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Abstract

In recent decades, the analysis of data has become increasingly computational.
Correspondingly, this has changed how scientific and statistical work is shared.
For example, it is now commonplace for underlying analysis code and data to
be proffered alongside journal publications and conference talks. Unfortunately,
sharing code faces several challenges. First, it is often difficult to take code from
one computer and run it on another. Code configuration, version, and depen-
dency issues often make this challenging. Secondly, even if the code runs, it is
often hard to understand or interact with the analysis. This makes it difficult to
assess the code and its findings, for example, in a peer review process. In this re-
view, we describe the combination of two computing technologies that help make
analyses shareable, interactive, and completely reproducible. These technologies
are: (1) analysis containerization, which leverages virtualization to fully encap-
sulate analysis, data, code and dependencies into an interactive and shareable
format, and (2) notebooks, a literate programming format for interacting with
analyses. The fusion of these two technologies offers significant advantages over
using either individually. This review surveys how the combination enhances the
accessibility and reproducibility of code, analyses, and ideas.
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Before the widespread adoption of peer-reviewed scientific journals, it was not uncom-
mon for scientists to keep their findings secret. Famously, Leonardo Da Vinci wrote in
mirrored handwriting to obfuscate his notebooks and Isaac Newton kept hidden his de-
velopment of calculus for nearly forty years (National Academy of Sciences et al. 2009).
Modern science, however, advances through a rich process of open and timely sharing.
Today, there are a plethora of ways to share results such as talks at conferences, pro-
ceedings, seminars, posters, peer-reviewed literature and pre-print repositories. Open
sharing not only allows results to be disseminated and built upon, but also allows
scrutiny and verification of the research and is fundamental to the scientific process
itself. However, as scientific analysis has progressed, so too has the notion of sharing.
In particular, the last several decades have seen the analysis of scientific data become
heavily computational. This is especially true of statistical work, where coding has
become deeply intertwined with statistical analysis. Correspondingly, the notion of
what it means to share research results has also expanded (Ellis and Leek 2018). The
modern notion of sharing research encompasses not only sharing prose and proofs, but
also sharing code and data.

It is now commonplace for data and the accompanying analysis code to be shared
through online repositories. Indeed, many peer-reviewed journals either require or
strongly encourage it. For example, most of the journals sponsored by the Interna-
tional Statistical Association and American Statistical Association require data and
code be posted along with analysis (Journal of the American Statistical Association
2022). Similarly, many prominent scientific journals have data sharing requirements
(Nature 2022; Science 2022). There are many tools that help facilitate this sharing.
For general purpose code, a popular sharing platform is GitHub (Github, Inc. 2021).
Language specific repositories for software packages also exist, e.g., CRAN for R pack-
ages (The R Project for Statistical Computing 2021) or PyPI for Python (Python Soft-
ware Foundation 2021). However, CRAN and PyPI are intended for software, not to
host full analyses for the purposes of reproducibility. Moderately sized datasets may
be hosted on GitHub or Kaggle (Kaggle Inc. 2019). Larger datasets may be hosted
on scientific data repositories like Figshare (Digital Science 2022) or Zenodo (CERN
Data Centre & Invenio 2022). Zenodo is operated by CERN and allows hosting up to
50GB of data while Figshare is operated by Digital Science and has a limit of 20GB.
Both platforms assign a DOI so that data may be permanently referenced. This open
sharing of analysis code is a growing trend in statistics. Nonetheless, it faces several
practical challenges. Among these, two important issues are (1) actually running the
shared code, and (2) understanding and interacting with the code.

