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Abstract

This paper studies how to generalize Tukey’s depth to problems defined in a
restricted space that may be curved or have boundaries, and to problems with a
nondifferentiable objective. First, using a manifold approach, we propose a broad
class of Riemannian depth for smooth problems defined on a Riemannian man-
ifold, and showcase its applications in spherical data analysis, principal compo-
nent analysis, and multivariate orthogonal regression. Moreover, for nonsmooth
problems, we introduce additional slack variables and inequality constraints to
define a novel slacked data depth, which can perform center-outward rankings of
estimators arising from sparse learning and reduced rank regression. Real data
examples illustrate the usefulness of some proposed data depths.

Keywords: Riemannian depth, principal component analysis, slacked data depth, re-
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1. Introduction
Tukey’s half-space depth (Tukey 1975) can be generalized to a polished subspace depth,
as shown in our companion paper (She et al. 2022a). The basic Tukeyfication process
there assumes a simple problem structure in the sense that one can directly write down
some sample-additive estimating equations. Modern statistical applications however
pose new challenges.
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First, the parameter space Ω can be curved or have boundaries, so that evaluating the
gradient in the ambient Euclidean space may not directly deliver reasonable influences.
Second, with a regularizer in use, the objective function is typically non-differentiable.
Some specific examples are given as follows.

Example 1. (Watson depth) Assume that all data points lie on an m-dimensional
sphere zi ∈ Sm−1, and ±zi are deemed equivalent. This kind of data are typically re-
ferred to as axially symmetric data. They have recently received attention in clustering
and directional statistics (Dhillon et al. 2003; Bijral et al. 2007; Sra and Karp 2013).
To characterize the distribution of such data, a commonly used one is the Watson
distribution with density (Watson 1965; Mardia and Jupp 1999)

p(z; µ, κ) ∝ eκ(µT z)2
.

Here, µ ∈ Sm−1 gives the mean direction, κ is the so-called concentration parameter,
and the normalizing constant does not depend on µ. We require κ ̸= 0 (otherwise µ is
not an effective parameter to introduce depth). When κ > 0, the data points concen-
trate around µ, and when κ < 0, the data spread around the great circle orthogonal
to µ. How to “Tukeyfy” more complex distributions defined on a sphere (such as the
Fisher-Bingham distribution) is nontrivial, but could give rise to more useful spheri-
cal data depths. We will see that depth-enhanced principal component analysis to be
introduced in Section 2.2 poses a similar manifold challenge.

Example 2. (Nonnegative regression depth) As an extension of the celebrated
regression depth (Rousseeuw and Hubert 1999), let us consider data depth in a setting
where all coefficients are nonnegative. This corresponds to the nonnegative least squares
problem:

min
β

∥y − Xβ∥2
2 s.t. βj ≥ 0, 1 ≤ j ≤ p,

where we can denote the constraints by β ∈ Rp
+ with R+ = [0,∞). Clearly, the closed

parameter space Rp
+ has boundary points. Regression depth can be simply applied

if β◦ is an interior point, but if β◦ lies on the boundary, i.e., β◦
j = 0 for some j,

which is of practical interest in significance tests, regular depth does not apply, and the
normal-equation based influences must be corrected—but how?

Example 3. (Sparsity depth) Consider a sparse learning problem

min
β

n∑
i=1

l0(xT
i β) +

p∑
j=1

P (|βj|;λ),

where l0 is a loss function defined on the systematic component xT
i β and P is a penalty

function to promote sparsity in β. Examples of P include ℓ1, ℓ0, SCAD (Fan and
Li 2001), and MCP (Zhang 2010), among many others that are popularly used in
high dimensional statistics for building a parsimonious model. We assume that the
regularization parameter λ is given, either by theory—see, e.g., Cai et al. (2009), or by
tuning, like cross-validation (She and Tran 2019), so that the criterion is fully specified.
A new class of depths like ℓ1-depth or ℓ0-depth would be helpful for high-dimensional
robust inference, but the nondifferentiability and nonconvexity of P make it difficult to
obtain sample-additive estimation equations.
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To tackle the challenges, we propose two approaches based on manifolds and slack
variables, respectively, to extend Tukey’s depth to Riemannian depth and slacked depth.
The rest of the paper is organized as follows. Section 2 studies how to handle a smooth
problem defined on a Riemannian manifold. The resulting Riemannian depth finds
applications in spherical data analysis, principal component analysis, and multivariate
orthogonal regression. Section 3 uses slack variables to cope with parameter spaces
with boundaries and nondifferentiable objectives. A novel class of slacked data depth
can perform center-outward rankings of estimators arising from sparse learning and
reduced rank regression. Section 4 performs computer experiments on some real data
examples. We conclude the whole work in Section 5.

