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Abstract

Compressed sensing proposes to reconstruct more degrees of freedom in a
signal than the number of values actually measured (based on a potentially un-
justified regularizer or prior distribution). Compressed sensing therefore risks
introducing errors — inserting spurious artifacts or masking the abnormalities
that medical imaging seeks to discover. Estimating errors using the standard
statistical tools of a jackknife and a bootstrap yields error “bars” in the form of
full images that are remarkably qualitatively representative of the actual errors
(at least when evaluated and validated on data sets for which the ground truth
and hence the actual error is available). These images show the structure of
possible errors — without recourse to measuring the entire ground truth directly
— and build confidence in regions of the images where the estimated errors are
small. Further visualizations and summary statistics can aid in the interpre-
tation of such error estimates. Visualizations include suitable colorizations of
the reconstruction, as well as the obvious “correction” of the reconstruction by
subtracting off the error estimates. The canonical summary statistic would be
the root-mean-square of the error estimates. Unfortunately, colorizations appear
likely to be too distracting for actual clinical practice in medical imaging, and
the root-mean-square gets swamped by background noise in the error estimates.
Fortunately, straightforward displays of the error estimates and of the “corrected”
reconstruction are illuminating, and the root-mean-square improves greatly af-
ter mild blurring of the error estimates; the blurring is barely perceptible to the
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human eye yet smooths away background noise that would otherwise overwhelm
the root-mean-square.

Keywords: error estimation, visualization, medical imaging, magnetic resonance imag-
ing, compressive sensing, compressive sampling.

