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Abstract

The aim of this article is to show how daily hospital data can be used to track
the evolution of the COVID-19 epidemic in France. A piecewise defined dynamic
model allows a very good fit of the available data on hospital admissions, deaths
and discharges. The change-points detected correspond to moments when the
dynamics of the epidemic changed abruptly. Although the proposed model is
relatively simple, it can serve several purposes. It is an analytical tool to better
understand what has happened so far by relating observed changes to changes
in health policy or the evolution of the virus. It is also a surveillance tool that
can be used effectively to warn of a resurgence of epidemic activity, and finally
a short-term forecasting tool if conditions remain unchanged. The model, data
and fits are implemented in an interactive web application.
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1. Introduction
After some early cases were discovered in China in late 2019, the COVID-19 outbreak
spread very quickly around the world in early 2020 (Velavan and Meyer 2020).
This global pandemic quickly gave rise to numerous studies trying to understand the
factors that could explain its spread, such as the effects of climate (Briz-Redón and
Serrano-Aroca 2020; Wu et al. 2020) or human mobility (Kraemer et al. 2020).

http://dx.doi.org/10.52933/jdssv.v2i7.48
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Many mathematical models have been developed to describe the dynamics of this pan-
demic and possibly predict the future epidemiological situation. Among all these ap-
proaches, we can mention the agent-based models used, for example, to simulate the
spread of COVID-19 among the inhabitants of a city (Silva et al. 2020). But the most
commonly used approaches for modeling the dynamics of COVID-19 undoubtedly re-
main the SIR -type (or SEIR-type) epidemiological models (He et al. 2020).
Such models allow, among other things, to simulate different scenarios (Carcione et al.
2020) to predict how, for example, a public health intervention would affect the epidemic
(Di Domenico et al. 2020; López and Rodo 2021; Yang et al. 2020). On the other
hand, these compartmental epidemiological models have the advantage of being able
to account for different subgroups in the population, such as asymptomatic individuals
(Chen et al. 2020).
These various models that have been proposed claim to describe "reality", i.e., how
the pandemic evolves over time in the population. To get as close as possible to this
reality, the models are necessarily complex, with many compartments, transfers between
these compartments, and therefore many parameters. The use of these models to
simulate the evolution of the epidemic or to evaluate the impact of a sanitary measure
requires the choice of the values of these parameters. Model calibration makes it possible
to find empirically a set of parameters that provides a good fit between the model
calculations and the observed data. However, due to the complexity of the model,
practical identifiability problems may occur since the data available to fit the model
are limited and do not allow the parameter set to be uniquely identified (Hamelin et al.
2020). Nevertheless, there are methods to estimate the parameters of the model in
this context, for example by introducing prior information about the values of these
parameters or directly by fixing some of them to values from the literature.
Our approach here is quite different. We do not claim to develop a model that accurately
mimics the dynamics of the epidemic, but rather a simple, robust model that fits the
data very well. The goal of such a model is not to predict the evolution of the epidemic
in the future, to determine the date of the next peak, or to define the best strategy
to contain the epidemic. We will simply try to describe the dynamics of the past and
predict what should happen in the near future if the dynamics of the epidemic do not
change, and most importantly, to detect a change in those dynamics as soon as possible,
if it does occur.
Consequently, the choice of data to use is fundamental to our approach. The data we
use for this surveillance are the daily hospital admissions and deaths reported by Santé
Publique France, the French national public health agency (Salje et al. 2020; Paireau
et al. 2021).
We propose to describe these data using a statistical model that allows us to combine
different effects such as epidemic dynamics, a weekly pattern and irregular fluctuations.
The dynamics of hospital admissions (normal therapy and intensive care units) are
described by assuming exponential dynamics, but for which the rate function is defined
in a piecewise linear way, which allows a very good description of the different phases
of growth and decline of these admission numbers. Fitting this model to the data then
consists in detecting change-points in the admission data. The fitted model makes it
possible to identify the different epidemic waves observed in France since March 2020.
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2. Which Data to Use?
Monitoring the dynamics of the pandemic in real time obviously requires reliable and
regularly updated data. The question arises as to which data can best describe these
dynamics and also detect changes as quickly as possible.
A few weeks after the virus emerged, an interactive online dashboard was developed and
hosted by the Centre for Systems Science and Engineering (CSSE) at Johns Hopkins
University, Baltimore, MD, USA, to visualize and track reported cases of COVID-19
in real time (Dong et al. 2020).
The data collected and freely available include the number of confirmed COVID-19
cases, deaths and recoveries for all affected countries. These data have been widely used
to track and model the pandemic, whether through visual exploratory data analysis
(Dey et al. 2020), random processes (Benvenuto et al. 2020) or epidemiological models
(Lavielle et al. 2021). The French data are shown in Fig. 1.

