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Abstract

The virus SARS-CoV-2 has resulted in numerous modelling approaches aris-
ing rapidly to understand the spread of the disease COVID-19 and to plan for
future interventions. Herein, we present an SEIR model with a spatial spread
component as well as four infectious compartments to account for the variety of
symptom levels and transmission rate. The model takes into account the pat-
tern of spatial vulnerability in South Africa through a vulnerability index that

http://dx.doi.org/10.52933/jdssv.v2i7.46


is based on socioeconomic and health susceptibility characteristics. Another spa-
tially relevant factor in this context is the level of mobility throughout. The
thesis of this study is that without the contextual spatial spread modelling, the
heterogeneity in COVID-19 prevalence in the South African setting would not be
captured. The model is illustrated on South African COVID-19 case counts and
hospitalisations.

Keywords: COVID-19, SEIR model, spatial, excess deaths, South Africa, hospitalisa-
tions.

1. Introduction
South Africa is a large, diverse country with marked income inequality and differences
in access to adequate housing, basic municipal services, transportation and medical
care. Many of those affected by poverty also have increased morbidity risks due to
tuberculosis (TB) and human immunodeficiency virus (HIV). These factors contribute
to spatially diverse levels of vulnerability to the COVID-19 pandemic, which will result
in limited accuracy if not taken into account when modelling.
At the onset of the COVID-19 pandemic, it remained uncertain how the spread of Se-
vere Acute Respiratory Syndrome Coronavirus (SARS-CoV-2) would affect the South
African healthcare system, particularly the public system. The ability of the govern-
ment to provide quality health outcomes and to source necessary equipment were in the
spotlight and dominated news discussions. The South African government proclaimed
COVID-19 a national disaster on the 15th of March 2020 and thereafter, on the 26th
of March placed the country into a national lockdown, which halted most economic
activity and restricted personal movements by only permitting movement associated
with essential activity. This most stringent alert level, that later became known as
Level 5, was intended to contain the spread of SARS-CoV-2 and to adequately prepare
the state, particularly the healthcare system, for the epidemic.
Modelling initiatives focusing on the key parameters, such as the potential magnitude of
infections across the population and possible hospitalisation requirements, became crit-
ical as a means to assist government preparations. Hospitalisation requirements were a
key component that would assist in evaluating whether the healthcare system would be
able to cope with the cases needing hospital care, and identify where the impact would
be most severe. Assessing these at different spatial scales was essential, as the country’s
hospital bed capacities and relevant resources vary across administrative boundaries.
Most of the hospital-related care planning for COVID-19 occurred at provincial level.
These included quarantine facilities, which involved decisions on building new field
hospitals or refurbishing existing infrastructure and identifying quarantine sites. This
paper argues for the incorporation of spatial spread into such modelling initiatives.
The Susceptible-Exposed-Infectious-Recovered (SEIR) compartmental model is a well-
known epidemiological model, developed by Kermack and McKendrick (1991), for pre-
dicting the spread of a disease. As with most compartmental models, the underlying
assumption is that each person in the model is equally likely to interact with any other
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person, referred to as ‘homogeneous mixing’. While this assumption is untrue for almost
all cases of disease spread, it was important to account for it when assessing COVID-19
interventions as many of the interventions proposed involved creating spatial constraints
to movement. For the case of South Africa, these interactions are spatially constrained
and this must be accounted for. Moreover, in South Africa, due to high inequality and
a history of spatial segregation there are large differences in the capacity of different
segments of society to self-isolate, and therefore in their exposure to the disease. This
makes modelling the pandemic at national or provincial scale unsatisfactory, due to
small scale variation in a number of societal characteristics.
South Africa has deep-rooted inequalities causing stark differences in the quality and
access of communities to basic and critical services such as healthcare, running water,
sanitation, housing and social amenities. South Africa’s current GINI coefficient of 0.65
(StatsSA 2017) highlights these inequalities and shows this country to be amongst the
most unequal countries globally with regards to income distribution. Wealth inequality
is even starker with an estimated 10% of the population sharing close to 95% of all
wealth (StatsSA 2017). With the onset of the COVID-19 pandemic in South Africa,
this high level of inequality raised concerns amongst global leaders in the health sector
about the detrimental effects that the pandemic might have on the society and economy
at large, specifically those most vulnerable.
Aside from the differences in income and wealth distribution, the differences in housing
conditions and access to basic services such as water and sanitation raised critical
concerns about the transmission potential of the virus, and whether this would be
skewed to higher densities in informal settlements with limited access to basic services.
The health susceptibility of communities was also raised with regards to the stark
spatial differences in access to quality health services and the underlying comorbidities
present within communities.
Including mobility in the model is an important factor in South Africa even under
varying lockdown approaches for the pandemic. The mobility data available for this
research shows significant mobility still occurring under lockdown due to very limited
access to daily needs such as food and income. A significant proportion of the South
African population lives day-to-day and do not have savings or food stores to rely on.
Earlier in 2020, the Al Jazeera news network brought to light an issue relevant to all
developing countries when they published an article “In Africa, social distancing is a
privilege few can afford”1. This statement makes it clear that many individuals who
work and live in African countries do not possess the economic status to facilitate self-
isolation. South Africa is one such country where the vast majority of the population
lives under the poverty line (Finn et al. 2014). Certain challenges that impoverished
South Africans have to contend with can increase their risk of COVID-19 infection.
Given this fact it stands to reason that some areas will have higher transmission rates
than others, thus necessitating the inclusion of a spatial element to models that attempt
to model COVID-19 in South Africa.
This paper introduces methodology for a spatial SEIR model for COVID-19 in South
Africa. The spatially diverse levels of risk at ward level2 are incorporated with a

1https://www.aljazeera.com/opinions/2020/3/22/in-africa-social-distancing-is-a-
privilege-few-can-afford [accessed on 31 March 2021]

