mentioned previously, when using any DR method, we are assuming the embedding
is representative of the high-dimensional dataset it was computed from. Defining what
it means for embeddings to be ‘representative‘ or ’faithful’ to high-dimensional data is
ill-posed and depends on the underlying task an analyst is trying to achieve. At the
very minimum, we are interested in distortions and diffusions of the high-dimensional
data. Distortions occur when points that are near each other in the embedding view
are far from each other in the original dataset. This implies that the embedding is not
continuous. Diffusions occur when points are far from each other in the embedding
view are near in the original data. Whether, points are near, or far is reliant on the
distance metric used; distortions and diffusions can be thought of as the preservation
of distances or the nearest neighbors graphs between the high-dimensional space and
the embedding space. As distances can be noisy in high-dimensions, ranks can be used
instead as has been proposed by Lee and Verleysen (2009). Identifying distortions and
diffusions allows an analyst to investigate the quality of their embedding and revise
them iteratively.
These checks are done visually using our side-by-side tour and embedding views. In the
simplest case, a local continuity check can be assessed via one to one linked brushing
from the embedding to the tour view. Similarly, diffusions are identified from linked
brushing on the tour view, highlighting points in the embedding view.

4. Software Infrastructure
We have implemented the above design as an open source R package called liminal (Lee
and Cook 2020). The package allows analysts to construct concatenated visualizations,
drawn with the Vega-Lite grammar of interactive graphics via the vegawidget package
(Satyanarayan et al. 2017; Lyttle and Vega/Vega-Lite Developers 2020). It provides an
interface for constructing linked and stand alone interfaces for manipulating tour paths
via the shiny and tourr packages (Chang et al. 2020; Wickham et al. 2011).

4.1. Tours as a streaming data problem
The process of generating successive bases and interpolating between them to
construct intermediary frames, means the tour is a dynamic visualization technique.
Generally, the user would set d = 2 and the tour is visualized as an animated scatter
plot. This process of constructing bases and intermediate frames and visualizing the
resulting projection is akin to making a “flip book” animation. Like with a flip book,
an interface to the tour requires the ability to interact and modify it in real time.
The user interface generated in liminal allows a user to play, pause, and reset the tour
animation, panning and zooming to modify the scales of the plot to provide context
and click events to highlight groups of points if a labeling variable has been placed on
the legend.
These interactions are enabled by treating the basis generation as a reactive stream.
Instead of realizing the entire sequence, which limits the animation to have a discrete
number of frames, new bases and their intermediate frames are generated dynamically
via pushing the current projection to the visualization interface. The interface listens
to events like pressing a button or mouse-dragging and reacts by pausing the stream.
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This process allows the user to manipulate the tour in real time rather than having
to fix the number of bases ahead of time. Additionally, once the user has identified
an interesting projection or is done with the tour, the interface will return the current
basis (as a matrix) for use downstream.

4.2. Linking and highlighting views via interactions
The embedding and tour views are linked together via rectangular brushes; when a
brush is active, points will be highlighted in the adjacent view. Because the tour is
dynamic, brush events that become active will pause the animation, so that a user
can interrogate the current view. By default, brushing on the embedding view will
produce a one-to-one linking with the tour view. For interpreting specific combinations
of clusters, the multiple guides on the legend can be selected in order to see their relative
orientations. The interface is constructed as a shiny gadget specifically designed for
interactive data analysis. Selections such as brushing regions and the current tour path
are returned after the user clicks done on the interface and become available for further
investigation.

5. Case Studies
The next section steps through case studies of our approach using simulations and an
application to single cell RNA-seq data.
The first three case studies use simulations where the cluster structure and geometry
of the underlying data is known. We start with a simple example where we generated
spherical clusters that are embedded well by t-SNE. Then we move onto more complex
examples where the tour provides insight, such as clusters that have substructure and
where there is more complex geometry in the data.
In the final case study, we apply our approach to clustering the mouse retina data from
Macosko et al. (2015), and apply the tour to the process of verifying marker genes that
separate clusters.
We strongly recommend viewing the linked videos for each case study while reading.
Links to the videos are available in table 1 and in the figures for each case study. The
videos presented show the visual appearance of the liminal interface, and how we can
interact with the tour via the controls previously described. If you are unable to view
the videos, the figures in each case study consist of screenshots that summarize what
is learned from combining the tour and an embedding view.