confirmed deaths recovered

Ja
n

M
ar

M
ay Ju

l
Sep Nov Ja

n
M

ar
M

ay Ju
l
Sep Nov Ja

n
M

ar
M

ay Ju
l
Sep Nov Ja

n
M

ar
M

ay Ju
l
Sep Nov Ja

n
M

ar
M

ay Ju
l
Sep Nov Ja

n
M

ar
M

ay Ju
l
Sep Nov

−100000

−75000

−50000

−25000

0

0

500

1000

1500

−1e+05

−5e+04

0e+00

5e+04

1e+05

Figure 1: French COVID-19 data collected by the Center for Systems Science and
Engineering at Johns Hopkins University: daily numbers of confirmed cases, deaths
and recoveries. Negative values are the result of corrections to the cumulative values.

Although a general trend can be seen in these charts, there are several problems with
their use. First, because these data are very noisy, and second, because the definition
of certain data, such as the number of confirmed cases, is not homogeneous over time.
As an example, the number of confirmed cases in France during the first wave (between
March and May 2020) corresponds to the number of patients whose infection was con-
firmed in hospital. From the second wave which started in September, confirmed cases
include positive tests and are therefore much higher than during the first wave.
Thus, one can imagine using the results of the virological tests shown in Fig. 2 as mark-
ers, since they are directly related to the incidence rate of COVID-19 in the population.
It should be noted that the definition of incidence rate commonly used by both au-
thorities and the media is simply the number of positive tests in a week, per 100,000
population. This definition, of course, does not reflect the actual incidence rate, since
not the entire population is tested (Pullano et al. 2021). Its evolution also does not nec-
essarily reflect the evolution of the epidemic in France, as the number of tests performed
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Figure 2: Data on COVID-19 virological test results in France, produced by Santé
Publique France: daily numbers of tests, positive tests and positivity rate.

each day changes over time. Thus, the sharp increase in positive tests in October 2020
and March 2021 is partly explained by a sharp increase in the number of tests per-
formed during these periods. The positivity rate (i.e., the proportion of positive tests
to tests performed) appears to be a better indicator because, by definition, it takes
into account fluctuations in the number of tests performed. Unfortunately, although it
provides relevant and complementary information, this positivity rate is not homoge-
neous over time because the tested population is not homogeneous over time. We see a
spectacular drop in the positivity rate in December 2020. This decline is likely not due
to a sudden drop in infections, but rather a one-time increase in the number of people
tested who, while not at risk, still wanted to get tested before year-end celebrations
and family gatherings.
Finally, we will use hospital data from the SI-VIC database, the national inpatient
surveillance system used during the pandemic. The data is transmitted daily to Santé
Publique France, the French health authority responsible for publishing the data: ht
tps://www.data.gouv.fr/fr/datasets/donnees-hospitalieres-relatives-a-l
epidemie-de-covid-19.
These data are shown in Fig. 3. They are the daily number of patients i) newly admitted
to normal therapeutic wards (NTW), ii) patients newly admitted to intensive care units
(ICU), iii) patients who died in hospital, iv) patients who were allowed to leave hospital
(hospital discharges). Note that the number of daily new admissions to the hospital on
a given day should not be confused with the number of patients in the hospital on that
day.
There are several advantages to using these data. First, these data are regularly con-
solidated and can therefore be considered reliable. Moreover, apart from a clearly
discernible weekly pattern, the data are homogeneous over time: Values at different
points in time are directly comparable. Finally, the dynamics of admissions are di-
rectly related to the dynamics of new infections, with a certain time lag: An increase
in admissions necessarily reflects a previous increase in infections, and the same is true
for decreases. We can therefore reasonably expect to detect changes in the dynamics