2A ward is defined in South Africa as an administrative area for which larger municipalities are

https://www.aljazeera.com/opinions/2020/3/22/in-africa-social-distancing-is-a-privilege-few-can-afford
https://www.aljazeera.com/opinions/2020/3/22/in-africa-social-distancing-is-a-privilege-few-can-afford
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South African vulnerability index as well as mobility data between wards obtained
from cellular phone-based data on peoples’ movement between wards. We add spatial
elements into the compartmental epidemiological model. We advocate that any model
for the spread of COVID-19 in South Africa should make use of a spatial element due
to the societal structure within this developing country. Forecasting cases in South
Africa using a single SEIR model at a national level does not allow one to take the
spatial diversity present into account or respond effectively from a healthcare point
of view. The aim, therefore, of creating the spatially modified SEIR model for South
Africa is to investigate whether forecasts can be improved at a local level, by firstly
tracking and predicting the spatial spread of the infection using the spatial location of
cases, and secondly by bringing in factors specific to each area, such as vulnerability
and population mobility.
Other solutions to the homogeneous mixing problem have included running individual-
based simulation models. The solution proposed here is less computationally intensive
but still, we argue, provides the necessary level of spatial detail for fighting an epidemic.
This paper does not claim to provide a model that improves over all other modelling
approaches of the COVID-19 pandemic. The aim is rather to illustrate that the pro-
posed model captures the spatial heterogeneity inherent in the nature of the spread of
the virus, or in fact any other similar disease, and to demonstrate the importance of
incorporating these effects.
The paper proceeds with a literature review in Section 2, and follows with the method-
ology in Section 3. Section 4 discusses the implementation of the proposed spatial
model, Section 5 presents the results, Section 6 provides a critical discussion and Sec-
tion 7 concludes.

2. Literature Review
The use of SEIR type models in disease modelling is common, but in their simplest
form these models assume homogeneous mixing of the population. Alternatives include
stratified models. Stratified models with contact matrices between population strata
are used to account for different populations in large areas and movement between
areas. One of the first models to introduce mobility between spatial units via contact
matrices is Sattenspiel and Dietz (1995). Generally the methods using contact matrices
are applied when a small number of spatial units are being considered. The homogeneity
assumption is relaxed by varying the contact rate between strata, commonly taken as
age groups. Rost et al. (2020) follow the contact matrix approach in incorporating
spatial dependency into the model for COVID-19 in Hungary. Mobile phone geolocation
data has also been used to inform compartmental models, such as Peixoto et al. (2020)
who estimate probabilities of movement between cities which is used to adjust the
infected equation in a simple SI model. A more elaborate stochastic approach for
estimating the mobility terms in the differential equations is followed in Arandiga et al.
(2020).
The South African healthcare system consists of both the public and the private sys-

subdivided into. http://www.statssa.gov.za/census/census_2001/geo_metadata/geography_
metadata.pdf

http://www.statssa.gov.za/census/census_2001/geo_metadata/geography_metadata.pdf
http://www.statssa.gov.za/census/census_2001/geo_metadata/geography_metadata.pdf
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tem. These are characterised by disproportionate spending on healthcare, medical care
infrastructure, equipment and supplies, doctor-to-patient ratio as well as the quality
of healthcare. The majority (over 80%) of South Africans rely on public healthcare
while the healthcare requirements for the remaining (less than 20%) population are
covered by private health insurance (Maphumulo and Bhengu 2019; Pillay 2009). The
gap between these two healthcare sectors is widened by the disparities in the distri-
bution of medical practitioners, with the public health system being under-resourced
and overstretched in comparison to the private health system (Gray and Vawda 2019;
Maphumulo and Bhengu 2019). According to the latest edition of the South African
Health Review, South Africa has one of the lowest doctor-to-population ratios of 0.9
doctors per 1,000 people (Gray and Vawda 2019), compared to the ratio of 2.5 medical
staff per 1,000 people, recommended by the World Health Organization3. In the South
African private healthcare sector, this ratio is believed to be higher (Gray and Vawda
2019) even though the existing estimates lack consensus due to lack of data, making it
difficult to arrive at a widely acceptable estimate. The latest available estimates suggest
the ratio of doctor-to-population in the private sector to be around 1.75 doctors per 1
000 people (Competition Commission 2018). An increased doctor to population ratio
is important for improved health outcomes (Bloor et al. 2006). Other public health
challenges involve poor governance and management as well as the burden of diseases
including HIV and TB. Approximately 7.5 million people were estimated to be living
with HIV across all ages by the end of 2019 (Fronteira et al. 2021) and according to
the National Institute of Communicable Diseases (NICD) surveillance report, around
4.3 million of them are on anti-retroviral treatment. Meanwhile, TB is estimated to be
responsible for ill health of around 320 000 people annually and is a leading cause of
death for about 80 000 people every year4. All these factors have continued to influence
the quality of healthcare, particularly that of the public sector.
Urban transport in South Africa exhibits a large degree of spatial heterogeneity. This
is largely due to the legacy of apartheid, during which city planning was geared towards
restricting rather than facilitating access (Giddy 2019). Formal public transport has
not proved sufficient to meet the needs of all lower-income South Africans. This has led
to the development of paratransit systems, namely the minibus-taxi transport sector
(Jennings and Behrens 2017). Paratransit systems are not formal (de Beer 2019) and
arise ad hoc to fulfil local transport needs (Jennings and Behrens 2017). In line with the
pre-existing patterns of city development, South African paratransit systems transport
people from low-income residential areas such as informal settlements, generally located
on the fringes of cities, to city centres providing work opportunities (Czeglédy 2004;
Woolf and Joubert 2014), while middle-to-upper-class residents travel by private car
(Giddy 2019; Woolf and Joubert 2013). People living in areas serviced by public trans-
port, generally outlying low-income areas (Czeglédy 2004; Woolf and Joubert 2013),
therefore have a higher transport-associated risk than those living in higher-income
areas, such as suburbs and estates. This increases spatial heterogeneity in the risk of
COVID-19 infection across South African cities.