5.1. Case Study 1: Exploring spherical Gaussian clusters
To begin, we look at simulated datasets that reproduce known facts about the t-SNE
algorithm. Our first data set consists of five spherical 5-d Gaussian clusters embedded
in 10-d space, each cluster has the same covariance matrix. We then computed a t-SNE
layout with default settings using the Rtsne package (Krijthe 2015), and set up the
liminal linked interface with grand tour on the 10-d observations.
From the video linked in Figure 1, we learn that t-SNE has correctly split out each
cluster and laid them out in a star like formation. This agrees with the tour view,
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Figure 1: Screenshots of the liminal interface applied to well clustered data, a video of
the tour animation is available at https://player.vimeo.com/video/439635921.

https://player.vimeo.com/video/439635921
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where once we start the animation, the five clusters begin to appear but generally
points are more concentrated in the projection view compared to the t-SNE layout
(Figure 1a). This can be seen via brushing the t-SNE view (Figure 1b).

5.2. Case Study 2: Exploring spherical Gaussian clusters with
hierarchical structure
Next, we view Gaussian clusters from the Multi Challenge Dataset, a benchmark sim-
ulation data set for clustering tasks (Rauber 2009). This dataset has two Gaussian
clusters with equal covariance embedded in 10-d, and a third cluster with hierarchical
structure. This cluster has two 3-d clusters embedded in 10-d, where the second cluster
is subdivided into three smaller clusters, that are each equidistant from each other and
have the same covariance structure. From the video linked in Figure 2, we see that
t-SNE has correctly identified the sub-clusters. However, their relative locations to
each other is distorted, with the orange and blue groups being far from each other in
the tour view (Figure 2a). We see in this case that it is difficult to see the sub-clusters
in the tour view, however, once we zoom and highlight they become more apparent
(Figure 2b). When we brush the sub-clusters in the t-SNE, their relative placement is
again exaggerated, with the tour showing that they are indeed much closer than the
impression the t-SNE view gives.

5.3. Case Study 3: Exploring data with piecewise linear struc-
ture
Next, we explore some simulated noisy tree structured data (Figure 3). Our interest
here is how t-SNE visualizations break the topology of the data, and then seeing if we
can resolve this by tweaking the default parameters with reference to the global view of
the data set. This simulation aims to mimic branching trajectories of cell differentiation;
if there were only mature cells, we would just see the tips of the branches which have
a hierarchical pattern of clustering.
First, we apply principal components and restrict the results down to the first twelve
principal components (which makes up approximately 70% of the variance explained
in the data), to use with the grand tour.
Moreover, we run t-SNE using the default arguments on the complete data (this keeps
the first 50 PCs, sets the perplexity to equal 30 and performs random initialization).
We then create a linked tour with t-SNE layout with liminal as shown in Figure 4.
From the linked video, we see that the t-SNE view has been unable to recapitulate the
topology of the tree - the backbone (blue) branch has been split into three fragments
(Figure 4a). We can see this immediately via the linked highlighting over both plots.
If we click on the legend for the zero branch, the blue colored points on each view
are highlighted and the remaining points are made transparent. From here it becomes
apparent from the tour view that the blue branch forms the backbone of the tree and
is connected to all other branches. From the video, it is easy to see that cluster sizes
formed via t-SNE can be misleading; from the tour view there is a lot of noise along
the branches, while this does not appear to be the case for the t-SNE result (Figure
4b).
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Figure 2: Screenshots of the liminal interface applied to sub-clustered data, a video of
the tour animation is available at https://player.vimeo.com/video/439635905.

https://player.vimeo.com/video/439635905
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Figure 3: Example high-dimensional tree shaped data, n = 3000 and p = 100. (a)
The true data lies on a 2-d tree consisting of ten branches. This data is available in
the phateR package and is simulated via diffusion-limited aggregation (a random walk
along the branches of the tree) with Gaussian noise added (Moon et al. 2019). (b)
The first two principal components, which form the initial projection for the tour, note
that the backbone of the tree is obscured by this view. (c) The default t-SNE view
breaks the global structure of the tree. (d) Altering t-SNE using the first two principal
components as the starting coordinates for the embedding, results in clustering the tree
at its branching points.
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Figure 4: Screenshots of the liminal interface applied to tree structured data, a video
of the tour animation is available at https://player.vimeo.com/video/439635892.

https://player.vimeo.com/video/439635892
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From the first view, we modify the inputs to the t-SNE view, to try and produce a
better trade-off between local structure and retain the topology of the data. We keep
every parameter the same except that we initialize Y with the first two PCs (scaled to
have standard deviation 1e-4) instead of the default random initialization and increase
the perplexity from 30 to 100. We then combine these results with our tour view as
displayed in the linked video in the caption of Figure 5.
The video linked in Figure 5 shows that this selection of parameters results in the
tips of the branches (the three black dots in Figure 3a) being split into three clusters
representing the terminal branches of the tree. However, there are perceptual issues
following the placement of the three groupings on the t-SNE view that become apparent
via simple linked brushing. If we brush the tips of the yellow and brown branches (which
appear to be close to each other on the t-SNE view), we immediately see the placement
is distorted in the t-SNE view, and in the tour view these tips are at opposite ends
of the tree (Figure 5b). Although, this is a known issue of the t-SNE algorithm, we
can easily identify it via simple interactivity without knowing the inner workings of the
method.