The first challenge is that code that runs on one computer may not always run on
another. For example, the package may not be available for the current version of
the language or dependencies of the package may fail to install. Modern analysis
often relies on a large and complex collection of interdependent software packages and
thus there are many places for such version or dependency issues to arise. Similarly,
directory structures across machines may not be identical and, for example, data, code,
or other files may not reside where the analysis is expecting. Fixing such problems often
entails a significant investment of time and energy. For example, troubleshooting failed
installations of dependencies can often lead down a chain of fixing cryptic installation
errors which is difficult even for an experienced user.
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In addition to the challenges of taking analysis from one computer and running it on
another, a second major challenge is difficulty understanding or interacting with code.
While it may be impractical or unnecessary to insist on understanding code on a line-by-
line basis, a lot can be learned about an analysis by making small modifications to code.
For example, one can explore different parameter settings or function arguments and see
how output changes. Here, simply sharing raw code is often inadequate. Unless code is
particularly well-written, documented, and organized, it can be difficult to understand
and explore. Consequently, it is often difficult for third-parties to identify reasonable
entry-points into code to modify or scrutinize the analysis.
These issues limit gaining a deeper understanding of shared of statistical and scientific
results. In this work, we will review how two computational toolsets can be combined
to help address these problems. These toolsets are: (1) analysis containerization, and
(2) interactive notebooks. Containerization is a virtualization technology that allows
encapsulation of an entire computing environment including data, code, dependencies,
and programs into a reproducible, shareable, and self-contained format (Nüst et al.
2020). When a third party takes the container and runs it on their own computer, it will
be as if they are instead working in the computational environment where the analysis
was originally done. All of the programs, files, code, data, and configurations will be
exactly reproduced as they were in that original environment. Containerization is a
flexible approach that allows one to encapsulate any format or organization of analysis
according to their preferences and assessment of the best way to organize and share the
analysis. While there are many good ways of writing shareable analyses, in this work
we advocate for containerizing interactive notebooks. Notebooks are an increasingly
popular approach to analysis that allow natural interweaving of commentary, code,
and output. Containerizing notebooks makes for some of the most clear, concise, and
intuitive ways of documenting and interacting with analysis.
In this work, we will review how the merging of containerization and notebook soft-
ware can be used to create interactive and reproducible analyses. In addition to an
overview, we will also make concrete recommendations for what we believe to be the
most straight-forward tools and workflows to enhance reproducibility through con-
tainerized notebooks. The remainder of this paper is organized as follows: Section 2
reviews barriers to computational reproducibility in statistics, how containerization
helps, and the landscape of available tools. Section 3 reviews interactive notebooks
and surveys a selection of software options for writing notebooks that can be easily
containerized. Finally, Section 4 concludes with a discussion of additional benefits of
containerization and notebooks.

2. Containerizing Analyses
The basic computational reproducibility problem is that often code encounters errors
when moved from one computer to another. This was emphasized by the American
Statistical Association’s 2017 recommendations on reproducible research, which noted
that “[reproducible code] may initially sound like a trivial task but experience has
shown that it’s not always easy to achieve this seemingly minimal standard.”(Broman
et al. 2017) One major source of trouble is ensuring correct code dependencies. The
most familiar example of this is installing add-on packages for a language like ggplot2
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for R or numpy for Python. While add-on dependencies are easy to install in some cases,
this can quickly become complicated, for example, if the original analysis used a now
out-of-date version of a package. Furthermore, add-on packages often have their own
dependencies. Thus installing a single package may actually require a large network
of interrelated packages to be configured. Figure 1 displays the package dependency
network for the popular R package lme4 (Bates et al. 2015) which enables fitting linear
mixed-effect models. This package has 35 add-on package dependencies and a system-
level library dependency.

cmake

Figure 1: Dependency graph for the R package lme4. Grey boxes are R add-on packages.
Arrows indicate dependency. The blue box indicates the system-level dependency of
the package for Linux OS Ubuntu ver. 20.04.

There has been significant effort in the R community to address some of these add-on
dependency issues. The CRAN task view on reproducible research (Blischak and Hill
2021) lists several packages for this purpose like checkpoint (Ooi et al. 2021), ground-
hog (Simonsohn and Gruson 2021), and renv (Ushey 2021). These tools all enhance
reproducibility by maintaining a local archive of packages as used at the time of analy-
sis. This archive can subsequently be distributed with analysis code so that the correct
add-on versions are available to third-parties. While R has such archival packages
available, other languages have comparatively less support. Furthermore, analyses of-
ten have dependencies beyond simple add-on packages that cannot be archived in this
way. For example, code typically depends on programming language and operating
system versions, and system-level library code (as in Figure 1).
Recently, some have sought to solve these broader dependency issues using virtualiza-
tion, a well-studied software engineering solution to dependency problems (Nüst et al.
2020; Olaya et al. 2020). Virtualization encapsulates code and all of its dependencies
into a virtual computing environment that can be easily disseminated. One can think of
virtualization as making a copy of the computer where the code was originally written.
This virtual copy can be taken to another computer and run with little to no setup
or configuration. While virtualization has been around for decades, containerization is
the latest incarnation of the technology and comes with several key advantages over its