https://www.data.gouv.fr/fr/datasets/donnees-hospitalieres-relatives-a-lepidemie-de-covid-19
https://www.data.gouv.fr/fr/datasets/donnees-hospitalieres-relatives-a-lepidemie-de-covid-19
https://www.data.gouv.fr/fr/datasets/donnees-hospitalieres-relatives-a-lepidemie-de-covid-19
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Figure 3: French hospital data for the COVID-19 produced by Santé Publique France:
daily numbers of patients newly admitted to normal therapeutic wards, admitted to
intensive care units, deceased in the hospital, allowed to leave the hospital.

of the epidemic by detecting changes in the dynamics of admissions.

3. The Model

3.1. The Statistical Model
Fig. 3 shows the temporal variations in the data due to several combined effects: a gen-
eral trend (epidemic dynamics), a periodic component (weekly pattern), and irregular
fluctuations.
Let z1,j and z2,j, be the numbers of admissions to normal therapy ward and intensive
care units, respectively, on day j. Let z3,j and z4,j be the numbers of deaths and
discharges, respectively, on day j. For each of the four series (zℓj, 1 ≤ ℓ ≤ 4, 1 ≤ j ≤ n)
observed at time (tj, 1 ≤ j ≤ n), we propose the following model

zℓj = fℓ(tj) + fαℓ
ℓ (tj)(sℓj + εℓj), (1)

where fℓ is the trend for the ℓ-th series, (sℓj, 1 ≤ j ≤ n) is a weekly periodic compo-
nent such that sℓ,j+7 = sℓj for any j, and (εℓj) is a sequence of residual errors. The
multiplicative term fαℓ

ℓ (tj) allows us to account for the fact that the amplitude of both
periodic and irregular variations varies with the value of the trend. The exponent αℓ

here allows us to control the link between these amplitudes.
We propose representing the trends (fℓ, 1 ≤ ℓ ≤ 4) using a dynamical system. The
construction of this system and its estimation are the most delicate part of this modeling
work.
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3.2. The Dynamical Model
We consider that the study starts at a time t0 and we will arbitrarily set t0 = 0.
We denote Intw(t) and Iicu(t), the total numbers of patients admitted, respectively in
normal therapy services and in intensive care units, between time t0 and time t. We also
denote D(t) and O(t), the numbers of patients who died in hospital and were discharged
recovered from hospital between time t0 and t, respectively. Finally, we denote H(t)
the number of patients present in the hospital (in normal care or in intensive care) at
time t. In the following,

.
f and

..
f denote the first and second derivatives of f .

The variations of the number of hospitalized patients thus depend on the admissions
and discharges according to the following dynamics:

.
H(t) =

.
Intw(t) +

.
Iicu(t) −

.
D(t) −

.
O(t) . (2)

Our goal now is to build a model for each of these 4 terms.
So let us start with the admissions. However, we will not model the total number of
admissions Intw(t) and Iicu(t), but rather their fluctuations, since these functions by
definition directly describe the dynamics of admissions over time, i.e., how admissions
increase at the beginning of an epidemic wave or decrease at the end of a wave. We
propose using exponential-type dynamics for each of these series, but where the rate
functions can vary over time:

..
Intw(t) = kntw(t)

.
Intw(t) (3)..

Iicu(t) = kicu(t)
.
Iicu(t) . (4)

A constant and positive (resp. negative) rate function kntw or kicu, means that the
number of admissions increases (resp. decreases) exponentially fast. The fact that a
rate is used that can vary with time then allows the transition between different regimes
of exponential growth and decay. We will assume that these transitions are linear, using
for kntw and kicu piecewise linear functions. We therefore suppose that there exist Kntw
and Kicu instants, called change-points, τntw,1, τntw,1,. . . , τntw,Kntw and τicu,1, τicu,1,. . . ,
τicu,Kicu such that

kntw(t) = bntw + 2 cntwt + 2
Kntw∑
k=1

hntw,k max(t − τntw,k , 0)

kicu(t) = bicu + 2 cicut + 2
Kicu∑
k=1

hicu,k max(t − τicu,k , 0) .