3World Health Organization’s Global Health Workforce Statistics, OECD, supplemented by country
data, Physicians (per 1,000 people) - South Africa| Data https://data.worldbank.org/indicator/
SH.MED.PHYS.ZS?locations=ZA

4UNAIDS, 2022. South Africa, https://www.unaids.org/en/regionscountries/countries/
southafrica

https://data.worldbank.org/indicator/SH.MED.PHYS.ZS?locations=ZA
https://data.worldbank.org/indicator/SH.MED.PHYS.ZS?locations=ZA
https://www.unaids.org/en/regionscountries/countries/southafrica
https://www.unaids.org/en/regionscountries/countries/southafrica
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The inherent poverty in communities also affects disease transmission. While some
studies conclude that post-apartheid South Africa has seen an improvement with re-
gards to the intensity of poverty (Fransman and Yu 2019), the country still faces a sig-
nificant challenge regarding poverty and unequal distribution of resources (Finn et al.
2014), and poverty as well as general inequality vary spatially at a municipality level
(David et al. 2018). In particular, areas that historically are known to have experienced
higher intensities of poverty and inequality are still experiencing such issues (David
et al. 2018). These areas are known as informal settlements, the South African term
for what could generally be referred to using the umbrella term “slum” internationally.
As per this definition, individuals who live in slums do not enjoy much free space and
live in small dwellings where it is not necessarily possible to isolate themselves from
other family members should they become infected with COVID-19 (Ezeh et al. 2017).
Furthermore, the dwellings in these slums are so densely packed that the risk of infect-
ing a neighbour is also very high. We thus expect the rate of transmission in such areas
to be higher than more formally established settlements. Estimating the transmission
risk in such areas poses a significant challenge since their actual population size may
be unknown (Ezeh et al. 2017).
Individuals have been shown to seek medical assistance with varying degrees of urgency,
with economic status and location of residency often being key factors (Lynch et al.
2017; Bassett et al. 2017). Some, also, will not seek medical attention due to additional
costs associated with certain medical procedures, poor quality of medical services and
even the potential stigma that comes from being suspected or confirmed to be infected
with COVID-19 (Lynch et al. 2017; Bassett et al. 2017; Choonara and Eyles 2016;
Bruns et al. 2020). Once again, these factors tend to affect poverty-stricken individuals
more severely than their wealthier counterparts and thus their effect will vary spatially
(Lynch et al. 2017; Choonara and Eyles 2016).

3. Materials and Methods
SEIR models are a type of compartmental model that are commonly used to mimic
population dynamics, such as the spread of infectious diseases, utilising a series of inter-
related mathematical equations. The basic SEIR model divides a relevant population
of size N into four components that characterise subsets of the population in terms of
their disease status. Individuals potentially start out as susceptible S(t), with some
of those becoming exposed E(t) to the disease prior to becoming infectious I(t) and
subsequently moving into a state of recovery R(t), with long-lived immunity (Li et al.
1999). In the aftermath of the COVID-19 worldwide pandemic, mathematical models
like the SEIR model gained favour in the scientific community and were essential to
public and policy discourse (Eker 2020). These models are important in guiding policy
and decision making in public healthcare systems, as they are used to forecast, evaluate,
and monitor the possible impact of a disease on the community, as well as to design
approaches to regulate disease transmission (Chen 2014). Furthermore, these models
may be used to examine the impact of non-pharmaceutical treatments, notably those
implemented across many nations to combat the spread of SARS-CoV-2, or to explore
relevant scenarios in complex disease systems (Lai et al. 2020). In South Africa, for ex-
ample, various levels of lockdown (restricted mobility of individuals) were implemented
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Figure 1: Schematic diagram of a basic SEIR model compartments and parameters

at various times to contain the spread of the disease and to prepare the hospital system
for an influx of patients infected with SARS-CoV-2. It was critical in this investigation
to measure the degree of SARS-CoV-2 transmission using an SEIR model at various
levels of lockdown.
SEIR models are useful for modelling nonlinear patterns of disease development through
stages such as time of onset, take-off, peak, and decline, as well as calculating the pos-
sible duration of an epidemic disease outbreak Iannelli and Pugliese (2014); Islam et al.
(2020). Figure 1 illustrates the compartments in an SEIR model with the transition
rates between them. Differential equations are used to estimate and monitor fractions
of the original population as they transit from one compartment to the next in each
time-step.
Depending on the process by which the disease is propagated, its features, and the
assumptions made, several SEIR model extensions can be used. In circumstances where
a disease’s immunity is only temporary, these models can be expanded to allow the
recovered population to revert to a susceptible condition (Li et al. 1999). A basic
SEIR model may be specified by quantifying the rates of change in each of the four
compartments, which can be represented as follows:

dS

dt
= −βSI

N
(1)

Equation 1 assumes that the change in the susceptible S population from one time-
step to the next is precisely proportional to the rate of transmission β (also called the
infection rate) when contact is made with an infected individual. This is normalised by
the population size, N . Initial contacts can result in secondary infections. These can
be measured by the reproductive number, R0 = β

γ
, where γ is the recovery rate and

therefore γ−1 is the average infectious period. Then R0 estimates the average number
of infections that an infected individual can generate.
Being in contact with an infected person leads to equation 2, where people who have
been exposed to the illness will become infectious after a certain amount of time (the
average incubation period is σ−1).

dE

dt
= βSI

N
− σE (2)

The transition of exposed persons to a state of infectiousness minus the number who
recovered over that time period may be used to calculate the change in the number of
infectious individuals (equation 3).

dI

dt
= σE − γI (3)
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The rate γ at which the infectious individuals recover, makes it possible to estimate
the number of persons recovering at any given moment (equation 4). In the current
context, recovered can refer to both individuals who battle the sickness and those who
die as a result of it.

dR

dt
= γI (4)

The basic SEIR model has been adapted or extended in many cases to include addi-
tional compartments, for example in (Aldila et al. 2020; Zhang et al. 2020). We use
an adaption in which we include four infected (I) components for four different types
of infected individuals, separated according to the severity of their infection: Asymp-
tomatic (I1), mild (I2), severe (I3), and critical (I4). For simplicity’s sake, individuals
only move through one of these four compartments for the infected based on what their
final disease stage will be. Each of the infected compartment is allowed to vary in terms
of the duration of its infectious period (γ−1