Journal of Data Science, Statistics, and Visualisation 5

predecessors. Previous technology virtualized the entire computer from hardware on
up. This meant that virtualization was resource intensive and slow to use. Conversely,
containerization is incredibly light-weight. Containers only virtualize the high-level
components of the operating system (e.g., code, configuration files, software and data)
and seamlessly re-use the stable low-level processing components of the host operating
system (Turnbull 2014). Indeed, starting up a container doesn’t actually start up a
second instance of an operating system; it largely just changes all references for re-
sources, system libraries, files, and data, to refer to a particular isolated section of the
computer. The light-weight nature of such containers means that the resource foot-
print is small making them quick to upload, download, and share. Furthermore, since
starting a container largely just changes the references to resources in the environment,
containers are user-friendly, start up nearly instantaneously, and run code at speeds
nearly identical to the host computer (Felter et al. 2015).

2.1. Containerization in Practice
Containerization has been an increasingly adopted tool for reproducibility widely across
the scientific community including areas such as geography, psychology, environmental
science, metagenomics and many others (Knoth and Nüst 2017; Wiebels and Moreau
2021; Essawy et al. 2020; Visconti et al. 2018; Nüst et al. 2020; Olaya et al. 2020).
To set the stage for a review of containerization technology we will first illustrate
how containerization is used in practice. We will present an archetypal example of
containerizing and sharing an analysis from three different perspectives: (1) the high-
level view of sharing containerized analyses, (2) the end-user experience of interacting
with a third-party containerized analysis, and (3) the first-party task of containerizing
an analysis for dissemination. These will correspond to Figures 2, 3, and 4, respectively.
A detailed explanation of how to use containerization software along with recommended
resources may be found in the supplementary material.
Figure 2 displays a high-level overview of how statistical analyses are containerized and
shared. First, the entire computing environment in which the analysis was originally run
is encapsulated into a single file. This file, called an image, is essentially a copy of the
system on which the analysis was conducted. The image file may be shared, for example,
by uploading it to the cloud. From there, the image may be downloaded by a third party
and with just a few keystrokes, the third party is placed into a duplicate of the original
computing environment (called a “container”1). All of the data, code, dependencies,
configurations and software are precisely set up as in the original environment, and
thus set up to reproduce the analysis exactly. The goal of containerization is to ensure
that if the code worked when containerized, it will work when the image is run by a
third party. This figure emphasizes that containerizing and sharing analyses is a simple
process akin to uploading code to GitHub. However, unlike uploading code to GitHub,
containerizing analyses ensures exact computational reproducibility and enables natural
interaction with the shared analyses.
Figure 3 shows in detail what using a shared containerized analysis looks like from the
viewpoint of an end-user. First, the container is downloaded and started with a single

1An “image” refers to the actual file that may be uploaded, downloaded or shared, while a “con-
tainer” refers to an ephemeral instance running on the computer.
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Figure 2: Typical sharing of containerized analysis. (1) The computing environment is
containerized, creating a self-contained image file. (2) This image file may be uploaded
to the cloud and then (3) downloaded by a third party. (4) From there, the third party
may use the image to re-create the original computing environment.