5.4. Case Study 4: Clustering single cell RNA-seq data
A common analysis task in single cell studies is performing clustering to identify group-
ings of cells with similar expression profiles. Analysts in this area generally use non-
linear DR methods for verification and identification of clusters and developmental
trajectories (i.e., case study 1). For clustering workflows, the primary task is to verify
the existence of clusters and then begin to identify the clusters as cell types using the
expression of “known” marker genes. Here a ‘faithful’ embedding should ideally pre-
serve the topology of the data; cells that correspond to a cell type should lie in the
same neighborhood in high-dimensional space. In this case study, we use our linked
brushing approaches to look at neighborhood preservation and look at marker genes
through the lens of the tour. The data we have selected for this case study has features
similar to those found in case studies 2 and 3.
First, we downloaded the raw mouse retinal single cell RNA-seq data from Macosko
et al. (2015) using the scRNAseq Bioconductor package (Risso and Cole 2019). We
have followed a standard workflow for pre-processing and normalizing this data (de-
scribed by Amezquita et al. (2020)). We performed quality control using the scater
package by removing cells with a high proportion of mitochondrial gene expression
(as this indicates poor sample quality), and low numbers of genes detected. We then
log-transformed and normalized the expression values and finally selected highly vari-
able genes (HVGs) using scran (McCarthy et al. 2017; Lun et al. 2016). The top ten
percent of HVGs were used to subset the normalized expression matrix and compute
PCA using the first 25 components. Using the PCs we built a shared nearest neighbors
graph (with k = 10) and used Louvain clustering to generate clusters (Blondel et al.
2008).
To check and verify the clustering we construct a liminal view. We tour the first five
PCs (approximately 20% of the variance in expression), alongside the t-SNE view which
was computed from all 25 PCs. We have selected only the first five PCs because there
is a large drop in the percentage of variance explained after the fifth component, with
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Figure 5: Screenshots of the liminal interface applied to tree structured data, a video
of the tour animation is available at https://player.vimeo.com/video/439635863.

https://player.vimeo.com/video/439635863
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each component after that contributing less than one percent of variance. Consequently,
increasing the number of PCs to tour would increase the dimensionality and volume of
the subspace we are touring but without adding any additional signal to the view.
Due to latency of the liminal interface we do a weighted sample of the rows based on
cluster membership, leaving us with approximately 10 per cent of the original data
size - 4,590 cells. Although this is not ideal, it still allows us to get a sense of the
shape of the clusters as seen from the linked video in Figure 6. If one was interested
in performing more in-depth cluster analysis, we recommend an iterative approach of
removing large clusters and then re-running the liminal view as a way finding more
granular cluster structure. One could perform this approach manually via the liminal
interface by returning the regions identified by brushing on the tour or embedding view.
From the video linked in Figure 6, we learn that the embedding has mostly captured
the clusters relative location to each other to their location in high-dimensional space,
with a notable exception of points in cluster 3 and 10 as shown with linked brushing
(Figure 6a). As expected, t-SNE mitigates the crowding problem that is an issue for
tour in this case, where points in clusters 2, 4, 6, and 11 are clumped together in tour
view, but are blown up in the embedding view (Figure 6b). The tour appears to form
a tetrahedron-like shape, with points lying on the surface and along the vertices of the
tetrahedron in 5-d PCA space - a phenomena that has also been observed in Korem
et al. (2015) (Figure 6c). Brushing on the tour view, reveals points in cluster 9 that
are diffuse in the embedding view, points in cluster 9 are relatively far away and spread
apart from other clusters in the tour view, but has points placed in cluster 3 and 9 in
the embedding (Figure 6d).
Next, we identify marker genes for clusters using one sided Welch t-tests with a min-
imum log fold change of one as recommended by Amezquita et al. (2020), which uses
the testing framework from McCarthy and Smyth (2009). We select the top 10 marker
genes that are expressed in relatively larger quantities (upregulated) in cluster 2, which
was one of the clumped clusters when we toured on principal components. Here, the
tour becomes an alternative to a standard heatmap view for assessing shared markers;
the basis generation (shown as the biplot on the left view) reflects the relative weighting
of each gene. We run the tour directly on the log normalized expression values using
the same subset as before.
From the video linked in Figure 7, we see that the expression of the marker genes,
appear to separate the previously clumped clusters 2, 4, 6, and 11 from the other
clusters, indicating that these genes are expressed in all four clusters (Figure 7a). After
zooming, we can see a trajectory forming along the clusters, while the axis view shows
that magnitude of expression in the marker genes is similar across these separated
clusters which is consistent with the results of marker gene analysis (Figure 7b).