1 , γ−1
2 , γ−1

3 , γ−1
4 ) and the asymptomatic class

is assumed to be ρ times as infectious as all other classes (ρ < 1).
SEIR models simulate the spread of a disease for the entire population with an as-
sumption of homogeneous mixing. When implemented at a national level, this does
not mimic reality. In order to overcome this underlying assumption and to bring in
localised factors, as discussed in Section 1, we add a spatial component to this adapted
SEIR model to simulate the spread of COVID-19 through the 4392 different municipal
wards of South Africa, using a daily time-step. This means that in each ward we model
the course of the infection for that ward at a daily time-step, using the adapted SEIR
compartmental model to simulate the dynamics specifically for that ward. In order to
simulate the interaction of people between wards, exposed individuals from each ward
are distributed amongst the wards, at the start of each time-step, based on movement
data from cell phone service providers. This movement of individuals is discussed in
more detail further on in this section. Population size of the wards ranges from 293
people to >100 000 people and within the wards people were assumed to mix homo-
geneously. Figure 2 shows this spatial model in detail with wards i = 1, 2, ..., n. The
choice of spatial unit is important and in practice involves some compromise between
granularity and computational cost. At one extreme, each individual could be located
in their own spatial unit, essentially mimicking an agent-based model, while at the other
extreme, one could have the standard compartmental model with only one spatial unit,
as is the case with the national SEIR model.
The incubation period (σ−1) and the infectious period for each infectious compartment
(γ−1

1 , γ−1
2 , γ−1

3 , γ−1
4 ) were kept the same across geographic wards. Taking Ni = Si +

Ei + I1i
+ I2i

+ I3i
+ I4i

+ Ri as the population in ward i, with R0i
as the ward-level

R0 and taking the infection rate, βi, for that ward as βi = R0i
γ̄, the flow between the

main compartments in the model is implemented within each geographic ward i using
the set of differential equations (5)-(11).

dSi
dt

= −βiSi(ρI1i
+ I2i

+ I3i
+ I4i

)
Ni

(5)

dEi
dt

= βiSi(ρI1i
+ I2i

+ I3i
+ I4i

)
Ni

− σEi (6)
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Figure 2: The spatial SEIR model used in this study, indicating the movement of the
Exposed class between wards i = 1, 2, ..., n.

dI1i

dt
= p1σEi − γ1I1i

(7)
dI2i

dt
= p2i

σEi − γ2I2i
(8)

dI3i

dt
= p3i

σEi − γ3I3i
(9)

dI4i

dt
= p4i

σEi − γ4I4i
(10)

dRi

dt
= γ1I1i

+ γ2I2i
+ γ3I3i

+ γ4I4i
(11)

3.1. Vulnerability Index
The COVID-19 Vulnerability Index of the population is a composite indicator devel-
oped at the early mitigation and prevention phase of the South African government’s
emergency response to the pandemic (le Roux et al. 2020). In the early disaster man-
agement response phase, several sector departments required similar information with
regards to the location and characteristics of highly vulnerable communities. The in-
dicator (le Roux et al. 2020) was developed to facilitate a coordinated response by
several government sectors with regards to prioritising intervention areas for water
provision, sanitation upgrading, social interventions and community risk awareness.
The indicator provides a spatial overview of communities that are highly vulnerable to
COVID-19 based firstly on how effectively the spread of COVID-19 can be contained
(the transmission potential), and secondly on the population’s susceptibility to severe
disease associated with contracting COVID-19 (the health susceptibility). The trans-
mission potential highlighted areas and communities that would struggle to apply the
basic principles of social distancing, hand washing and good basic hygiene by including
spatial information on informal settlement areas, communities with a lack of access to
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(a)

(b)

Figure 3: The vulnerability index used in the spatial SEIR model (a) Histogram of the
vulnerability indices across the wards, (b) Vulnerability index per ward (colour legend
representing quantiles)

basic services and areas of high population density. The health susceptibility of individ-
uals was added to account for older populations and populations with a higher disease
burden and inadequate access to medical care, by including data on age cohorts, comor-
bidities present and poverty levels (as a proxy for healthcare and the access thereof).
About 93% of South African households have access to improved drinking water sources
(piped water inside and outside the dwelling) (Matlala et al. 2017) and nearly 80% of
households have access to safely managed sanitation services (StatsSA 2016). Figure 3
provides an illustration of the spatial vulnerability index across South Africa.
In order to use this COVID-19 Vulnerability Index in the model, it is normalised across
all the wards and then scaled to have a range of 0.4 with this range centered around 1,
resulting in a range of 0.8 to 1.2. It was applied by multiplying the national baseline
R0 by this factor to create an R0i

for each ward i = 1, 2, ..., n. For highly vulnerable
wards, the R0 would increase, since their scaled vulnerability factor would be greater
than 1, and for the less vulnerable wards the R0 would reduce. The value of the ward-
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level modelling is that key parameters could be varied per ward based on the economic
and social vulnerability of the people as well as interventions implemented (see Table
3 for the list of interventions and scaling factors). In addition, the proportions p2i

,
p3i

, p4i
of exposed people moving into the mild, severe and critical infected classes was

adjusted based on the age structure distribution within each ward. For example, 98%
of the symptomatic 0-9 year-olds were placed in the mild class while only 52% of the
symptomatic individuals in the age 80+ class were placed in the mild class. The severity
by age categorisation is given in Table 1 and this breakdown was derived from World
Health Organisation data (https://www.who.int/data). These data were combined
with the number of people in each age class in a ward to get overall percentages per
severity class for each ward. Figure 4 also illustrates the age profile spatially across
South Africa. There is a clear indication of a young population in South Africa.

Table 1: Severity percentages per age class applied to symptomatic individuals

Age class mild severe critical
0-9 98.0 2.0 0
10-19 98.0 2.0 0
20-29 90 8.8 1.2
30-39 85 12.6 2.4
40-49 79.0 17.0 4.0
50-59 75.0 19.2 5.8
60-69 69.3 23.0 7.7
70-79 59.7 28.2 12.1
80+ 52.3 33.4 14.3

3.2. Mobility
The movement between wards is approximated by daily aggregate movements of the
people based in that ward using cell phone location data. An individual is based in a
geographic ward if their cell phone is located there between 8pm (of the previous day)
and 4am (of the current day). For each ward (ward i with Ni residents say) for each
day, we have a vector of length k (where k is the number of wards), where element j of
that vector is the number of residents of ward i who appeared in ward j. We use this
vector to derive a multinomial distribution (by dividing the vector by its sum) which
represents the daily probability that persons from ward i appeared in any other ward.
This movement data was summarised by a k by k matrix representing the average
probability of movement between wards for the different interventions imposed by the
SA government during this time i.e., for each lockdown scenario one movement matrix
was produced representing the average inter-ward movement during these restriction
conditions (see Table 2). A movement matrix for a Business As Usual (BAU) scenario
prior to government interventions was also created. Since cell phone data was not
available for lockdown levels 1 and 2, level 2 was estimated as a slightly constrained
version of the BAU mobility matrix and the BAU matrix was used for level 1.