1. Introduction
Compressed sensing is the concept that many interesting signals are recoverable from
undersampled measurements of the representations of those signals in a special basis. A
widely touted potential application is to the acceleration of magnetic resonance imaging
(MRI), as by Lustig et al. (2007). In MRI, the special basis for representations of signals
is the Fourier basis, and the goal of compressed sensing is to recover high-resolution
images from relatively sparse measurements of the Fourier components of those images.
Here, “sparse” means substantially fewer measurements of values in the Fourier domain
than the numbers of pixels in the reconstructed images. Of course, recovering more de-
grees of freedom than the number of measured values is an ill-posed problem, yet it has
been rigorously proven to be solvable when the gradients of the images being recovered
are known to be small except at a few pixels, for instance, when edges dominate the
images (the proofs of Candes et al. (2006) are especially well-known). This recovery is
still non-trivial, as the small number of pixels where the gradients are non-trivial may
very well vary from image to image, while the same reconstruction procedure works
irrespective of where the gradients concentrate (as long as they concentrate on sparse
subsets of all pixels in the reconstructed domain). The requirement that gradients be
concentrated on sparse subsets is sufficient but may not be necessary, and much recent
research — including that of Hammernik et al. (2018) — aims to generalize beyond
this requirement by applying machine learning to representative data sets. Indeed,
the literature on compressed sensing is vast and growing rapidly; see, for example, the
recent review of Tropp (2017) for explication of all this and more.
Needless to say, compressed sensing risks introducing errors into the resulting recon-
structions, especially if the assumption of sparsity is unfounded for the real data at
hand. The works of Malioutov et al. (2010) and Ward (2009) quantify these errors via
a single scalar estimate of confidence in the reconstruction, namely, an estimate of the
mean-square error. The present paper extends these methods, producing estimates of
the entire image displaying the discrepancy between the reconstruction in compressed
sensing and the actual ground truth. Of course, compressed sensing takes too few mea-
surements to ascertain the actual ground truth, so only an estimate of the discrepancy
— an error “bar” in the form of an image — is possible. However, the examples of
the present paper show that “jackknife” and “bootstrap” estimates of the errors are
reasonably representative of the reality, at least for the cases in MRI tested here, in
which the ground truth is available for comparison and evaluation. Those unfamiliar
with the jackknife and the bootstrap may wish to consult Efron and Tibshirani (1993);
that said, the presentation below is completely self-contained, not presuming any prior
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knowledge of either the jackknife or the bootstrap. The jackknife and bootstrap im-
ages highlight when, where and what errors may have arisen in each reconstruction
from compressed sensing for MRI, tailored to the specific object being imaged.
The jackknife is similar to standard a posteriori tests for convergence of numerical meth-
ods; such tests for convergence often serve as proxies for estimates of accuracy. The
bootstrap leverages more extensive computation, simulating measurements that could
have been taken but were not in fact (recall that compressed sensing involves tak-
ing fewer measurements than the number of degrees of freedom being reconstructed).
The bootstrap simulates plausible alternative reconstructions from hypothetical mea-
surements that are consistent with the reconstruction from the measurements actually
made. The alternative reconstructions fluctuate around the reconstruction from the
measurements actually made; the fluctuation is an estimate of the error, when aver-
aged over various sampling patterns for the measurements being considered.
The present paper also investigates user-friendly methods for generating visualizations
and automatic interpretations of these error estimates, appropriate for display to med-
ical professionals (especially radiologists). After testing several natural visual displays,
we find that any nontrivial visualization is likely to be too distracting for physicians,
as some have expressed reservations about having to look at any errors at all — they
would be much happier having a machine look at the estimates and flag potentially
serious errors for special consideration. We might conclude that colorization is too
distracting, that the best visualizations are simple displays of the error estimates, pos-
sibly supplemented with the error estimates subtracted from the reconstructions (thus
showing how the error estimates can “correct” the reconstructions). Most of the results
of the present paper about visualization could be regarded as negative, however natural
and straightforward the colorizations may be.
For circumstances in which visualizing errors is overkill (or unnecessarily bothersome),
we find that an almost simplistic automated interpretation of the plots of errors —
reporting just the root-mean-square of the denoised error estimates — works remarkably
well. While background noise dominates the root-mean-square of the initial, noisy error
estimates, even denoising that is almost imperceptible can remove the obfuscatory
background noise; the root-mean-square can then focus on the remaining errors, which
are often relatively sparsely distributed. When the root-mean-square of the denoised
error estimates is large enough, a clinician could look at the visualizations mentioned
above to fully understand the implications of the error estimates (or rescan the patient
using a less error-prone sampling pattern).
By reducing the time required to scan patients, compressed sensing promises to lower
costs, improve patients’ experience, reduce artifacts due to motion, and extend imaging
to patients who have trouble staying still for long periods, inter alia.
The structure of the remainder of the present paper is as follows: First, Section 2 intro-
duces the jackknife and the bootstrap for compressed sensing, together with methods
for their visualization and automated summarization in scalar statistics. Then, Sec-
tion 3 illustrates the performance of the methods on data sets from MRI, with copious
additional examples provided in the appendices. Finally, Section 4 discusses the results
introduced in Section 3 and draws some conclusions.
The Python package fbooja reproduces all our results from Section 3 and the ap-
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pendices and is available at https://github.com/facebookresearch/fbooja (that
GitHub repository also includes a re-distribution of the MRI scans of a patient’s head
from the data of Loizou et al. (2013a), Loizou et al. (2011), Loizou et al. (2013b),
and Loizou et al. (2015)). The software is available with a permissive (MIT) open-
source license, though the package is meant solely for prototyping and demonstrating
a proof of principle — the package may not be industrial-strength or suited for deploy-
ment directly to clinical practice; the software makes no attempt to implement fail-safes
or be fool-proof, but rather is most appropriate for use in research or as a template for
the development of production-ready implementations.