command. The default interface to a container is through the command line. However,
as shown in Figure 3, when combined with notebook software the analysis is accessible
via an interactive graphical interface through the computer’s web browser. Alone, the
containerization ensures exact reproducibility but it is not user-friendly. Conversely,
notebook software alone provides a user-friendly environment but does not guarantee
exact reproducibility. The combination achieved by containerizing notebooks gets the
best of both worlds. This will be explored in more detail in Section 3.
We can see from Figure 3 that the container’s environment contains all of our files
necessary for analysis including data and code scripts. However, in addition to merely
allowing inspection of the data or scripts, the container also comes with an installation
of R so that the user can actually run the code and analysis through the interactive
notebook interface. It is important to keep in mind that while the end-user accesses
the container and its contents through the web browser on the host computer, the
data, code, software installations and back-end to the interface all actually reside in
the container. The web browser merely provides a window into the running container
through which one may use the tools installed in the container and interact with the
code and data it contains. Indeed, none of these programs or files need to be installed
on the host computer in order to use the web browser to interactively access the versions
running in the container. This is the power of sharing containerizing analyses – it allows
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(A) Terminal
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code
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Figure 3: Example of interacting with a containerized analysis. (A) Here we use the
containerization software Docker to launch the container. The command docker run
starts the container. The flag -p allows us to specify the port forwarding to enable
interaction through the web browser. (B) The container may now be interacted with
through the web browser on the host computer via a graphical interface running from
the container. Here, the interface is the Jupyter lab integrated development environment
(IDE). The container has the necessary data and code files and an installation of R to
run the analysis through this web interface. While the end-user may interact naturally
with the analysis through a web-browser on the host computer, all of the code, files,
and software reside in the container’s pre-configured environment.

users to bring to bear the full power and convenience of popular graphical interfaces to
fully encapsulated analysis environments with a single command.
To set up an image, a configuration file must be written giving instructions of which
files and programs to be copied and installed. Images need not be built from the ground
up but instead, one can simply add on to existing pre-configured images to create new
ones. For example, the container repository Dockerhub (Docker Inc. 2021a) contains
more than 100,000 images freely available and usable by all major containerization
software. Such repositories make containerizing analyses simple as one can choose a
nearly-complete image, with desired software like Jupyter lab and R already installed,
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and simply add a small amount of project-specific code, data, and documentation.
Figure 4 (A) displays the configuration file used to build the image from Figure 3. In
five lines the configuration specifies a base image with R and Jupyter already installed,
installs a desired R add-on package, copies over data and analysis code, and starts the
Jupyter lab interface. Such a simple configuration file is quite typical for containerizing
statistical analyses. Most of the heavy lifting is done by the base image which sets up
a nearly complete environment. On top of this base image one needs only to install
the necessary software packages or language add-ons and copy over the data and code.
Once the configuration file has been written, the image needs to be built, after which,

(B) Building

(A)

base image with R and jupyter

desired name

Figure 4: (A) Example configuration file for building an image using Docker. (Line
1) FROM specifies the base image named jupyter/datascience-notebook to get a
container with R and Jupyter. (Line 2) RUN executes code which calls R and installs
ggplot2. (Line 3-4) Copies the data and code. First argument to COPY is location
on host, second argument is desired location in container, the flag –chown sets the
ownership of the file to the container’s user. (Line 6) CMD sets the command executed
when the container starts, here starting Jupyter lab. (B) Building image from Dockerfile.
Flag -t specifies the image name as gjhunt/mwe. “.” specifies necessary files to copy
are in the current directory.

it may be run or shared. Building the image is illustrated in Figure 4 (B).