Notation. We use bold symbols to denote vectors and matrices. A matrix X ∈ Rn×p

is frequently partitioned into rows X = [x1 . . .xn]T with xi ∈ Rp. The vectorization
of X is denoted by vec(X) ∈ Rnp. Let R+ = [0,+∞]. We use X[I,J ] to denote
a submatrix of X with rows and columns indexed by I and J , respectively, and
occasionally abbreviate X[,J ] to XJ by selecting the corresponding columns. Given
X ∈ Rn×p, ∥X∥F and ∥X∥2 denote its Frobenius norm and spectral norm, respectively,
∥X∥max ≜ max1≤i≤n,1≤j≤p |xij|, and rank(X) denotes its rank. The Moore-Penrose
inverse of X is denoted by X+. The inner product of two matrices X and Y (of the
same size) is defined as ⟨X,Y ⟩ = Tr(XT Y ) and their element-wise product (Hadamard
product) is X ◦ Y . The Kronecker product is denoted by X ⊗ Y (where X and Y
need not have the same dimensions). Given a set A ⊂ Rp×m and a matrix T ∈ Rn×p,
T ◦ A = {T A : A ∈ A}. We use Om×r to represent the set of all m × r matrices V
satisfying the orthogonality constraint V T V = I. For a vector a = [a1, . . . , an]T ∈ Rn,
diag{a} is defined as an n×n diagonal matrix with diagonal entries given by a1, . . . , an,
and for a square matrix A = [aij]n×n, diag(A) := diag{a11, . . . , ann}. The indicator
function 1A(t) means 1A(t) = 1 if t ∈ A and 0 otherwise. Given f : Rn×p → R, f ∈ C1

means that its Euclidean gradient ∇f(X), an n × p matrix with the (i, j) element
∂f/∂xij, exists and is continuous for any X ∈ Rn×p. Given two vectors α,β ∈ Rp,
α ⪰ β means αj ≥ βj, 1 ≤ j ≤ p and α ≻ β means αj > βj, 1 ≤ j ≤ p. Finally,
a ∧ b = min{a, b}.

2. A Manifold Approach
When the problem is defined on a Riemannian manifold (without boundaries), we
can introduce Riemannian influences, along with defining a proper influence space to
complete the definition of Riemannian depth. In contrast, the commonly used methods
to deal with constraints (such as the elimination approach for (13) below) may be
infeasible in higher dimensions. We will see the important role of the influence space G
introduced in Section 2 of She et al. (2022a), since a Riemannian gradient always lies
in a tangent space.

2.1. Riemannian depth
We begin with Example 1 to motivate the main idea. Starting from such an example,
the Watson depth will be introduced. Useful for the analysis of axial data, it is defined



4 On Generalization and Computation of Tukey’s Depth: Part II

on a Riemmanian manifold and it will be a special case of a more generic Riemannian
depth.
For the MLE problem

min
µ

−κ
∑

i

⟨µ, zi⟩2 + c(κ;m) s.t. ∥µ∥2
2 = 1, (1)

Lagrange multiplier or eigenvalue decomposition can be used to solve for µ, but they
do not yield a simple set of estimating equations like (1) in She et al. (2022a) to be
conveniently used for the purpose of data depth.
Instead, we view (1) as an unconstrained problem on the sphere Sm−1, which is a
Riemannian manifold. Then the Riemannian gradient with respect to µ can be cal-
culated to define the desired (Riemannian) influence function. We show some detailed
derivation to give the reader more intuition.
Concretely, adopting the canonical metric induced by the inner product Gµ(u1,u2) =
uT

1 (I − µµT/2)u2 (Edelman et al. 1998), the Riemannian gradient of li := −κ⟨µ, zi⟩2

with respect to µ, denoted by gi(µ), is defined as the unique element in the tangent
space

Tµ(Sm−1) ≜ {u ∈ Rm : uT µ = 0}
satisfying

Gµ(gi(µ),u) = uT ∇li, ∀u ∈ Tµ(Sm−1) (2)

where ∇li is the Euclidean gradient. It follows that

gi(µ) = [∇liµT − µ(∇li)T ]µ = −2κ⟨zi,µ⟩(zi − ⟨zi,µ⟩µ).