https://www.who.int/data
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(a) (b)

(c)

Figure 4: Proportions of age groups per ward (a) 0-19 years, (b) 20 - 59 years, (c) 60+
years

Table 2: National interventions used in the model

Intervention Date Scaling Factor
Business-as-usual (BAU) No specific date - used for testing

scenarios
1

Hard lockdown-level 5 (LD) 26 March-30 April 2020 0.6
Level 4 lockdown (L4) 1 May-31 May 2020 0.7
Level 3 lockdown (L3) 1 June-17 August 2020 0.75
Level 2 lockdown (L2) 18 August-20 September 2020 0.8
Level 1 lockdown (L1) 21 September-29 December 2020 0.85
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3.3. Model Assumptions
Details of the final parameters chosen for this model, and justification based on litera-
ture are presented in Table 3. Note that the parameters were not estimated due to the
uncertainty in case numbers and testing accuracy.
Since the model was initially run in a real-time context rather than a post-pandemic
context, only sources that were available up to June 2020 were used to calibrate the
model. South African sources of parameter values were predominantly used since these
had either been calculated on South African data or decided on by experts from the
South African COVID-19 Modelling Consortium (SACMC)5. There is a large variation
of possible values for R0 (the number of secondary infections produced by one primary
infection in a fully susceptible population) in the literature, and since the model is also
highly sensitive to the R0, choosing an appropriate value is difficult. Herein R0 was
chosen as the mean value from a systematic review of 81 papers from January to July
2020 which estimated R0 values for the beginning of the pandemic, i.e., prior to the
implementation of non-pharmaceutical interventions (Thiede et al. 2020).
The South African COVID-19 Modelling Consortium (SACMC) have also done regular
updates of the predicted non-ICU and ICU beds required per province (see SACMC
(2020) for example) although not all updates were released to the public. Using the
spatial SEIR model, our aim was to see whether we could create reliable projections
at a high spatial resolution so as to better understand the spatial spread of hospital
requirements and expected peaks across the country. Various projections were done
from several starting dates. It was found that using a starting date from too early on
in South Africa’s fight against the pandemic did not provide sufficient case data across
the spatial units, with cases being limited to a few epicentres. For the purposes of this
paper, the starting date of 1st June 2020 is used to show the model results since this
represents the date at which South Africa moved to level 3 of lockdown, thus allowing
for far more freedom of movement of people between spatial units (represented by the
L3 mobility matrix). This was also at a point in the pandemic where cases were being
detected in all areas across the country.
The main concern in South Africa has been hospital capacity, thus the projection of
potential hospitalisation cases of COVID-19 for each spatial unit was investigated. An
assumption had to be made regarding the proportion of severe (I3) and critical (I4) in-
dividuals that would be admitted to hospital. Since critical cases are defined to be the
proportion requiring either ICU, ventilation or oxygen, 100% of these individuals are
assumed to be hospitalised. Given the difficulty in accessing healthcare for a large por-
tion of the South African population, as discussed in the background, it was assumed
that not all individuals with severe cases of COVID-19 would report to hospital. It was
therefore necessary to determine what proportion of our projected severe cases were
likely to go to hospital. Studies from Italy (Reno et al. 2020) and the US (Jehi et al.
2020) have reported statistics of 20% and 21.1%, respectively, of symptomatic cases
requiring hospitalisation, while a South African study, focusing on the asymptomatic
spread, Anguelov et al. (2020), calculated an average of 4.02% requiring hospitalisa-
tion. The latter figure was based on the percentages of severe symptomatic cases per
age group taken from Ferguson et al. (2020) and the age structure of South Africa’s

5Details and reports at www.sacmcepidemicexplorer.co.za



Journal of Data Science, Statistics, and Visualisation 27

Table 3: Base parameters for spatial SEIR model with supporting literature

Description Notation Value Used Literature
National baseline reproduc-
tive number

R0 gamma(57.2, 0.05)
with mean 2.86

Proportion of asymp-
tomatic cases

p1 0.75 Anguelov et al.
(2020); SACMC
(2020)

Percentage of mild cases
amongst symptomatic

p2i
/(1 − p1) ward-based with

average 87.7%
Percentage of severe cases
amongst symptomatic

p3i
/(1 − p1) ward-based (avg:

10.0%)
Percentage of critical cases
amongst symptomatic

p4i
/(1 − p1) ward-based (avg:

2.3%)
Relative infectiousness of
asymptomatic cases

ρ 0.75 Ngonghala et al.
(2020); Li et al.
(2020); SACMC
(2020)

Incubation period 1/σ gamma(2, 1)
days

NICD (2020a)

Infectious period for asymp-
tomatic cases

1/γ1 gamma(2, 7/2)
days

SACMC (2020);
Ferguson et al.
(2020); Tang et al.
(2020)

Infectious period for mild
cases

1/γ2 gamma(2, 7/2)
days

SACMC (2020);
Ferguson et al.
(2020)

Infectious period for severe
cases

1/γ3 7 days SACMC (2020);
Ferguson et al.
(2020)

Infectious period for critical
cases

1/γ4 7 days SACMC (2020);
Ferguson et al.
(2020)

Infectious period until hos-
pitalisation

7 days SACMC (2020);
Palmieri et al.
(2020); Ferguson
et al. (2020)

Duration of hospital stay 12 days SACMC (2020);
CHSUFT (2020);
Ferguson et al.
(2020)

Relative reduction in R0
due to national interven-
tions

see Table 2 SACMC (2020)