Assuming that the rate functions kntw and kicu are piecewise linear functions allows
us to compute the solution of the equations (3) and (4) and verify that log(

.
Intw) and

log(
.
Iicu) are piecewise quadratic functions:

log(
.
Intw(t)) = antw + bntwt + cntwt2 +

Kntw∑
k=1

hntw,k max(t − τntw,k , 0)2

log(
.
Iicu(t)) = aicu + bicut + cicut2 +

Kicu∑
k=1

hicu,k max(t − τicu,k , 0)2 ,
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where antw = log(
.
Intw(t0)) and aicu = log(

.
Iicu(t0)).

It is now assumed that the number of deaths and the number of discharges between
times t and t + dt both depend on the number of patients hospitalized at time t:

.
D(t) = γdeaths(t)H(t) (5).
O(t) = γout(t)H(t) . (6)

The mortality rate γdeaths and the discharge rate γout are not constant over time. Again,
we consider that the logarithms of these functions are piecewise quadratic functions:

log(γdeaths(t)) = adeaths + bdeathst + cdeathst
2 +

Kdeaths∑
k=1

hdeaths,k max(t − τdeaths,k , 0)2

log(γout(t)) = aout + boutt + coutt
2 +

Kout∑
k=1

hout,k max(t − τout,k , 0)2 .

Now that the model is defined, we need to fit it to the data at our disposal.

4. Fitting the Model to the French Hospital Data

4.1. Fitting the Dynamical Model

The Algorithm
The objective is now to estimate the parameters of the functions

.
Intw,

.
Iicu, γdeaths and

γout. We first remove the weekly pattern and smooth the data using an unweighted
7-day moving average for the four series (zℓj) as shown in Fig. 4. We then denote the
four smoothed series obtained by (qntw,j), (qicu,j), (dj) and (oj).
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Figure 4: Unweighted 7-day moving averages for the four series displayed Fig. 3.

On the one hand, the daily series of admissions to the normal therapy wards (qntw,j) and
to intensive care units (qicu,j) will allow us to estimate the derivatives of the cumulative
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counts Intw and Iicu using the following model:

log(qntw,j) = log(
.
Intw(tj)) + entw,j

log(qicu,j) = log(
.
Iicu(tj)) + eicu,j .

The mortality rate γdeaths and the discharge rate γout can naturally be estimated using
the observed daily rates (dj/hj) and (oj/hj) where hj is the number of hospitalized
patients (all units combined) at time tj. For these series, we use the model

log(dj/hj) = log(γdeaths(tj)) + edeaths,j

log(oj/hj) = log(γout(tj)) + eout,j .

Let y1,j = log(qntw,j), y2,j = log(qicu,j), y3,j = log(dj/hj) and y4,j = log(oj/hj). For
ℓ = 1, . . . , 4, we then have the following model:

yℓj = aℓ + bℓ t + cℓ t2 +
Kℓ∑

k=1
hℓ,k max(t − τℓ,k , 0)2 + eℓj . (7)

For each of the four series, the problem then becomes a problem of change-points
detection:

• For a given number of change points Kℓ,

– Find the locations of the Kℓ change points τℓ,1, . . . , τℓ,Kℓ−1,
– Estimate the parameters of the model aℓ, bℓ, cℓ, hℓ,1, hℓ,2, . . . , hℓ,Kℓ

,

• Select the “best” model, i.e., select the number of change points Kℓ.

For each of the series, we propose using a penalized least squares criterion to estimate
all the parameters of the model and the number of change-points.
To avoid making the notation unnecessarily cumbersome, we may omit the index ℓ
since the estimation procedure is identical for all four series.
For a given number of change-points K, for a set of parameters θK = (a, b, c, h1, . . . , hK),
and a sequence of change-point instants TK = (τ1, . . . , τK), we write down

f(t; θK , TK) = a + b t + c t2 +
K∑

k=1
hk max(t − τk , 0)2 . (8)

We then estimate θK , TK and K by minimizing

U(θK , TK , K) =
n∑

j=1
(yj − f(tj; θK , TK))2 + λ K .