From Boothby (1986) (and κ ̸= 0), the optimal µ satisfies∑
i

⟨zi,µ⟩(zi − ⟨zi,µ⟩µ) = 0. (3)

Given µ◦ ∈ Sm−1, the Riemannian influence ⟨zi,µ
◦⟩(zi − ⟨zi,µ

◦⟩µ◦), denoted by
T R(µ◦; zi), is no longer zi − µ◦ as in location depth. Notably, T R(µ◦; zi) vanishes
when θi = jπ/2 (j = 0, 1, 2, 3) with cos θi = ⟨zi,µ

◦⟩, corresponding to various circum-
stances with κ > 0 and κ < 0.
Not only does the manifold perspective provide the desirable estimation equations, but
it defines an important influence space G = Tµ◦(Sm−1) to restrict v. Accordingly, our
Watson depth considers all one-dimensional projections tangentially passing through
µ◦:

dW
01(µ◦) = min

v

∑
i

1≥0(Gµ◦(v, (zT
i µ◦)[zi − (zT

i µ◦)µ◦])) s.t. vT µ◦ = 0,vT v = 1 (4)

or equivalently

dW
01(µ◦) = min

v

∑
i

1≥0(⟨v, (zT
i µ◦)zi⟩) s.t. vT µ◦ = 0,vT v = 1, (5)

regardless of the Riemannian metric, as an outcome of (2). The factor zT
i µ◦ in (5),

possibly negative, amounts to replacing zi by sgn⟨zT
i ,µ

◦⟩ · zi. This is in accordance
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with the Watson distribution for axially symmetric spherical data. The algorithms in
Section 3 of our companion paper can be applied, after a simple reparametrization of
v in the orthogonal complement space of µ◦µ◦T .
The above derivation is standard and can be generalized to introduce a Riemannian
depth for the Tukeyfication of a differentiable loss l on a Riemannian manifold M of an
Euclidean space: minB

∑
i l(B; xi,yi) s.t. B ∈ M. Given a point B◦ ∈ M of interest,

letting T ◦
i = T (B◦; xi,yi) = ∇Bl(B◦; xi,yi) as before and considering all directional

derivatives of l in the directions of V ∈ TB◦(M), we define

Riemannian depth: dR
01(B◦) = min

V

∑
i

1≥0(⟨V ,T ◦
i ⟩)

s.t. V ∈ TB◦(M), ∥V ∥F = 1. (6)

Eqn. (6) performs location depth of Riemannian influences in the tangent space
TB◦(M). Because TB◦(M) is linear, the restricted Procrustes rotation in Section 3
of She et al. (2022a) applies with no difficulty in optimization.
When M is compact and/or l is nonconvex, it becomes necessary to exclude locally
maximal solutions in the estimating equations. We give an “order-2 Tukeyfication” as
follows. Given B◦ ∈ M and V ∈ TB◦(M), let γ be the geodesic satisfying γ(0) = B◦

and γ′(0) = V . The first step is to restrict l to the geodesic and define

gi = d
dt l(γ(t); xi,yi)

∣∣∣
t=0,

, hi = d2

dt2 l(γ(t); xi,yi)
∣∣∣
t=0,

where gi simplifies to ⟨V ,T ◦
i ⟩ and hi can be calculated via Riemannian Hessian. (Our

companion paper mostly considers an Euclidean M, where a line restriction l(B◦ +tV )
with V ̸= 0 is used, and gi and hi only involve the ordinary gradient and Hessian of
l.) The second step robustly measures how well the following two optimality condition
are obeyed:

n∑
i=1

gi = 0,
n∑

i=1
hi ≥ 0.