2. Methods

2.1. A jackknife and a bootstrap
We denote by X a data set (xi)i∈I , where each xi is a scalar or a vector and I is a set
of indices. We consider a vector-valued (or image-valued) function f = f(X, S) of both
X and a subset S of the index set I such that the value of f depends only on (xi)i∈S.
Compressed sensing approximates the full f(X, I) with f(X, S), where S is a subset of
I collecting together independent uniformly random draws from I, perhaps plus some
fixed subset T of I. (Obviously, this construction makes T a subset of S. However, T
need not be disjoint from the set of independent uniformly random draws.)
In compressed sensing for MRI, measured observations in the Fourier domain of the
object being imaged are (xi)i∈I , and f(X, I) uses those measurements to reconstruct
the object in the original domain (hence involving an inverse Fourier transform to
map from X to f(X, I)). The reconstruction f(X, S) from a subset S of I commonly
involves minimizing a total-variation objective function or deep learning of some sort,
as discussed by Tao and Yang (2009), Yang and Zhang (2011), Hammernik et al. (2018),
and their references.
With such undersampled measurements, the reconstruction is oblivious to much of the
Fourier domain, sampling fewer measurements than at the usual Nyquist rate. We
will tacitly be assuming that the procedure for reconstruction works not only for the
set S specifying the measurements actually used, but also for other sets of random
observations, that is, for other random realizations of S. For machine-learned recon-
structions, the model for reconstruction must train on measurements taken from many
different possible samplings, not just one; otherwise the model will be blind to parts
of the Fourier domain. If we can simulate on a computer what could have happened
with measurements that we do not take in reality, then we can construct error “bars”
highlighting when, where and what might have gone wrong in a reconstruction from
actual measurements taken with only one realized sampling set S. The computational
simulation allows us to gauge what could have happened with unseen measurements.
While seeing the unseen (at least in part) may seem counterintuitive, in fact the field of
statistics is all about what might have occurred given observations of what actually did
happen. The bootstrap defined below follows this prescription literally. The jackknife
is a somewhat simpler formulation.
The goal of both the jackknife and the bootstrap is to provide an estimated bound on
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f(X, S) − f(X, I), without having access to the full reconstruction f(X, I). (The full
reconstruction depends on all measurements (xi)i∈I — the whole I — so is unavailable
when performing compressed sensing.)
First, we define the jackknife error “bar” for f on S to be

d = 2
∑

i∈S\T

(
f(X, S\{i}) − f(X, S)

)
, (1)

where the sum ranges over every index i ∈ S such that i /∈ T , and S\{i} is just S
after removing i. The jackknife d defined in (1) characterizes what would happen to
the output of f if the input S were slightly smaller; if f(X, S) is close to converging on
f(X, I), then f(X, S\{i}) in (1) should also be close to f(X, I), so f(X, S\{i}) should
be close to f(X, S), aside from errors. We refer to f(X, S\{i}) − f(X, S) in the right-
hand side of (1) as a “leave-one-out” difference, as in “leave-one-out” cross-validation.
We could empirically (or semi-empirically) determine a calibration constant c such that
cd becomes of the same size as the actual discrepancy f(X, S) − f(X, I) on average for
a training set of exemplars (the training set could consist of many different X together
with the corresponding f(X, S) and f(X, I)). We found that c = 1 works well in the
experiments reported below.
Next, we define the bootstrap, assuming that S is the union of the set T and a set
of ℓ independent uniformly random samples from I (where ℓ is a parameter, and the
number of distinct members of the latter set may be less than ℓ due to repetition in
the ℓ samples): First, having already computed f(X, S), we solve for X̃ = (x̃i)i∈I such
that

f(X̃, I) = f(X, S). (2)
Then, we form the set R of ℓ independent uniformly random draws from I (not all ℓ
of which need be distinct), plus the fixed subset T of I (in so-called parallel MRI, as
described by Brown et al. (2014), T would naturally contain all the lowest frequencies).
We select a positive integer k and repeat this resampling independently k times, thus
obtaining sets R1, R2, . . . , Rk. We define the bootstrap error “bar” to be

e = 3
k

k∑
j=1

(
f(X̃, Rj) − f(X̃, I)

)
. (3)

We could say that f(X̃, Rj) arises from f(X̃, I) in the same way as f(X, S) arises from
f(X, I), having constructed X̃ assuming that f(X, S) is “correct” in the sense of (2); so
the summand in (3) is a proxy for the actual error f(X, S)−f(X, I) (and the averaging
over independent realizations reduces noise). We have no reason to believe that the
scaling 3 in (3) is the ideal factor, but 3 seems to work well in the experiments reported
below.