A high value of the penalty parameter λ favors configurations with few change-points
while a lower value of λ allows a higher number of changes.
The minimization of the penalized criterion U can be decomposed into several steps.
For a given series of change-points instants TK , minimizing U with respect to θK is
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immediate, since it simply involves computing the least squares estimate in a linear
model. For a given number of changes K, this is done by setting

θ̂(TK) = arg min
θK


n∑

j=1
(yj − f(tj; θK , TK))2

 . (9)

The estimator of TK is then defined as

T̂K = arg min
TK


n∑

j=1

(
yj − f(tj; θ̂(TK), TK)

)2
 . (10)

The number of changes K is therefore chosen as

K̂ = arg min
K


n∑

j=1

(
yj − f(tj; θ̂(T̂K), T̂K)

)2
+ λ K

 . (11)

The tricky part is estimating the change-points as defined in (10). In fact, we cannot
use a dynamic programming algorithm because the criterion to be minimized cannot
be decomposed as a sum of independent criteria for each segment due to the continuity
constraints on f and its derivative.
Since the data series are updated daily, the proposed algorithm is a sequential procedure
that requires little computation. In fact, the configuration on day j + 1 is obtained
from local changes in the configuration obtained on day j. Suppose that T

(j)
K is the

optimal configuration obtained on day j. We then compute T
(j+1)
K and T

(j+1)
K+1 as the best

configurations with K and K + 1 breaks, respectively, when there is a new observation
at time tj+1. These configurations are obtained by iterative optimization, changing the
position of a single change point at each iteration. The best of these two configurations
is then selected on the basis of the penalized criterion (11).
The value of the penalty parameter λ here is manually adjusted so that the result is
a segmentation that visually "looks like" the segmentation one would create oneself
when looking at the data. In other words, we ensure that all the changes that we
consider significant are well detected, while the smaller, more irregular variations are
not associated with the signal, but are considered random fluctuations. The results
proposed below were all obtained by choosing λ = 10−4.

The Results
Fig. 5 represents the fits obtained for the series (qntw,j) and (qicu,j). We have also
represented on this figure the relative variations (rntw,j) and (ricu,j) where

rntw,j = qntw,j − qntw,j−1

qntw,j−1
; ricu,j = qicu,j − qicu,j−1

qicu,j−1
.

By construction, while the series (qntw,j) and (qicu,j) fluctuate around the functions.
Intw and

.
Iicu, the series (rntw,j) and (ricu,j) fluctuate around the rate functions kntw =..

Intw/
.
Intw and kicu =

..
Iicu/

.
Iicu which are also shown in the two lower graphs of the figure.
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Figure 5: Top: smoothed series of admissions ; bottom: relative variations of these
series. The grey lines are the fits obtained and the vertical dashed lines are the estimated
change-points.

From these graphs we can see very clearly that it is reasonable to consider piecewise
linear functions for kntw and kicu. It is ultimately the variations in these rate functions
that provide a synthetic picture of the dynamics of the epidemic in France.
Once the γdeaths and γout functions have been estimated, equations (2), (5) and (6) allow
us to obtain the D and O functions. The mortality and discharge rates as well as the
daily numbers of deaths and discharges are plotted Fig. 6. These graphs confirm that
mortality rates vary over time and that these variations must be taken into account in
order to correctly model deaths and discharges.
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Figure 6: Top: smoothed series of mortality and discharge rates ; bottom: smoothed
series of daily deaths and discharges. The grey lines are the fits obtained and the
vertical dashed lines are the estimated change-points.