Concretely, changing the one-dimensional averages to medians motivates us to adopt∑ (1=0 + 2(1<0 ∧ 1>0)) (gi) and ∑ 1≥0(hi) to quantify to what extent the two condi-
tions are satisfied, respectively, in the possible occurrence of extreme outliers. Finally,
combining the two measures leads to

Riemannian depth (order 2): dR2
01(B◦) = min

V

∑
i

1≳0(gi)
∑

i

1≥0(hi)

s.t. V ∈ TB◦(M), ∥V ∥F = 1,

where 1≳0 := 0.5 · 1=0 + 1>0 replaces 1=0 + 2(1<0 ∧ 1>0) in the optimization because
gi is linear in V , the Riemannian Hessian is a bilinear map, and TB◦(M) is a linear
space. A more aggressive proposal is to use ∑

i 1≳0(gi)1≥0(hi) as the criterion. (Notice
the mild difference between 1≳0 and 1≥0; the first seems to be more appropriate to deal
with equality-type optimality conditions in defining a d01-type data depth.) When l
is (geodesically) convex, hi ≥ 0 and thus the associated factor with proper scaling,∑

i 1≥0(hi)/n, will not affect the depth.
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Remark 1. If we Tukeyfy the basic von Mises-Fisher distribution (vMF) (Mardia and
Jupp 1999), with the density given by p(z; µ, κ) ∝ eκµT z, where µ : ∥µ∥2 = 1 is the
mean direction, κ > 0 and the normalizing constant does not depend on µ, (6) yields
dR

01(µ◦) = minv
∑

i 1≥0(⟨v, zi⟩) s.t. vT µ◦ = 0,vT v = 1. This is closely related to but
different from the angular Tukey’s depth that can be defined as minv

∑
i 1≥0(⟨v, zi⟩) s.t.

vT µ◦ ≥ 0,vT v = 1 for m-dimensional spherical data (see Liu and Singh (1992) for
some theoretical studies when m = 2, 3). The order-2 depths involve hi = ⟨µ◦, zi⟩ which
are independent of v in this case.
More interesting notions of spherical data depth can be induced by some more flexible
distributions through our manifold framework, such as the Kent distribution and the
more general Fisher-Bingham distribution whose quadratic exponential form is more
powerful than vMF for statistical modeling in bioinformatics, meteorology, and computer
vision.

2.2. Depth-enhanced principal component analysis
This part uses the Riemannian depth introduced in the last subsection to Tukeyfy the
well-known principal component analysis (PCA). Let Z = [zi, . . . ,zn]T ∈ Rn×m be a
data matrix. The PCA model can be stated as

Z = 1µ∗T + A∗U ∗T + E, (7)

with µ∗ ∈ Rm, A∗ ∈ Rn×r, and U ∗ ∈ On×r all unknown. Eqn. (7) means that the
n data points, after some proper translation, all approximately concentrate in an r-
dimensional subspace, and r is typically much lower than m and n. The columns of
U ∗ are often called the principal component (PC) loading directions. Assuming that
the entries of E are i.i.d. Gaussian, we can estimate the intercept vector and the
low-dimensional subspace by

min
(U , µ)

∥(Z − 1µT )(I − UUT )∥2
F s.t. UT U = Ir×r. (8)

The solution is given by standard PCA, which is however sensitive to outliers.
One may want to estimate U ,µ more robustly through a depth enhancement. Here,
the orthogonality constraint UT U = I may appear more complex than that in the
spherical problem (1), but (8) is a smooth problem on a Stiefel manifold. Therefore,
we can define a Riemannian depth for any (µ◦,U ◦) ∈ Rm ×Om×r based on Section 2.1,
which we call the principal component (PC) depth, as follows

PC-depth: min
(v,V )

∑
i

1≥0(⟨v, (I − U ◦U ◦T )(µ◦ − zi)⟩ − ⟨V , (µ◦ − zi)(µ◦ − zi)T U ◦⟩)

s.t. V T U ◦ + U ◦T V = 0, ∥v∥2
2 + ∥V ∥2

F = 1. (9)

All matrix differentiation details are omitted. (9) may need an order-2 modification
though, which will be clearly revealed by comparing it to (14) later.