Remark 1. Both
(
f(X, S\{i}) − f(X, S)

)
i∈S\T

from (1) and
(
f(X̃, Rj) − f(X̃, I)

)k

j=1
from (3) span whole spaces of errors that potentially could have happened given the
actually observed measurements. (Here, “potentially” refers to being consistent with
what the jackknife or bootstrap can generate.) While the sum and average in (1)
and (3), respectively, of these sets of differences characterize leading modes of these
spaces, principal component analysis can characterize all modes. However, looking at
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even just the leading modes seems somewhat overwhelming already; having to investi-
gate more modes could really try the patience of a physician interpreting MRI scans, for
instance. The present paper focuses on the leading modes observed in our experiments
(namely, the sum or average).

2.2. Visualization in grayscale and in color
We include four kinds of plots displaying the full reconstructions and errors:

1. “Original” is the original grayscale image.

2. “Reconstruction” is the reconstruction via compressed sensing.

3. “Error of Reconstruction” displays the difference between the original and re-
constructed images, with black (or white) corresponding to extreme errors, and
middling grays corresponding to the absence of errors.

4. “Bootstrap” displays the errors estimated via the bootstrap, with black (or white)
corresponding to extreme errors, and middling grays corresponding to the absence
of errors.

We visualize the errors in reconstruction and the bootstrap estimates using grayscale
so that the phases of oscillatory artifacts are less apparent; colorized errors look very
different for damped sine versus cosine waves, whereas the medical meaning of such
waves is often similar.
We consider four methods for visualizing the effects of errors (estimated via the boot-
strap) simultaneously with displaying the reconstruction, via manipulation of the hue-
saturation-value color space described, for example, by van der Walt et al. (2014):

1. “Reconstruction – Bootstrap” is literally the bootstrap error estimate subtracted
from the reconstruction, in some sense “correcting” or “enhancing” the recon-
struction.

2. “Errors Over a Threshold Overlaid” identifies the pixels in the bootstrap error
estimate whose absolute values are in the upper percentiles (the upper two per-
centiles for horizontally retained sampling, the upper one for radially retained
sampling), then replaces those pixels (retaining all other pixels unchanged) in
the reconstruction with colors corresponding to the values of the pixels in the
bootstrap. Specifically, the colors plotted are at the highest value possible and
fully saturated, with a hue ranging from cyan to magenta, with blue in the middle
(however, as we include only the upper percentiles, only hues very close to cyan or
to magenta actually get plotted). This effectively marks the pixels corresponding
to the largest estimated errors with eye-popping colors, leaving the other pixels
at their gray values in the reconstruction.

3. “Bootstrap-Saturated Reconstruction” sets the saturation of a pixel in the recon-
struction to the corresponding absolute value of the pixel in the bootstrap error
estimate (normalized by the greatest absolute value of any pixel in the bootstrap),
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with a hue set to red or green depending on the sign of the pixel in the bootstrap.
The value of the pixel in the reconstruction stays the same. Thus, a pixel gets
colored more intensely red or more intensely green when the absolute value of the
pixel in the bootstrap is large, but always with the value in hue-saturation-value
remaining the same as in the original reconstruction; a pixel whose corresponding
absolute value in the bootstrap is relatively negligible stays unsaturated gray at
the value in the reconstruction.

4. “Bootstrap-Interpolated Reconstruction” leaves the value of each pixel at its value
in the reconstruction, and linearly interpolates in the hue-saturation plane be-
tween green and magenta based on the corresponding value of the pixel in the
bootstrap error estimate (normalized by the greatest absolute value of any pixel
in the bootstrap). Pure gray is in the middle of the line between green and ma-
genta, so that any pixel whose corresponding error estimate is zero will appear
unchanged, exactly as it was in the original reconstruction; pixels whose corre-
sponding error estimates are the largest have the same value as in the reconstruc-
tion but get colored magenta, while those whose corresponding error estimates
are the most negative have the same value as in the reconstruction but get colored
green.