2.2. The Containerization Landscape
While virtualization can trace its roots all the way back to early mainframe computers,
modern lightweight containerization was largely popularized with the software Docker
starting in 2013 (Graziano 2011; Docker Inc. 2021b). While other tools have been
developed since then, the present space of user-friendly containerization software for
statisticians and scientists has two major players: (1) Docker (Docker Inc. 2021b), and
(2) Singularity (Sylabs 2021). In the remainder of this section we will briefly compare
these options, summarizing findings in Table 1.
Portability is paramount to reproducibility. Docker and Singularity are both free and
open source and built off a Linux base. Consequently, they both work on Linux.
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However, Singularity does not have native support on Windows or MacOS while Docker
has both support and a graphical interface for these systems. Nonetheless, Singularity
is partially inter-operable with Docker and can run Docker images or use them as a
base image. Conversely, Docker can only work with Docker images.
A significant distinction is that Docker requires administrator privileges to run, while
Singularity does not. This makes Singularity capable of deploying software on high-
performance computing clusters where users do not have these rights. If one wishes
to run Docker on a cluster they may consider using Podman instead. Podman (Red
Hat, Inc. 2021) is a re-implementation of Docker that doesn’t require administrative
privileges. Podman is available on Linux or available on Windows using the Windows
Subsystem for Linux.
In addition to required privileges, there are differences in system isolation. Singular-
ity does not by default isolate the host computer’s file-system or network interface
from the container while Docker does. This makes Singularity’s default behavior less
secure for running unverified third-party analyses but more amenable for deploying non-
interactive code to clusters. Singularity’s default configuration also locks containerized
analyses as read-only unlike Docker. This makes it relatively difficult to explore and
edit third-party analysis code with Singularity.
All of the containerization software we recommend in this manuscript is free and open
source software (FOSS). As containerization is fundamentally a refinement of older
existing FOSS virtualization technology (itself built upon the FOSS Linux kernel) the
core software defining Docker, Singularity, and Podman are publicly available under
copyleft/permissive licenses. This is important as we want to make sure that the
software will remain freely available in the future.
While containerization software like Docker is FOSS this may not hold for repositories
like Dockerhub or other peripheral services. Dockerhub is a service provided by Docker
Inc. that allows sharing of images, but there is no guarantee that this serivce will
indefinitely provide free, long-term archival of data-heavy images. This leaves open
the question of where to store images for the purposes of reproducibility. We suggest
Zenodo, a general repository for scientific data operated by CERN (CERN Data Centre
& Invenio 2022). Zenodo allows hosting of up to 50GB of data and creates a permanent
DOI that can be referenced. As images are simply files, users may upload images created
using Docker, Podman or Singularity to Zenodo and share them with the community.
Other researchers will simply need to locate the files using the DOI and download/run
the images.
Similarly note that Docker maintains a non-FOSS tool called Docker desktop. This
software is primarily useful for managing multiple containers. However Docker desktop
is not necessary for using the core containerization software.
Table 1 summarizes the discussion of this section. For containerizing shareable and
reproducible analyses we recommend Podman or Docker as they are widely used con-
tainerization software with cross-platform support, a user-friendly interface, and a huge
ecosystem of base images off of which one may build. Nonetheless, for deploying con-
tainerized analyses to high-performance computing environments Singularity has sub-
stantial strengths.
While all of the containerization tools we discuss in this section can help provide a
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Table 1: Comparison of Docker, Singularity, and Podman for containerization of repro-
ducible analyses.

Docker Singularity Podman
O/S Support Linux, Mac, Windows Linux Linux
Image Type Support Docker Docker, Singularity Docker
Admin. Privileges Required Not Required Not Required
Host/Container Isolation Yes No Yes
Container Mutability Read/Write Read Only Read/Write

powerful approach for ensuring exact reproducibilitiy of results, this would ideally also
be done in a user-friendly manner. Otherwise, the added effort of interacting with
analyses through a container has the potential to hinder the accessibility of the anal-
ysis and code. In Section 3 we discuss notebooks and how they can be used to help
provide an accessible and intuitive graphical interface to writing and interacting with
containerized analyses.

3. Notebooks and Interactivity
Notebooks are a document format that allow interweaving of rich commentary, code,
and output all together. As such, notebooks are an increasingly popular way to struc-
ture and share analyses. Notebooks can also be especially useful when containerizing
analyses as they are a great way to make containerized analyses interactive and user-
friendly, and thus ultimately more shareable. In the remainder of this section we will
describe notebooks, highlight some of their advantages, and review popular options.
Figure 5 displays three examples of popular notebook formats which will be reviewed in
Section 3.1. While there are several variants of notebooks, they all structure analysis
as a sequence of “chunks” that can be edited and evaluated one at a time. Each
chunk can either be text or code. Text chunks typically allow writing in markdown
(Matt Cone 2021) which allows website-like formatting with headers, lists, embedded
click-able links, images/figures, tables, and typeset LATEX mathematics. Running code
chunks displays the output inline.
This chunked structure can help promote good programming practices. Good coding
practices are an important component of producing clear and reproducible analyses.
Two important practices are (1) logically organizing code into blocks, and (2) inter-
weaving meaningful comments into the code. In the software development community
there is a long history of discussion of best coding practices and development of tools
aimed at promoting them. For example, paradigms like literate programming (Knuth
1984) and documentation generation tools like Doxygen (Doxygen 2022) have long been
popular.
Notebooks build upon this history, promoting chunked code organization and rich com-
mentary, but go a step further and embed analysis output along the code and com-
mentary. This allows one to comment not only on the code, but also on the output.
Consequently, notebooks not only encourage good coding practices, but also facilitate
a rich discussion of the code, its relation to the output, and the bearing of this output
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Figure 5: Interactive notebook environments run through the web browser using (A)
RStudio Server, (B) Jupyter Lab, and (C) Zeppelin. While different notebook formats
and software tools exist, all notebooks share the feature of organizing analysis as a
sequence of chunks of (1) text or (2) code and its associated (3) output.