The sudden drop observed in the second half of March 2020 corresponds to the imple-
mentation of the first, very strict lockdown. The drop in admissions was not immediate,
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of course, as it took several days for the rate functions to become negative. This was
followed by a period of more than two months during which admissions continued to
decline, until about mid-June 2020, while the lockdown had ended in mid-May.
Although admissions remained at a very low level until early September 2020, the rate
functions clearly show a change in dynamics from mid-June onwards: the rise in the
rate functions reflects a gradual slowdown in the decline in admissions before reaching
a minimum in early July and slowly rising again. The rapid rise in admissions is then
clearly visible in early September, but especially in early October. Both the authorities
and the media have placed the start of the second wave at this time, when it was most
visible, but the change in dynamics was much earlier.
A marked decline in rate functions around October 18 shows that the increase in the
daily number of hospitalizations began to weaken around that date. It is interesting
to note that the measures to curb this second wave were not put into effect until
after the change in dynamics had occurred (general curfew on October 24 and then
new confinement on October 30). This slowdown continued until the first days of
November 2020, when the number of new hospital admissions began to fall and the
relative variations became negative.
Between mid-November 2020 and mid-March 2021 there were a series of periods of
relatively slow growth and decline in rate functions, which are difficult to associate
with specific events. For several months, France was in a relatively stable state, as the
measures taken prevented a new explosion of contaminations - and therefore hospital-
izations - but also did not allow a return to a normal situation.
The decrease in rate functions observed from the end of March 2021 led to negative
values of these functions from mid-April to the end of June, resulting in a continuous
decline in hospitalizations. It is likely that the increase in vaccination coverage from
10% to 50% (for at least one dose) during this period, as shown in Fig. 7, partly explains
this marked decline in epidemic activity.

0e+00

1e+05

2e+05

3e+05

4e+05

Jan 2021 Apr 2021 Jul 2021 Oct 2021

Figure 7: Daily COVID-19 vaccinations. The number of people who received at least
one dose is in red and those who received two doses is in blue.

The appearance of the delta variant at the end of June 2021 led to a very significant
change in the dynamics, as the rate function rapidly rebounded by the end of July.
Again, we can only hypothesize to explain this new reversal of dynamics, such as
the second round of vaccination observed in July 2021. These observed links between
vaccination and epidemic dynamics are clearly non-linear; although collective immunity
no longer seems possible, critical vaccination coverage seems to control the epidemic.
The resurgence of the epidemic observed at the end of September 2021 in France, as in
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other European countries, would then indicate a decline in individual immunity among
those formerly vaccinated.

Confidence and Prediction Intervals
By using a linear Gaussian model for the model (7), it is also possible to construct
a confidence interval for the estimated regression function and a prediction interval
for future observations in the absence of new changes. But again, the point is not to
evaluate the performance of the model by checking that the future observations are
indeed within the constructed prediction interval, but by checking that the prediction
interval does not include the observed data after a change in the dynamics. Examples
of such intervals are shown in Fig. 8. Data were considered available through March 4,
2021 on the left and through March 24 on the right.
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Figure 8: Confidence intervals for the estimated regression function in blue, prediction
intervals for future observations in yellow and observed series in red. Top: admissions
in normal therapy wards ; bottom: relative variations of these series. The intervals
were constructed using data available until March 4, 2021 on the left and until March
24 on the right.

Confidence intervals were then calculated for the functions
.
Intw and kntw and prediction

intervals for the series (qntw,j) and (rntw,j) for the next 14 days, i.e., after the last
observation. The intervals are plotted with the data actually observed during these
forecast periods. In the left figure, we can see that the prediction intervals contain
the two observed series. Indeed, no change will be detected during this forecast period
(March 5 - March 19) and the model provides predictions that are consistent with
the observations. In contrast, the figures on the right show inconsistency between the
predictions and the observations. While the model assumes that the rate function
continues to increase linearly, a change in dynamics occurred around March 25, 2021,
and the rate function began to decline from that date. This example shows that this
change was detectable only a few days after it occurred.
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Using a Poisson Model
We use a penalized least squares criterion here to estimate the parameters of the model,
which means that we implicitly compute the maximum likelihood estimator in a Gaus-
sian model. This assumption is quite justified for the death and discharge rates, which
are continuous variables. It may seem questionable for admissions, which are count
data and for which one might prefer a Poisson model, for example.
The piecewise polynomial function f defined in (8) is now used to define the intensity
of the Poisson process:

eyj ∼ Poisson(f(tj; θK , TK)) .

In this context, θK , TK and K are estimated by minimizing

U(θK , TK , K) =
n∑

j=1

(
ef(tj ;θK ,TK) − f(tj; θK , TK)eyj

)
+ λ K .