2.3. Summarization in a scalar
The square root of the sum of the squares of slightly denoised error estimations sum-
marizes in a single scalar the overall size of errors. Even inconspicuous denoising can
greatly improve the root-mean-square. Indeed, while the effect of blurring the bootstrap
error estimates with a normalized Gaussian convolutional kernel of standard deviation
one pixel is almost imperceptible to the human eye (or at least preserves the seman-
tically meaningful structures in the images), the blur helps remove the background of
noise that can otherwise dominate the root-mean-square of the error estimates. The
blur largely preserves significant edges and textured areas, yet can eliminate much of
the perceptually immaterial zero-mean background noise. Whereas background noise
can overwhelm the root-mean-square of the initial, noisy bootstrap, the root-mean-
square of the slightly blurred bootstrap captures the magnitude of the more important
features in the error estimates.

3. Results
The examples of this section illustrate the most commonly discussed compressed sensing
for MRI, in which we reconstruct an image from measured observations of some of
its values in the Fourier domain — “some” meaning significantly less than usually
required by the Nyquist-Shannon-Whittaker sampling theory. To reconstruct an image
from measurements taken in the Fourier domain (with independent and identically
distributed centered complex Gaussian noise of standard deviation 0.02

√
2 added to

mimic machine imprecision), we minimize the sum of deviations from the measurements
plus a total-variation regularizer via Algorithm 1 at the end of Section 2.2 of Tao
and Yang (2009) (which is based on the work of Yang and Zhang (2011)), with 100
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iterations, using the typical parameter settings µ = 1012 and β = 10 (µ governs the
fidelity to the measurements taken in the Fourier domain, and β is the strength of the
coupling in the operator splitting for the alternating-direction method of multipliers).
As discussed by Tropp (2017), this is the canonical setting for compressed sensing. All
computations take place in IEEE standard double-precision arithmetic. We use k =
1,000 resamplings for the bootstrap in (3). The Python package fbooja reproduces our
results and is available at https://github.com/facebookresearch/fbooja. fbooja
builds upon PyTorch of Paszke et al. (2019), which is available along with instructions
for installation of dependencies at https://pytorch.org
We consider two kinds of sampling patterns, radially retained and horizontally retained.
All sampling takes place on an m × n Cartesian grid, allowing direct use of the fast
Fourier transform for acceleration of the reconstruction (as described by Tao and Yang
(2009)). Future implementations could consider sampling off the grid, too.
With radially retained sampling, each xi in our data set X = (xi)i∈I consists of all
pixels on an m×n Cartesian grid in the Fourier domain that intersect a ray emanating
from the origin (each angle corresponds to xi for a different index i). Figure 1 displays
four examples of uniformly random subsets of X, sampling the angles of the rays
uniformly at random. For radially retained sampling, we refrain from supplementing
the subsampled set S with any fixed subset; that is, the set T is empty. To construct
S, we generate m+n

5 angles uniformly at random (rounding m+n
5 to the nearest integer),

which makes the errors easy to see in the coming figures, yet not too extreme.

Figure 1: Radially retained sampling — sampling on a Cartesian grid along rays ema-
nating from the origin

With horizontally retained sampling, each xi in our data set X = (xi)i∈I consists of a
horizontal line n pixels wide on an m × n Cartesian grid in the Fourier domain, with I
consisting of the m integers from −m

2 to m−2
2 . The subsampled set S always includes

all horizontal lines ranging from the −
√

2m th lowest frequency to the
√

2m th lowest
frequency (rounding

√
2m to the nearest integer); that is, the set T consists of these

low-frequency indices. To construct the remainder of S, we generate m
4 integers from

−m
2 to m−2

2 uniformly at random (rounding m
4 to the nearest integer), which makes

the errors easy to see in the coming figures, yet not too extreme. Recall that S is a
set; each member i of S occurs only once irrespective of how many times the sampling
procedure just described chooses to include the index i.
Figures 2–5 display results for retaining radial and horizontal lines, using the same
original images (the third and tenth — “lower” and “upper” — slices out of twenty).