Relative change inR0 due to
vulnerability

ward-based
(range[0.8, 1.2])
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population. A statistic close to this 4% was also used by SACMC in their May 2020
presentation (SACMC 2020). Although the proportions of symptomatic cases that fall
in the severe and critical compartments in our spatial SEIR model vary per spatial unit
based on the age structure in each area, on average across the country the critical cases
constitute 2.5% of the symptomatic cases while the severe cases represent 10.7% of all
symptomatic cases. These are clearly well below the 20% recorded in other countries,
but well above the 4% estimated in the two South African studies mentioned. Using
hospitalisation data that was available for the Gauteng6 and Western Cape7 provinces
on 1st June 2020 (using a 7-day moving average) and comparing this to the confirmed
cases (assuming for simplicity sake that confirmed cases were similar in number to
symptomatic cases), we calculated the proportion of our severe (I3) cases reporting to
hospitals in Gauteng to be roughly 30%, while for the Western Cape this number was
found to be only 10%. Together with the critical (I4) cases, this represents 5.7% of all
symptomatic cases for Gauteng and 3.6% for Western Cape. Although the population
in Gauteng is on average a much wealthier population and has the highest access to
medical care out of all the provinces in South Africa (StatsSA 2011), it is unclear as
to why the proportion in the Western Cape was so much lower. One might surmise
that it was due to their rigorous testing regime (NICD 2020c) in the early stages of the
pandemic which actually resulted in a much higher detection ratio than elsewhere in
the country.
Since the delay from initial infection to time of getting a confirmed test result was
estimated to be about 7 days in the early stages of the pandemic (although this could
be longer in some cases), the model was initialised with the number of confirmed active
cases in each ward, taken from 7 days after the start date for the simulation run. It
is well known that the confirmed cases are only a portion of the actual cases in the
population, but the exact ratio is unknown and would depend on the testing strategy
per country. An earlier study from Italy (Reno et al. 2020) used a ratio of 10 undetected
cases to every 1 confirmed positive case while a more recent study (Böhning et al. 2020)
done on several European countries, including Italy, calculated a ratio of 2.3. A USA
study (Wu et al. 2020) using data up to the 18th April 2020 calculated that the number
of infections was nationally 9 times higher than the reported cases, although this factor
varied per state and region. We chose to use a ratio of 5 to 1, thus assuming that 20%
of the actual infected people were tested and confirmed as cases.

4. Implementation
The spatial SEIR model is simulated over a number of runs and number of time-steps.
The model is initialised with a number of cases in each compartment of the model.
Then the model is simulated for subsequent time-steps, simulating the movement of
cases between compartments and spatial units.
We assume, for simplicity, that the population of each ward is fixed, i.e., no births,

6Gauteng Province, Department of Health, 2020, COVID-19 Daily Media Reports on Gauteng
COVID-19 Confirmed Cases District Breakdown. [Online] Available at: https://www.gauteng.gov.
za/Publications. [Accessed June 2020 to November 2020]

7Western Cape Government. Update on the coronavirus by Premier Alan Winde. [Online] Available
at: https://coronavirus.westerncape.gov.za/news/. [Accessed June 2020 to November 2020]

https://www.gauteng.gov.za/Publications
https://www.gauteng.gov.za/Publications
https://coronavirus.westerncape.gov.za/news/
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non-COVID-19 deaths or permanent movement between wards. At each time-step
the number of new exposed people is produced by running the SEIR model for each
ward. The new exposed are then randomly distributed over the current and other wards
based on the mobility data, essentially using one draw from the appropriate multinomial
distribution. This assumes that the spread of the virus matches mobility patterns, in
particular that infections are equally likely to occur at any point of an individual’s
movements throughout the day. At each subsequent time-step the spatial allocation of
exposed is taken into account by adding up the new exposed that have been allocated
to that ward and subtracting the exposed that have been allocated elsewhere to provide
the initial condition for the SEIR at that time-step.
Explicit in this formulation is the assumption that for a given ward, the ward level
population parameters (number of susceptible, exposed, infected and recovered) drive
the number of new exposed cases. This is clearly a simplification, since as individuals
move out of their ward they interact with a wider group and other individuals may
move into the ward for various time periods. This is more likely to be problematic at
the end of the epidemic when some wards have low numbers of susceptible individuals
while others are still highly susceptible. Moreover, the mobility data does not allow
one to distinguish between transitory movements through a ward and extended stays
in a ward. For example, wards which contain transport hubs and train stations may
be allocated more infections than is realistic.
The model was run on facilities made available by the Centre for High Performance
Computing (CHPC)8 which consisted of 10 x 24 core machines. Four simulations were
run per core per machine and hence the model was run a total of 960 times, each
time with different parameter combinations as presented in Table 3 and random draws
from the multinomial movement matrix. The final model outputs were summarised into
data structures containing selected percentiles (10th, 25th, 50th, 75th, 90th) calculated
across all simulations, as well as the mean and standard deviation, with values for each
model compartment (Si, Ei, I1i, I2i, I3i, I4i, Ri) given per ward and per day. We
selected the mean for display purposes in the results section.
The data made use of in this paper consists of daily case data at ward level in South
Africa from 6 March 2020 to 22 July 2020. In addition, hospitalisation data is freely
available for two provinces, Gauteng and Western Cape for the period June 2020 up
to mid-October 2020. In this paper we refer to hospitalisations as the number of cases
occupying hospital beds on a daily basis i.e., capacity requirements, and not the number
of daily hospital admissions. The mobility data is cellular data from a local cellular
provider from before the pandemic (BAU) up to Lockdown Level 3. Figure 5 provides
a connectivity visualisation of some of the cellular data available.

5. Results
The value of including a spatial component to an SEIR model is demonstrated in Figure
6, where the ward level spatial SEIR model is compared with an SEIR model run at
a national level. Since both the national and spatial SEIR models were initialised
with cases inflated by the undetected factor (see Section 4), for the purposes of the

8www.chpc.ac.za
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(a) (b)

(c)

Figure 5: Connectivity strength relationship for movements between local municipali-
ties, (a) business-as-usual (BAU) movement, (b) lockdown level 5, (c) lockdown level 4
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Figure 6: A national non-spatial model (green) vs. national spatial model (red). Actual
active case data shown in dashed blue.