6. Discussion
We have shown that the use of tours as a tool for interacting with high-dimensional
data provides an additional insight for interrogating views generated from embeddings.
The interface we have designed in the liminal package, allows a user to gain a deeper
understanding of an embedding algorithm, and rectifies perceptual issues associated
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Figure 6: Screenshots of the liminal interface applied to single cell data, a video of the
tour animation is available at https://player.vimeo.com/video/439635812.

https://player.vimeo.com/video/439635812
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Figure 7: Screenshots of the liminal tour applied to a marker gene set, a video of the
tour animation is available at https://player.vimeo.com/video/439635843.

https://player.vimeo.com/video/439635843
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with NLDR methods via linked interactions with the tour. As we have shown in the
simulation case studies, the t-SNE method can produce misleading embeddings which
can be detected through the use linked brushing and highlighting. In the case when
the data has a piecewise linear geometry, like the tree simulation, the tour preserves
the shape of the data which can be obscured by the embedding method.
Our framework can also be useful in practice, as displayed in the fourth case study. The
tour when combined with t-SNE allowed us to identify clusters, while giving us an idea
of their orientation to each other. Moreover, we could visually inspect the separation
of clusters using a tour on marker gene sets. We see our approach as being valuable to
the single cell analyst who wants to make their embeddings more interpretable.
We have shown in the case studies, that one to one linked brushing can be used to iden-
tify distortions in the embedding, however, we would like extend this to one to many
linked brushing, which would allow us to directly interrogate neighborhood preser-
vation. This form of brushing acts directly on a k-nearest neighbors (k-nn) graph
computed from a reference dataset: when a user brushes over a region in the embed-
ding, all the points that match the graphs edges are selected on the corresponding tour
view. The reference data set for computing nearest neighbors (for example, a distance
matrix, or the complete data matrix) can be independent of the tour or embedding
views. In place of highlighting, one could use opacity or binned color scales to encode
distances or ranks instead of the neighboring points. We have begun implementing this
brush in liminal, using the FNN or RcppAnnoy packages for fast neighborhood es-
timation on the server side, however, there are still technicalities that need be resolved
(Beygelzimer et al. 2019; Eddelbuettel 2020). Brush composition, such as ‘and’, ‘or’, or
‘not’ brushes, could be used to further investigate mismatches between the k-nn graphs
estimated from both the embedding and tour views.
There are some limitations in using the liminal interface for larger datasets. First,
t-SNE avoids the crowding problem; points are separated into distinct regions on the
display canvas. For the tour, points are concentrated in the centre of the projection and
become difficult to see. We have recently proposed a simple non-linear transformation
for the tour called a sage tour that aims to fix this problem (Laa et al. 2020b). Second,
as n increases both the embedding view and tour view become harder to read due to
over-plotting, while the interactivity and animation become slower as there is more
data passing from the server to the client. For the tasks we have looked at in this
paper, where shape and density are important to the analyst, we think that better
displays and sub-sampling strategies are more useful than being able to look at every
single point on the canvas. We showed in our single cell clustering case study that
doing a weighted sample based on cluster membership still allowed us to get a sense
of relative cluster orientation, however, there are alternative sampling approaches that
could be applied, like selecting points close to the cluster centers. Alternative displays
via statistical transformations could also mitigate the need to show all of the data.
Recent work by Laa et al. (2020a) is a promising area for further investigation, as well
as work from topological statistics (Rieck 2017; Genovese et al. 2017).
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Code, data, and video for reproducing this paper are available at https://github.
com/sa-lee/paper-liminal. Direct links to videos for viewing online are available in
Table 1.

Table 1: Case Study Videos

Case Study Example URL
1 gaussian https://player.vimeo.com/video/439635921
2 hierarchical https://player.vimeo.com/video/439635905
3 trees-01 https://player.vimeo.com/video/439635892
3 trees-02 https://player.vimeo.com/video/439635863
4 mouse-01 https://player.vimeo.com/video/439635812
4 mouse-02 https://player.vimeo.com/video/439635843
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