
Docker Quick-start Guide
Gregory J. Hunt, Johann A. Gagnon-Bartsch

The following is a quick-start guide to building and running a docker container. Here, we
show how to build, run, and interact with a minimum working example. 

In addition to this guide, readers may find the following resources useful: 

docker installation instructions
official Docker documentation 
starting guide

1. Running a Docker container
To run our minimum working example one can use the following command typed into either
the linux shell or windows command prompt

This will download a container from Dockerhub and start it. Depending on the operating
system settings one may need to run this with elevated privledges (e.g. using sudo in linux). 

docker	run	-it	--name	ex_container	--rm	-p	127.0.0.1:80:80	gjhunt/mwe:2

In our case, once the container is started a welcome message is displayed:

To	get	started,	please	enter	the	following	URL	into	your	web	browswer:

										http://localhost/

Note:	If	you	are	unable	to	copy	and	paste	the	link	with	your	mouse,	
you	may	need	to	use	command-c	or	control-c	on	the	keyboard	to	copy,	
and	command-v	or	control-v	to	paste.		Alternatively,	you	can	enter	
the	link	manually.

To	quit,	type	exit	and	press	enter.

One can interact with the running container either through the shell/command prompt or
follow the localhost link displayed. We recommend the latter. 

We will now explain the various parts of this docker	run command. (Full documentation of
docker	run may be found on the official docker docs here.)

docker	run
The main command to run docker images is docker	run. This will either run a local image (if
one exists) otherwise it will pull the image from Dockerhub and run it. 

-it
The -it flag specifies that the container should be run in interactive mode. For exploring
analyses interactively this is generally how an image will be run.

--name	ex_container
The --name flag names the container. In our case we name it ex_container. While this is
optional, it is good practice to give meaningful names to containers if one is running multiple
containers at once. 

--rm
The --rm flag tells docker to remove the image after we exit. If this flag is not specified
then the container will continue to run in the background after we have exited. We
recommend this unless running in the background is specifically desired. 

1

https://docs.docker.com/engine/install/
https://docs.docker.com
https://docs.docker.com/get-started/
http://localhost
https://docs.docker.com/engine/reference/commandline/run/


-p	127.0.0.1:80:80
This flag forwards the ports from the container to the localhost at port 80 so that the
container can be accessed through localhost. Here we use the full IP address 127.0.0.1 so
as to ensure that the docker container is not exposed to the broader network.

gjhunt/mwe:2
The final part of the command is the image name. In this case our image name is gjhunt/
mwe and the additional tag :2 is a tag that specifies the version. We will see when building
our image that one can specify arbitrary text as a tag at the end of the Docker image name
to create different versions of the image. If unspecified docker implicitly uses the tag
:latest. In our case, we have specified version :2 of our minimum working example. 

Using docker	run is typically all that is needed to be done in order to run the container
supplied by a third party. Nonetheless, one can write their own docker images. This is
covered in our next section.

2. Building a Docker container
In order to build a docker image one writes a Dockerfile. A Dockerfile file specifies how
the container should be set up. One can view the Dockerfile we use in this example on
github. One can download all of the files we use for this project here.

In full, our Dockerfile has 6 lines:

FROM	johanngb/rep-int:latest
WORKDIR	/home/rep/
COPY	data.csv	data.csv
COPY	analysis.ipynb	analysis.ipynb
RUN	jupytext	--set-formats	ipynb,rmarkdown,R	analysis.ipynb
RUN	jupyter	nbconvert	--to	html	analysis.ipynb

We explain the commands in this file in order:

FROM
The FROM command specifies the base image off of which to build the docker image. Full
documentation for this command can be found in the Docker documentation here. In our
case, we build off a Docker image we have created to give interactive exploration tools for
statistical analyses. Our image is called johanngb/rep-int. The tag at the end of this
image name :latest specifies that we should be building off of the newest released
version of this image. 

WORKDIR
The WORKDIR command specifies the location within the container where the user will begin.
It also serves as a base directory from which further commands like COPY are referenced
later in the Dockerfile. In our case we create set the starting directory to /home/rep. The
official docker docs for WORKDIR are available here.

COPY
The COPY command copies files from the computer into the image. Here we copy a data file
data.csv and an analysis jupyter notebook analysis.ipynb. Since we set WORKDIR to /home/
rep these files will be copied into the /home/rep/ directory within the container.
Sometimes it is helpful to add the --chown=1000 command to correctly set the permissions
of the copied files (depending on the base image). We have written our base image so this is
not necessary. The official docker docs for COPY are available here.