PCA is also helpful when ranking observations in ultra-high dimensions. It is well
known that the curse of dimensionality may make every observation look like a corner
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point, thus harmful to describing data depth. Fortunately, under (7), the true signals
concentrate in the PC subspace determined by U ∗; so to check a given point’s centrality
or extremity, it is helpful to project it onto the orthogonal complement (OC) subspace
to reveal its outlyingness. See She et al. (2016) for more discussions. Specifically, letting
Ū

∗ ∈ Om×r̄ (r̄ ≤ m− r) that is orthogonal to U ∗, we can obtain from (7)

ZŪ
∗ = 1µ̄∗T + Ē, (10)

where µ̄∗ = Ū
∗T

µ∗, Ē = EŪ
∗. Eqn. (10) is in the typical location estimation setting

except that Ū
∗ is unknown, which motivates us to consider

min
(Ū , µ̄)

∥ZŪ − 1µ̄T ∥2
F s.t. Ū

T
Ū = I r̄×r̄. (11)

Interestingly, (11) can also be viewed as a multivariate extension, of rank r̄, of the
orthogonal regression due to Mizera (2002):

min
µ∈R,u∈Rp+1

∥ [X y] u − 1µ ∥2
2 s.t. ∥u∥2

2 = 1. (12)

Moreover, when Z = [X Y ], setting Ū = [BT ΓT ]T gives a model Y Γ + XB − 1µ̄T =
E for canonical correlation analysis.
How to introduce an operational depth for (11) is a meaningful problem. Indeed, with
a deep Ū provided, one would be able to rank high-dimensional samples in a lower
dimensional subspace.
Restricting to a naive case of (12) with a single predictor and a single response:

min
(α,β,µ)

∥βx + αy − 1µ∥2
F s.t. α2 + β2 = 1, (13)

one can eliminate the constraint by, say, α = − sin t, β = cos t with a free parameter
t, and then take the Euclidean gradient with respect to (t, µ) to define a tangent
depth (Mizera 2002). Nevertheless, the elimination method encounters difficulties when
considering multiple predictors, let alone a general r̄. As far as we know, there exists
no commonly acknowledged multivariate orthogonal regression depth in the literature.
Our manifold approach provides a systematic treatment of (11) for all p, m, and r̄.
We call the resulting Riemannian depth the orthogonal complement (OC) depth. It
pursues an r̄-dimensional subspace in the original input space to rank the observations
effectively. The influence space here is Rr̄ ×TŪ (Om×r̄) with TŪ (Om×r̄) = {V : Ū

T
V +

V T Ū = 0}, and the OC depth for any given (µ̄◦, Ū
◦) ∈ Rr̄ × Om×r̄ is

OC-depth: min
(v,V )

∑
i

1≥0(⟨v, µ̄◦ − Ū
◦T

zi⟩ + ⟨V , ziz
T
i Ū

◦ − ziµ̄
◦T ⟩)

s.t. V T Ū
◦ + Ū

◦T
V = 0, ∥v∥2

2 + ∥V ∥2
F = 1.

(14)

The derivations are similar to the PC depth and are omitted. Note that the influ-
ence space constraint has a multivariate form but is linear. Eqn. (14) also gives a
multivariate orthogonal regression depth.
On the other hand, with r = r̄ and no intercepts, the (order-1) PC-depth and OC-depth
coincide, since in this case the two losses in (8) and (11) only differ by a minus sign
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and the influence space is linear in V . This means that the most and least informative
subspaces will have the same depth. As aforementioned, an order-2 Riemannian depth
would be able to distinguish between minimization and maximization problems, which
deserves further investigation.

3. The Slack Variable Approach
The nondifferentiability issue in the other two examples in Section 1 is much trickier to
cope with. In more detail, Example 2 has a closed parameter space Rp

+ with boundaries,
which makes gradient-based influences improper at any boundary point; Example 3 has
a nonsmooth regularizer commonly seen in high dimensional statistics, and sometimes
regularization can be imposed in a constrained manner.
Following Rousseeuw and Hubert (1999), the first step to define a data depth is to char-
acterize a reasonable “fit”, or a class of reasonable estimators, under a given model or
method. It turns out that for such nonsmooth problems, we can derive local optimality
conditions in form of inequalities or obtain some nonlinear fixed-point equations by use
of a surrogate function, neither of which however results in sample-additive estimating
equations directly. The good news is that we can then utilize some “slack variables”
subject to proper (convex) inequality and equality constraints to offer a universal solu-
tion, which leads to a novel class of slacked data depth.