on the broader scientific questions.
Indeed, embedding output directly alongside the code allows one to document the
entire analysis pipeline including expository plots such as diagnostic and exploratory
plots that may inform small decisions made in the course of analysis. These types of
plots are often not included in manuscripts or supplementary materials because they are
difficult to motivate and connect to the analysis when divorced from the actual code.
Nonetheless, documentation of these types of micro-decisions is important for properly
documenting an analysis pipeline and is necessary for transparent and reproducible
research (National Academies of Sciences and Medicine 2019).
A separate advantage of producing output alongside code is that notebooks immortalize
output directly alongside the code that generated it. This can help ensure, for example,
that figures are directly linked to their source code. This can be useful in a research
context where both code and output evolve over time and it is easy to mismatch ver-
sions of results/figures to the correct versions of the underlying analysis. Notebooks
provide a mechanism to help avoid such a mismatch. However, it should be noted that
notebooks do not prevent running chunks in a non-sequential order nor do notebooks
prevent editing code without re-running the chunk. Both of these practices have the
potential to make confusing notebooks where re-running the code sequentially does
not reproduce the immortalized output (or may even produce errors). Some notebook
software attempts to alert users to these issues. For example, Jupyter lab (which will
be discussed in the next section) highlights code in orange if it has been edited but not
run. Similarly, Jupyter lab maintains a numeric label for each code chunk to indicate
the order in which the chunks have been run. Nonetheless, we still recommend that
before sharing notebooks they are re-run sequentially to ensure they work as intended
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and, in particular, containerizing the analysis provides a good opportunity to do this.
Another advantage of using notebooks for explaining and showcasing analysis is that
they give users the option to run the code and explore it interactively. Since chunks can
be edited and run one at a time, each chunk provides a natural entry-point into a small
portion of the analysis. For example, one can pick a segment of the analysis they wish
to explore, edit the chunk of code, run it, and observe the subsequent change in output.
This encourages one to experiment with small changes to code, e.g., testing different
tuning parameters or optional arguments to functions, and immediately observe the
changes to local output. This can be used to provide a natural way to play with code
in order to build up an understanding of how the code works and test the robustness
of the analysis to alterations.
While notebooks can provide a nice way to interact with analyses generally, they are
particularly powerful as a tool for interacting with containerized analyses. By default,
a containerized analysis requires the user to interact with the code entirely through
the command line. This may be a barrier to the adoption of containerization for
many potential users. However, if we containerize notebook software in addition to
the code, data, and other dependencies, then we can bring the full power of popular
coding environments as an interactive interface to our containerized analysis. This
is particularly easy if the notebook software is accessible through a web browser. In
this case, we can run the notebook back-end from within the container but access the
interactive computing interface from the host computer’s browser. This is illustrated
in both Figure 3 and Figure 5. This combination is the best of both worlds as it brings
the native feel of doing analysis on one’s own computer to completely self-contained
and reproducible analyses.