comparison to actual confirmed cases in Figure 5, the outputs from these models were
divided by this same factor to show estimated recorded cases rather than estimated
total cases.
Figure 6 shows the overestimation of the non-spatial approach. Our proposed spatial
model produces more conservative estimates that appear to be a closer match to the
reported case numbers. The time-course of the spatial model more accurately follows
the observed case number, while the national model predicts far too rapid an increase
in infections at the beginning, as it assumes a mixed population. The discrepancy
with actual cases can be attributed to a number of complexities in the testing and
reporting processes, as well as cases not picked up such as asymptomatic cases as well
as symptomatic cases avoiding testing due to stigma, for example.
Although the NICD reports hospital admission cases for all provinces (NICD 2020b)
these include only a small proportion of public hospitals and therefore no complete
hospital data was available for the remaining seven provinces i.e., for all provinces
excluding Gauteng and the Western Cape. Due to lack of other available data and
assuming that the remaining seven provinces, being more rural in nature, would have
a much lower hospitalisation proportion than Gauteng (given in Section 3, a value of
20% was taken as the proportion of severe cases that would actually report to hospital).
This equates to 4.6% of the symptomatic population in these provinces. Based on the
estimates for all nine provinces together with a starting date of 1st June 2020 and
hospital-related parameters as given in Table 3, the projected hospitalisation cases i.e.,
hospital bed requirements, aggregated per province, are shown in Figure 7. This graph
shows how the provinces peak at different times which provides an understanding of
how the virus spread across South Africa.
Figure 8 provides a closer look at the provinces Gauteng and Western Cape for which
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Figure 7: Projected hospitalisations per province in South Africa using R0 = 2.86.

(a) Gauteng Province (b) Western Cape Province

Figure 8: Actual hospitalisations (dashed blue) compared to predicted in two main
provinces Gauteng and Western Cape (red).
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hospitalisation data was available. The predictions also overestimate here, but capture
the data decently well. Complexities of the hospitalisation data include COVID-19
deaths not captured as well as excess non-COVID-19 deaths. In addition, considerable
stigma exists in the South African population regarding COVID-19 (and other diseases)
and many severe cases do not end up in hospitals (Turner-Musa et al. 2020; Roelen
et al. 2020).
Figure 9 provides a spatial representation of the predicted hospitalisation cases ag-
gregated to Local Municipal (LM) level9 on the day of the projected provincial peak.
The maps clearly highlight the spatial variability of cases and the concentration within
the Metropolitan Cities. Figure 9(a) shows a concentration within the City of Johan-
nesburg, City of Tshwane and Ekhuruleni Metropolian Cities. Figure 9(b) shows the
highest concentration within the City of Cape Town Metropolitan City followed by the
Drakenstein and Breede Valley Local Municipalities.
Figure 10 indicates the model prediction simulated from the case numbers on 1 May
2020. The effect of R0 is obvious and only the higher values of R0 capture the timing
of the peak well enough. The parameter R0 is not the only parameter in our spatial
SEIR model. Optimisation of the choice for it is therefore not enough to get a perfect
model fit. The nuances of testing rates, accuracy of tests as well as stigma of getting
tested, should be considered.
Further, in order to validate the model, we conducted a local sensitivity analysis using a
spatial SEIR model we developed for the COVID-19 cases in South Africa. We consider
the sensitivity of the proportion of individuals that had been infected by the end of
201 days to the spatial R0i. The base R0 was sampled from a U(1, 5) distribution
over 960 simulations, and the correlation between the R0 and proportion of infected
individuals was calculated. Figure 11 illustrates the results of this spatial sensitivity
analysis visualised as correlations.
Additionally, we considered the sensitivity of the proportion of individuals that had
been infected by the end of 201 days to the spatial R0. Figure 11 shows that many
correlations are between 0.8 and 0.9, indicating a strong relationship between the spatial
R0 and the proportion of infected individuals. It further demonstrates that the strength
of this relationship varies across geographical space. This necessitates the use of a
spatially varying R0 to model COVID-19, as is proposed here.

6. Discussion
The spatial SEIR model herein can be used to capture the variation in peaks across the
country and identify wards that could potentially become high risk by incorporating a
vulnerability measure at ward level across the country. Age-structure per ward was also
allowed for in the study on hospitalisations and identifies areas where hospitalisations
are expected to be higher. This takes into account more vulnerable risk age groups
in the hospitalisations. The model thereby accounts for the heterogeneous mixing
occurring at a societal level.

9Local municipality level is defined in South Africa as an administrative area which are di-
vided into wards http://www.statssa.gov.za/census/census_2001/geo_metadata/geography_
metadata.pdf

http://www.statssa.gov.za/census/census_2001/geo_metadata/geography_metadata.pdf
http://www.statssa.gov.za/census/census_2001/geo_metadata/geography_metadata.pdf
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(a) Gauteng Province predicted hospitalisation cases per local municipality. 13
August 2020

(b) Western Cape Province predicted hospitalisation cases per local municipality. 11
July 2020

Figure 9: Hospitalisation cases at local municipality level for the provinces Gauteng
and the Western Cape.
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Figure 10: Illustration of the effect of varying R0 on the spatial model run at a national
level. The vertical lines indicate the lockdown dates as detailed in Table 2.