https://github.com/facebookresearch/fbooja
https://pytorch.org
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Figure 2: Radially retained sampling — lower slice
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Figure 3: Radially retained sampling — upper slice
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Figure 4: Horizontally retained sampling — lower slice
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Figure 5: Horizontally retained sampling — upper slice
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Further examples are available in Appendix A. The figures whose captions specify
“2×” use 2(m+n)

5 random angles for radially retained sampling and m
2 random integers

for horizontally retained sampling instead of the m+n
5 random angles and m

4 random
integers used in all other figures. All figures concern MRI scans of a patient’s head from
the data of Loizou et al. (2013a), Loizou et al. (2011), Loizou et al. (2013b), and Loizou
et al. (2015).1 The resolutions in pixels of the original images range from 376 × 286 to
456 × 371. The acquisitions used turbo spin-echo pulse sequences for T2 weighting on
a 1.5 tesla scanner; the repetition time was 4408 ms, the echo time was 100 ms, and
the echo spacing was 10.8 ms. The thickness of a cross-sectional slice was 5 mm. The
resolution was 2.226 pixels per mm. Discrete Fourier transforms of the downloaded full
reconstructions yielded proxies for the measurements in the spatial Fourier domain (“k-
space”). The scans did not accelerate the acquisitions via any form of parallel imaging.
Ongoing work of others generalizes our approach to raw multi-coil data.
In the figures, “Original” displays the original image, “Reconstruction” displays the
reconstruction f(X, S), “Error of Reconstruction” displays the difference between the
original image and the reconstruction, “Jackknife” displays the jackknife d from (1),
and “Bootstrap” displays the bootstrap e from (3). The values of the original pixels
are normalized to range from 0 to 1 (that is, the pixels in the original data for each
cross-sectional slice get normalized to range from 0 to 1; the images corresponding to
the same cross-sectional slice do not get further normalized individually). In the images
“Original” and “Reconstruction,” pure black corresponds to 0 while pure white corre-
sponds to 1. In the images “Error of Reconstruction,” “Jackknife,” and “Bootstrap,”
pure white and pure black correspond to the extreme values ±1, whereas 50% gray
(halfway to black or to white) corresponds to 0. Thus, in the images displaying errors
and potential errors, middling halftone grays correspond to little or no error, while
extreme pure white and pure black correspond to more substantial errors.
For the visualizations from Subsection 2.2, we focus on two cross-sectional slices: the
lower slice is the third of twenty in Appendix A, while the upper slice is the tenth. Fig-
ures 6–13 display the visualizations from Subsection 2.2. Figures 14 and 15 depict the
effects of the blur from Subsection 2.3, implemented with skimage.filters.gaussian
(a function for convolution with a Gaussian) from scikit-image of van der Walt et al.
(2014). Table 1 reports how drastically such a nearly imperceptible blur changes the
square roots of the sums of the squares of the error estimates. Background noise clearly
overwhelms the root-mean-square without any denoising of the error estimates — the
root-mean-square decreases dramatically even with just the mild denoising of blurring
with a normalized Gaussian convolutional kernel whose standard deviation is one pixel,
as in Table 1 and Figures 14 and 15. Tables 2 and 3 report how blurring with wider
Gaussians affects the root-mean-square; of course, wider Gaussian blurs are much more
conspicuous and risk washing out important coherent features of the error estimates,
while the last column of Table 3 shows that denoising with wider Gaussian blurs brings
diminishing returns. The width used in Table 1 and Figures 14 and 15 — only one pixel