3.1. Options for Interactive Notebooks
There are three major notebook types that are simple to containerize: (1) RStudio, (2)
Jupyter, and (3) Zeppelin. Aside from these three, there is other proprietary notebook
software like Wolfram Mathematica or MATLAB Live Scripts; however these are closed-
source and difficult to containerize. Conversely, third-party software like Pycharm or
VSCode can write and run Jupyter notebooks but are more complicated to containerize
as they lack a native web interface. Consequently, this section compares RStudio,
Jupyter, and Zeppelin, all three of which have an easily containerizable web interface
along with official images and support on Dockerhub. A summary of this comparison is
presented in Table 2 and examples of the software interfaces are illustrated in Figure 5.
All three notebook options support a large array of languages popular for data sci-
ence like R, Python, Julia, Octave, and many others. RStudio boasts over 55 language
interpreters, Jupyter lists over 150, and Zeppelin has support for 37 (with a focus on
languages for clusters like Hive, Pig, Spark and BigQuery). Zeppelin can also create
chunks that effectively run RStudio or Jupyter as a backend and thus directly borrow
the features and languages they support. While Jupyter requires that all code chunks
in a notebook use the same language, both RStudio and Zeppelin allow notebooks to
mix and match languages across chunks. Furthermore, RStudio has extensive support
for reticulate, which allows analysis using both R and Python at the same time in a
shared computing environment.
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An important distinction is the format of the notebook file and how it interacts with
third-party software. Jupyter and Zeppelin serialize the notebook and save it in a single
densely encoded file. Conversely RStudio saves input code and markdown in a plain-
text “R Markdown” file and renders output into a separate HTML file. Each format has
its advantages and drawbacks. The encoding used by Jupyter/Zeppelin allows them to
save output text or plots in one file alongside input code, commentary, and rendered
markdown. This is useful for showcasing results because, unlike a traditional code
scripts, the notebook has output embedded and one need not re-run the code to view
the results. However, the file format is densely encoded which can cause difficulties
when combined with other software. In particular, one cannot easily track changes
to these notebooks in a human-readable format using version control software like Git
since small changes to output can prompt a cascading change to hundreds of lines of
the dense encoding.
Alternatively, RStudio uses a combination of plain-text R Markdown for input and
HTML for rendered output. An advantage of such an approach is that the input code
and commentary are saved in a human-readable format which is more versatile for edit-
ing by general software and can be meaningfully tracked by version control schemes.
The shareable HTML rendering also contains an embedded downloadable copy of the
R Markdown file if one wishes to download the underpinning R Markdown code. In ad-
dition to rendering to HTML, RStudio allows rendering notebooks into a host of output
types for display like PDF, Word or Powerpoint. Jupyter can also render its notebooks
into to a slightly smaller selection of similar display formats however Zeppelin does not
have such support. Despite these format differences, from the viewpoint of interacting
and exploring analyses all three of RStudio, Jupyter and Zeppelin have broadly similar
behavior, and allow users to edit and run code chunks one at time, viewing output
in-line in the editor.
To allow conversion between formats, Jupyter has the Jupytext plugin which allows
one to conduct analysis using Jupyter, whilst maintaining a simultaneous synchronized
version in R markdown or as a simple executable script. This allows the best of both
Jupyter and R Markdown notebooks, and in particular makes Jupyter compatible with
version control software. Zeppelin only supports converting their notebooks into the
Jupyter format while RStudio does not natively support conversion of R Markdown to
other formats, nonetheless Jupytext can enable this conversion.
All three of Jupyter, RStudio and Zeppelin have the ability to embed interactive wid-
gets into notebooks using popular interactive libraries in languages like R and Python.
As embedding widgets typically takes extra configuration it makes a strong case for
containerization which will ensure the back-end software is correctly set up to support
such interactivity. While Jupyter has support for interactive elements in both Python
and R, RStudio primarily supports these through its R Shiny (Chang et al. 2021) plat-
form for building web appplications. As Zeppelin can create notebook chunks running
the backend language interpreters of both RStudio (including R Shiny) and Jupyter it
can create notebooks that naturally embed interactive R Shiny applications or Jupyter
widgets. Zeppelin also has its own interactive visualizations backend via Apache Spark
(The Apache Software Foundation 2022).
A common challenge when using notebooks is that chunks need to be run sequentially
and so to explore chunks later in the analysis one needs to run earlier time-intensive



14 Containerization for Reproducible Analysis

code. To facilitate entering the analysis at arbitrary points it is good practice to save the
output of time-intensive chunks. This allows subsequent chunks to simply load the pre-
computed intermediate results instead of requiring a preceeding time-intensive chunk to
be run. This practice, called results caching, can be done manually by reading/writing
serialized objects to/from the disk e.g., using pickle in Python or read/writeRDS in
R. Containers are well-suited for this as one can distribute notebooks together with
cached results. While there is some native support for caching results using notebooks,
it is language and IDE specific. For example, while RStudio can natively cache and
retrieve serialized R objects when writing in the R markdown format, this does not
work if writing code in Python or Julia. Similarly, Jupyter has plugins to enable caching
results, but primarily for writing in Python.