The use of a linear Gaussian model offers several practical and algorithmic advantages,
both for estimating the model parameters and for constructing confidence and predic-
tion intervals. With this new objective function to minimize, things get a lot more
complicated.
However, we have implemented a nonlinear optimization algorithm to compare the so-
lutions obtained with the Poisson model and the Gaussian model with reduced portions
of the data. One such comparison example is shown in Figure 9 where it clearly shows
that the results are indistinguishable. This finding confirms the idea of using a pe-
nalized least squares criterion to detect the instants of change and estimate the model
parameters.
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Figure 9: NTW and ICU admissions between 2021-08-01 and 2021-09-30 with the
(indistinguishable) fits obtained using a Gaussian model and a Poisson model.

4.2. Fitting the Statistical Model
Let us now return to the original series of daily admissions to conventional therapy
(zntw,j) and intensive care unit (zicu,j).
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The regression model (1) suggests that these series decompose into a trend, a periodic
component related to the day of the week, and a series of residual errors. Now that we
have obtained the estimators f̂1 and f̂2 of the trends f1 =

.
Intw and f2 =

.
Iicu, we can

use the model (1) to estimate the other components of the model.
To simplify the notation, let us assume that n = 7h. Then, for ℓ = 1, 2 and for a
given value of αℓ, the periodic series (sℓj) and the series of residuals (eℓj) can easily be
estimated:

wℓ,j = zℓ,j − f̂ℓ(tj))
f̂αℓ

ℓ (tj)
; j = 1, 2, . . . , n

ŝℓ,m = 1
h

h−1∑
k=0

wℓ,m+7k ; m = 1, 2, . . . , 7

êℓ,j = zℓ,j − f̂ℓ(tj)) − f̂αℓ
ℓ (tj)ŝℓ,j

f̂αℓ
ℓ (tj)

; j = 1, 2, . . . , n .

The exponent αℓ is chosen to produce a residual error series (εj) that is as uncorrelated
as possible, or more precisely, such that the empirical correlation between the series
(êℓ,j) and (êℓ,j+7) is as close to 0 as possible. This criterion leads us to choose α1 =
α2 = 0.8.
Fig. 10 shows the estimated periodic component and the estimated residual errors for
the two series. Not surprisingly, a decrease in admissions is observed on weekends,
especially on Sundays. Examining the residuals allows us to highlight the impact of
certain holidays on admissions that are difficult to see in the original data: For example,
we see "unusually" low values on Christmas and New Year’s Day, Easter Monday (April
5), Ascension Day (May 13), and Whit Monday (May 24). These low values are usually
compensated by "unusually" high values on the following days.
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Figure 10: Components of the statistical model built for the admissions series. Left:
periodic weekly pattern ; right: residual errors.
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Computational Details
The results in this paper were obtained using R 4.0.3. R itself and all packages used
are available from the Comprehensive R Archive Network (CRAN) at https://CRAN
.R-project.org/.
The model and various data related to COVID-19 are implemented in the interactive
Shiny app http://shiny.webpopix.org/covidix/app3en/.

Some Concluding Remarks
First of all, it is important to remember that the role of the model proposed here is not
to predict how the epidemic in France will develop in the coming weeks or months. It
was not developed for this purpose, as it only uses data on hospitalizations and these
data do not include information on possible behavioral changes, health interventions,
vaccination policies, etc. Our main goal, then, is to propose a model that describes what
has happened, not predicts what will happen. This study shows that relative variation
in hospital admissions describes the dynamics of the epidemic very well, identifying
both the moments when the epidemic starts again and those when it declines. Such
an a posteriori analysis is very important to better assess future developments of the
epidemic and thus make the right decisions as soon as possible.
However, to refine this analysis, various sources of heterogeneity should be considered.
For example, it is well known that the risk of severe illness with COVID-19 increases
with age, with older adults at highest risk. Analysis by age group would then be par-
ticularly interesting to determine whether the changes in dynamics observed over time
may vary with age. Consideration of vaccination status would also be an extremely
informative and useful extension for deciding which vaccination policy to pursue. Unfor-
tunately, to our knowledge, the data to perform such strata analyses are not available.
However, hospital data on admissions, deaths and discharges by region are available.
Thus, the above Shiny app makes it possible to perform a separate analysis for each of
the twelve French regions to highlight any regional variability.
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