1The Python software package fbooja includes a re-distribution of all data processed for the present
paper, along with modular codes for automatically reproducing all our results, and is available at
https://github.com/facebookresearch/fbooja. An extended data set with MRI scans from mul-
tiple patients (one of whom is the patient considered in the results reported here) is available at
http://www.medinfo.cs.ucy.ac.cy/old/doc/Publications/Datasets/MRIFreeDataset.zip

https://github.com/facebookresearch/fbooja
http://www.medinfo.cs.ucy.ac.cy/old/doc/Publications/Datasets/MRIFreeDataset.zip
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Figure 6: Radially retained sampling — lower slice (a)
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Figure 7: Radially retained sampling — lower slice (b)
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Figure 8: Radially retained sampling — upper slice (a)
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Figure 9: Radially retained sampling — upper slice (b)
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Figure 10: Horizontally retained sampling — lower slice (a)
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Figure 11: Horizontally retained sampling — lower slice (b)



20 Compressed Sensing with a Jackknife, a Bootstrap, and Visualization

Figure 12: Horizontally retained sampling — upper slice (a)
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Figure 13: Horizontally retained sampling — upper slice (b)
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Figure 14: Radially retained sampling — upper plots display the upper slice; lower
plots display the lower
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Figure 15: Horizontally retained sampling — upper plots display the upper slice; lower
plots display the lower
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— may be safest. Appendix B displays the grayscale reconstructions overlaid with the
blurred bootstraps (blurring with a Gaussian whose standard deviation is one pixel),
thresholded and colorized as in Subsection 2.2.

Table 1: Square roots of the sums of the squares of the error estimates

Sampling Slice Bootstrap Blurred Bootstrap
horizontally lower 12.9 6.25
horizontally upper 13.8 7.34
radially lower 17.5 10.5
radially upper 18.0 11.6

Table 2: Square roots of the sums of the squares of the error estimates for the lower
slice blurred against a Gaussian convolutional kernel of the specified standard deviation
(the standard deviation is in pixels), for sampling retained horizontally or radially

Std. Dev. Horizontally Radially
0.0 12.9 17.5
0.5 9.94 14.6
1.0 6.25 10.5
1.5 4.38 8.06
2.0 3.03 6.34
2.5 2.04 5.06
3.0 1.33 4.09
3.5 .847 3.34
4.0 .535 2.75

Table 3: Square roots of the sums of the squares of the error estimates for the upper
slice blurred against a Gaussian convolutional kernel of the specified standard deviation
(the standard deviation is in pixels), for sampling retained horizontally or radially

Std. Dev. Horizontally Radially
0.0 13.8 18.0
0.5 10.9 15.3
1.0 7.34 11.6
1.5 5.35 9.50
2.0 3.82 7.97
2.5 2.63 6.79
3.0 1.75 5.87
3.5 1.14 5.13
4.0 .745 4.54
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4. Discussion and Conclusion
The jackknife images are generally noisier than the bootstrap images. The bootstrap di-
rectly explores parts of the Fourier domain outside the observed measurements, whereas
the jackknife is more like a convergence test or a differential approximation to the boot-
strap — see, for example, the review of Efron and Tibshirani (1993). Both the jackknife
and the bootstrap occasionally display artifacts where in fact the reconstruction was
accurate. Moreover, they miss some anomalies; if the reconstruction completely washes
out a feature of the original image, then neither the jackknife nor the bootstrap can
detect the washed-out feature (consider, for instance, the stark long straight line in the
upper-right quadrants of the errors in reconstruction from Figures 2 and 3 — the jack-
knife and bootstrap fail to detect that line). Neither the jackknife nor the bootstrap can
hallucinate or otherwise introduce a feature in a reconstruction that the reconstruction
procedure is not designed to handle; in particular, any machine-learned model is prac-
tically guaranteed to miss any feature not represented in the data set used for training
the model. That said, in most cases they show the actual errors nicely. The estimates
bear an uncanny qualitative resemblance to the actual errors. Using both the jackknife
and the bootstrap may be somewhat conservative, but if the jackknife misses an error,
then the bootstrap usually catches it, and vice versa.