Table 2: Comparison of notebook software options RStudio, Jupyter, and Zeppelin.
RStudio Jupyter Zeppelin

Notebook Type R Markdown Jupyter Zeppelin
(text, HTML) (JSON) (JSON)

Convertible to None R Markdown, code script Jupyter
Language Support ≥56 ≥152 ≥37
Export Types ≥18 ≥9 None
Widgets Backends Shiny, Several Jupyter,

HTML Widgets Shiny
Caching Support R (native) Python (add-ons) None
Ex. Docker Image rocker/rstudio jupyter/base-notebook apache/zeppelin

In summary, for every-day statistical analyses, we recommend either Jupyter or RStudio
but also using Jupytext to mirror copies into both formats. Nonetheless, if one needs to
connect to cluster architecture, Zeppelin likely a better candidate. Figure 6 displays an
example container workflow we find works well for sharing analyses. Here, we conduct
analysis with Jupyter and then use Jupytext to mirror the analysis into R Markdown, a
code script, and a HTML rendering for showcasing. These files are then containerized
by building off a custom base image we have created containing Python, R, Jupyter,
RStudio Server, and R Shiny. Once running, the container is accessible through the
host computer’s web browser where a start-page offers several options to interact with
the analysis including browsing the files (e.g., to view the HTML rendering) or opening
the notebooks in a graphical interface like Jupyter or RStudio.

4. Code Sharing and Beyond
Containerizing code has potential benefits in a wide variety of contexts. For example, in
a peer review process journals might ask authors to provide an interactive containerized
version of their analysis. Building such an image is relatively easy to do and would allow
reviewers to quickly assess a working version of the code. Additionally, containerized
analyses might provide a more secure way for reviewers to run third party code. For
example, when using Docker, containerized code cannot see, change, affect, or in any
way alter other containers or the host system. For security-conscious individuals or
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Figure 6: An interactive containerization workflow. (A) (Line 1) An interactive docker-
file built from johanngb/rep-int base. (Line 5) jupytext links the Jupyter notebook
to a R Markdown notebook and script. (Line 6)
proglangJupyter runs the notebook and saves input/output as a HTML document for
showcasing. (B) We build the image and name it adding the tag :2 to indicate it is
version 2 of our previous example. Subsequently, we may run the image interactively
with -it, naming it with –name and correctly mapping ports with -p. (C) The start
page for the interactive container. Several options for interacting with the analysis files
are listed. (D) We may browse the files or (E) open the notebooks with one of several
choices of graphical web-based interfaces running from the container.

institutions, this may be attractive. An added benefit is that one need not clutter up
their system installing single-use libraries in order to evaluate third party analyses.
Containerized notebooks may also be used as a tool for teaching allowing distribution
of identical code, data, and a computing environments to all students. Conversely,
student projects in applied statistical courses could be containerized before submission.
While a small amount of time would need to be devoted to teaching students some
simple mechanics of containerization, in our estimation this is not more complicated
than other coding tasks required in many courses and would provide an opportunity for
a discussion with students about research reproducibility, replicability as well as good
coding practices.
Beyond the direct benefits of making code more easily shareable, the act of container-
izing analyses can itself serve as a helpful review step in a scientific pipeline. Preparing
analyses for containerization forces one to review the code. This encourages simpli-
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fication and refactoring of code, as well as writing of the associated documentation
and commentary. It also provides an opportunity to re-run the analysis in a hands-off
manner to ensure that the notebooks and the entire code pipeline actually correctly
produce the results when run sequentially. If the final results included in a manuscript
are the output of a container then one can be ensured the results are computation-
ally reproducible. Additionally, software like Docker can be interwoven seamlessly into
popular code sharing and versioning workflows. For example, one can connect GitHub
and Dockerhub accounts together so that updates to code on GitHub are automatically
propagated to Dockerhub where an image is subsequently built. Alternatively, Docker
can directly pull and build repositories from GitHub.
Containerization is more than just an approach for preserving passive code archives.
It allows rich interaction and exploration of analysis and helps create usable and re-
producible analyses. Containerizing interactive analyses can enhance the ability of
statisticians to easily share code, analyses, and ultimately ideas.
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