Figure 11: Graph of the correlations between R0 and the proportion of infected indi-
viduals, at South African ward level as per the 2016 census.
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The advantages of using mobility matrices at a fine local level is that mixing between
wards is identified, and thus helping to reduce over-predictions relative to the national
model. Using different movement matrices at the different lockdown interventions also
allowed this mixing to vary at different stages of the disease spread. Alternative mobility
data could also be considered, see for example, Potgieter et al. (2021).
The parameters in Table 3 were obtained using expert knowledge and literature. These
parameters can easily be updated in the model and re-fitted. In addition, if suitable
mobility data and a proxy for the vulnerability data are in place for another country,
the model can also quite easily be extended to other spatial areas.
The model does not perfectly capture or predict COVID-19 due to the disease complex-
ities still being researched as the pandemic continues. In addition, the data available
have been collected centrally from a number of local sources, such as district clinics
and testing centres, and may not be accurate in terms of location. It has become ap-
parent that address data is not always the patient’s address but perhaps that of the
referring doctor. Due to stigma the patient’s address may not be captured truthfully
at collection; and in some cases an algorithm attempts to automate addresses during
peaks. The mobility data is also difficult to prove as accurate as the service provider
only covers 46% of the market in South Africa. It is likely that certain mobility is not
represented with the mobility matrices (Tizzoni et al. 2014). The advantage, however,
of still running the model at ward level is that it allows an aggregation upwards, thereby
reducing the noise effect at fine levels, as shown in Figure 9.
Over-prediction in hospitalisations is similar to other projections in South Africa (SACMC
2020; NICD 2020) which also expected hospital capacity to be breached in provinces like
the Western Cape and Gauteng and which also projected a later peak. Although spa-
tial differences have been captured in the model in terms of vulnerability, age structure
and mobility, there appear to be other factors affecting the nature of the disease spread
in the different provinces since, in particular, the Western Cape was over-predicted to
a greater degree than other provinces in the spatial model and in other projections
seen (NICD 2020). It is unknown why the Western Cape was so much lower than ex-
pectations compared to other provinces but one possible reason could be behavioural
differences in the population in terms of adhering to restrictions and quarantine rules.
Potentially the scaling factors due to government interventions (indicated in Table 2)
should differ between provinces due to behavioural differences even though restrictions
are uniform across the country.
The prediction of peaks during the pandemic is important in order to understand the
hospital capacity preparedness. With good focused healthcare a severe COVID-19
patient has a higher chance of surviving. Over-stretching the capacities of hospitals
during this pandemic has been a major concern across the world, and many studies
have been done to estimate the impact of COVID-19 on hospital beds, ventilator beds
and ICU beds (CHSUFT 2020; Reno et al. 2020; Barrett et al. 2020).
We have briefly mentioned reasons for the overestimation still present in the proposed
spatial model. We expand on that now. Firstly, there is a difference between modelling
on a data set post-occurrence and with a disease that is mostly understood, compared
to modelling in a still evolving pandemic with a disease that is only now slowly be-
ing understood. There is specifically difficulty in selecting parameters in a real-time
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environment when much is still unknown. Far more information is now known in the
post-first wave environment internationally. Secondly, the issue of using confirmed cases
to initialise the model may be temperamental since screening and testing vary due to
factors such as the cost of tests, access to testing sites (closely correlated with poverty
and lack of transport), varying local testing strategies, and stigma of being tested.
Some studies10 (Russell et al. 2020) use data on deaths as a more reliable indicator
of the severity of a disease while others, (Woolf et al. 2020; Faust and Del Rio 2020;
Weinberger et al. 2020), indicate COVID-19 related death reporting as unreliable. In
South Africa, this also seems to be the case since the study by South African Med-
ical Research Council (SAMRC) and University of Cape Town Centre for Actuarial
Research (Moultrie et al. 2020; Bradshaw et al. 2020) reveal that between 6 May and
8 December 2020, excess deaths for persons aged one year and above were around 56
607, while the total COVID-19 deaths reported by the NICD in the same period was
22432. A September 2020 update of projected cases, NICD (2020), also estimated that
about 80% of the excess deaths are a result of COVID-19.
Furthermore, not all cases that should be hospitalised were actually admitted, due to
dying on arrival or prior to being admitted and tested, as seen from the excess deaths
reported. The September 2020 report, NICD (2020), estimates that the probability
of seeking hospital-level care for severely and critically ill cases ranges from 50% to
97%. Reasons for individuals in South Africa failing to report to hospital include lack
of transport, no access to a medical facilities and also the stigma attached to having
COVID-19 in certain communities, resulting in some individuals being too afraid to
be tested or to go to hospital. The poor quality of care in public hospitals also serves
as a deterrent to some individuals seeking care even when they need it. In addition,
individuals may not have been admitted to medical facilities during the peak period
due to capacities at certain facilities being overstretched.
It has more recently become known that some individuals carry immunity (Ni et al.
2020) and therefore the size of the susceptible population in each ward could be lower
than what was initially assumed. Our assumption that all previously-infected individ-
uals have permanent immunity also remains to be demonstrated but adds complexity
to the model as the absence of immunity would then require a return from the Ri to
Si compartment.
The model naturally has limitations. These include the data accuracy discussed above,
and furthermore the exposed case distribution at each time-step. Since the mobility
data is not a personal trajectory, the location at the next time point of that individual
is not certain. The model simply assumes an infected individual can be exposed but
will return/remain in the same ward. Longer-term movement may still play a role.
The model still assumes homogeneous mixing within a ward (but provides spatial het-
erogeneity nationally), which may not be accurate for a diverse country such as South
Africa.

10Ritchie, H., Ortiz-Ospina, E., Beltekian, D., Mathieu, E., Hasell, J., Macdonald, B., Giattino,
C. and Roser, M., 2020. Mortality Risk of COVID-19. [online] Our World in Data. Available at:
https://ourworldindata.org/mortality-risk-COVID [Accessed 15 February 2021].

https://ourworldindata.org/mortality-risk-COVID
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7. Conclusion
We have successfully demonstrated that a spatially explicit version of a classic SEIR
model can effectively improve planning and preparation for COVID, and provide a
better estimation of both the timing and the peak of the epidemic. This study has
shown the benefit of accounting for the spatial dimension by considering local-level
spatial units when using a SEIR-type model in modelling the spread of COVID-19. By
adjusting the model for social vulnerability and distributing cases according to mobility
data at ward level we allowed for important spatial influences in predicting the spread
of the disease. Setting up a spatial compartmental model and appropriately calibrating
it at a low aggregation of spatial units is useful to improve decision making once disease
characteristics are understood better after the initial outbreak, especially in contexts
where social factors are strongly at play.
Future work includes improving the accuracy of the mobility data through triangulation
of multiple data sources, stratifying the model to account for co-morbidity in sub-
populations as well as modelling multiple waves of infections and/or strains. The
model can also be expanded to include a death compartment, as well as allow for levels
of population immunity as data becomes available and as vaccines are rolled out.

Computational Details
The data used in this study is not directly available without approval, so cannot be
shared directly with the paper. Thank you to the NICD, South Africa for providing
access to the ward level infection data and additional accompanying data. In addition,
thanks to GeoTerraImage (Pty) Ltd for the age data provided to the CSIR for the
COVID-19 response. The code is available at https://github.com/TheCoolRob/sp-
covid19 however requires the use of a high performance computer to be implemented.
The user may access the code at the Github link.
The results in this paper were obtained using R 3.6.0, C++, SAS 9 and ArcGIS 10.8.1.
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