Similarly, most clinical practice involves comparison of MRI scans of the same patient
across proton density, T1, and T2 weighting, and sometimes also with other weightings
(FLAIR or fat-suppression, for example) and other physical quantities such as suscepti-
bility, diffusion, or densities of radiological contrast agents. Comparing across these dif-
ferent sequence types (and possibly different imaging modalities) affords an additional
opportunity to check for inconsistencies that may indicate errors in the acquisition or
reconstruction, including errors arising from compressed sensing. An anonymous re-
viewer also suggested that careful study of the errors introduced by particular schemes
for reconstruction (schemes such as the minimization of total variation tested in Sec-
tion 3) could inform Bayesian priors useful for interpreting individual reconstructions
in the clinical setting. The reviewer noted that the most prominent anomalies in the
examples of Section 3 appear to focus on the boundary interfaces of different tissues,
on artifacts due to motion of the cerebro-spinal fluid, and on idiosyncrasies in the ge-
ometry of the sampling scheme (radial versus horizontal). Clinicians will likely need to
consider the reviewer’s observations and perhaps develop suitable Bayesian priors.

Broadly speaking, the bootstrap-saturated reconstructions and bootstrap-interpolated
reconstructions look similar, even though the details of their constructions differ. Both
the bootstrap-saturated reconstruction and the bootstrap-interpolated reconstruction
highlight errors more starkly on pixels for which the reconstruction is bright; dark green,
dark red and dark magenta (that is, with a relatively low value in hue-saturation-value)
simply do not jump out visually, even if the green, red or magenta are fully saturated.
That said, retaining the value of the pixel in the reconstruction makes the colorization of
the bootstrap-saturated reconstruction and the bootstrap-interpolated reconstruction
far less distracting than in errors over a threshold overlaid, with much higher fidelity
to the form of the grayscale reconstruction in the colored regions. Of course, the errors
over a threshold overlaid do not alter the grayscale reconstruction at all when the
errors are within the threshold, so the fidelity to the grayscale reconstruction is perfect
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in those areas of the images with overlaid errors where the error estimates do not go
beyond the threshold.
Thus, none of the colorizations is uniformly superior to the others, and all may be
too distracting for actual clinical practice. Alternatives include direct display of the
bootstrap error estimates, possibly complemented by the bootstrap subtracted from
the reconstruction (to illustrate the effects of “correcting” the reconstruction with the
error estimates), which are readily interpretable and minimally distracting.
The bootstrap subtracted from the reconstruction tends to sharpen the reconstruction
and to add back some features such as lines or textures that the reconstruction obscured.
However, this reconstruction that is “corrected” with the bootstrap estimations may
contain artifacts not present in the original image — the error estimates tend to be
conservative, possibly suspecting errors in some regions where in fact the reconstruction
is accurate. The “corrected” reconstruction (that is, the bootstrap subtracted from the
reconstruction) can be illuminating, but only as a complement to plotting the bootstrap
error estimates on their own, too.
A sensible protocol could be to check if the root-mean-square of the blurred bootstrap
is large enough to merit further investigation, investigating further by looking at the
full bootstrap image together with the reconstruction “corrected” by subtracting off
the bootstrap error estimates (or colorizations). Consulting the jackknife is another
(albeit noisier) possibility.
For obvious reasons, the clinical setting needs to be rather conservative in adopting
novel techniques such as those proposed in the present paper. Medical research, how-
ever, might be able to more unreservedly leverage the proposed methods to screen for
problems or otherwise quantify uncertainty in advanced procedures for image acquisi-
tion, reconstruction, and analysis. The jackknife and the bootstrap can estimate errors
in any scheme for reconstruction from undersampled measurements, without requiring
any modification of the software for reconstruction — a convenience that could favor
accelerated adoption as a handy tool in research, whether as inputs to a pipeline of
data analysis or merely for flagging egregious errors.

Computational details
The results in this paper were obtained using the Python package fbooja available at
https://github.com/facebookresearch/fbooja. fbooja builds upon PyTorch of Paszke
et al. (2019), which is available at https://pytorch.org along with instructions for
installation of the dependencies Matplotlib of Hunter (2007), NumPy of Harris et al.
(2020), Pillow of Clark (2021), Scikit-image of van der Walt et al. (2014), and SciPy
of Virtanen et al. (2020).
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