RUN
The RUN command runs commands when building the Docker image. In our case we first run
jupytext to mirror the .ipynb notebook into rmarkdown and and .R script. This creates

2

http://localhost
https://github.com/gjhunt/containerize/blob/main/mwes/docker_mwe/Dockerfile
https://github.com/gjhunt/containerize/tree/main/mwes/docker_mwe
https://docs.docker.com/engine/reference/builder/#from
https://hub.docker.com/r/johanngb/rep-int
https://docs.docker.com/engine/reference/builder/#workdir
https://github.com/gjhunt/containerize/blob/main/mwes/docker_mwe/data.csv
https://github.com/gjhunt/containerize/blob/main/mwes/docker_mwe/analysis.ipynb
https://docs.docker.com/engine/reference/builder/#copy


jupytext to mirror the .ipynb notebook into rmarkdown and and .R script. This creates

the appropriate files we will see when we run the container. Additionally, we use the RUN
command to convert our notebook for a .html file for display using the jupyter
nbconvert command. Other common idioms are to install software add-ons to the image. In
our image, R and python are already installed. We could use the RUN command to install the
ggplot2 package by appending the following line to our Dockerfile
RUN	R	-e	"install.packages('ggplot2',repos='http://cran.us.r-project.org')"

The typical workflow for writing a Dockerfile involves one FROM at the beginning of the
file to set the base image, one WORKDIR to set the working directory, and then a series of
invocations of COPY to copy over analysis files, and RUN to run commands, install packages,
etc. 

Once the Dockerfile has been written, one simply runs the docker	build command
from within the directory where the Dockerfile resides. To do this we use a command akin
to the following:

docker	build	-t	username/mwe:2	.	

This command docker	build builds the image from the Dockerfile naming it the argument
to the flag -t. In our case we specify -t	username/mwe:2 which names the image
username/mwe and specifies the tag :2 indicating that it is version :2. The official docs for
docker	build can be found at this link.

For local use any naming convention can be adopted, for example, one could instead use the
command

docker	build	-t	myimage	.	

which would build the same image but name it myimage. Notice in both instances we end
the command with a period . which specifies the build context i.e. that the Dockerfile and
associated files to COPY are in the current directory.

If one is going to upload their image to Dockerhub then they need to follow the convention
<username>/<imagename> for naming their images. 

After building the image one can test it by running it by using the docker	run command as
above. In this case, if we have named the image myimage then one can run it with the
following command:

docker	run	-it	--name	ex_container	--rm	-p	127.0.0.1:80:80	myimage

3. Saving and Loading Docker images
If desired, one can upload their image to Dockerhub using the docker	push command
(official docs here). For example this could be done using

docker	push	<username>/<imagename>:<tag>

substituting the <username>, <imagename>, and <tag>, for appropriate values. 

Alternatively, one can save a local image using docker	save (official docs here) This saves
the image as a file on the computer that can be shared like any other file. For example, we
recommend uploading images to Zenodo. 

In our case one could use the following command to save their image named myimage
docker	save	-o	image.tar	myimage

This saves the images to a .tar compressed file named image.tar that can be shared. Here

3

https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/push/
https://docs.docker.com/engine/reference/commandline/save/
https://zenodo.org/


This saves the images to a .tar compressed file named image.tar that can be shared. Here

the flag -o specifies the file name image.tar we want to give our image on disk. We also
specify the image name myimage at the end. 

One can then share this with .tar file with third-parties. They can load the image using the
command docker	load (official docs here). For example:

docker	load	-i	image.tar

Here, the tag -i specifies the .tar file to load. After this file has been loaded it can be run
just like any other docker image. For example: 

docker	run	-it	--name	ex_container	--rm	-p	127.0.0.1:80:80	myimage

4. Other Useful Commands
In addition to docker	run, docker	build, docker	save and docker	load the
following are some useful commands for handling containers on a system:

docker	image	ls	-a to see images (Official Docs)
docker	image	rm	<name> to remove image <name> (Official Docs)
docker	container	ls	-a to see containers (including stopped ones) (Official Docs)
docker	container	rm	<name> to remove container <name> (Official Docs)
docker	system	prune to clean up no-longer-needed files (Official Docs)
docker	cp	<name>:<src>	<dest> to copy files from a running container <name> in
the folder <src> to the local machine at destination <dest> (Official Docs) 

4

https://docs.docker.com/engine/reference/commandline/load/
https://docs.docker.com/engine/reference/commandline/cp/
https://docs.docker.com/engine/reference/commandline/rm/
https://docs.docker.com/engine/reference/commandline/container_ls/
https://docs.docker.com/engine/reference/commandline/container_rm/
https://docs.docker.com/engine/reference/commandline/system_prune/
https://docs.docker.com/engine/reference/commandline/cp/