3.1. Slacked data depth and sparse learning
To begin with, let us consider min f(β) ≜

∑
i l(β; xi, yi) s.t. β ⪰ 0 or β ∈ Rp

+, where
l is differentiable in the augmented parameter space Rp but not necessarily convex.
Because f is directionally differentiable in Rp

+, any optimal solution β̂ must obey

Duf(β̂) ≥ 0 for all feasible u

where Duf(β) denotes the one-sided directional derivative of f at β with increment u,
namely, Duf(β) = limϵ→0+[f(β+ϵu)−f(β)]/ϵ. Nevertheless, unlike equalities that are
maintained after projection (i.e., ∑

T i(B) = 0 ⇒ ∑⟨V ,T i(B)⟩ = ⟨V ,
∑

T i(B)⟩ =
0,∀V ∈ G), applying the same operation on inequalities may destroy their meanings
totally during the process of Tukeyfication.
Our proposal is to associate each inequality with an additional slack variable, and
append a nonnegative constraint when performing projection and error measurement.
Let ej be a vector with the jth component 1 and the remaining 0. In Example 2, taking
u = ±ej for j ∈ J = {j : βj ̸= 0} and u = ej for j ∈ J c leads to the following slacked
estimating equation: ∑

i

(∇l(β; xi, yi) − s/n) = 0,

where sJ c ⪰ 0 and sJ = 0. The ordinary Tukeyfication now goes through, and we
obtain a depth optimization problem for any β◦ ⪰ 0:

min
(v,s)∈Rp×Rp

∑
i

1≥0(⟨v,∇l(β◦; xi, yi) − s/n⟩) s.t. ∥v∥2 = 1, s ◦ β◦ = 0, s ⪰ 0.
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When l(β; xi, yi) = (xT
i β − yi)2/2, we get the nonnegative regression depth

min
(v,s)∈Rp×Rp

∑
i

1≥0(⟨v,xi(xT
i β◦ − yi) − s/n⟩) s.t. ∥v∥2 = 1, s ◦ β◦ = 0, s ⪰ 0. (15)

Recall that ◦ denotes the elementwise product. When β◦ ≻ 0, s = 0, and (15) becomes
the regression depth. In general, the inclusion of s in the minimization, as an outcome
of the nonnegativity restriction, often results in a lower depth value.

The slack-variable technique can introduce useful depth notions for sparse learning that
is at the core of high dimensional statistics:

min
β
f(β) ≜ l̄(Xβ; y) +

p∑
j=1

P (|βj|;λ), (16)

where l̄(Xβ; y) = ∑
i l0(xT

i β; yi) with l0 differentiable. Here, we assume that P is
sparsity-promoting in the sense that it is induced by a thresholding rule Θ(·;λ) with λ
as the threshold (see She (2012) for the rigorous definition and more details): P (t;λ) =
PΘ(t;λ) + q(t;λ), where

PΘ(t;λ) =
∫ |t|

0
(Θ−1(u;λ) − u) du with Θ−1(u;λ) = sup{t : Θ(t;λ) ≤ u}

and q is an arbitrary nonnegative function satisfying q(t;λ) = 0 if t = Θ(s;λ) for some
s ∈ R. Hence if Θ(·;λ) is a continuous function, q must be identical to zero, but if
Θ has discontinuities, the mapping from P to Θ is many-to-one. The universal Θ-P
framework covers many practically used penalties such as ℓr (0 ≤ r ≤ 1), SCAD, MCP,
which can be nonconvex. For centered response and predictors, (16) suffices; when
centering the response is inappropriate, an intercept α subject to no regularization
should often be added in the systematic component. For clarity, we assume α = 0 in
the following derivation, but the extension to Xβ + α1 is straightforward.
For penalties with q ≡ 0 (continuous Θ), like ℓ1 and SCAD, we can use the directional
derivatives along ±ej to show that any locally optimal β̂ satisfies the thresholding
equation (She 2016)

β = Θ(β − XT ∇l̄(Xβ);λ), (17)

under the mild assumption that Θ(·;λ) is continuous at β̂ − XT ∇l̄(Xβ̂). But non-
trivial q’s and discontinuous Θ’s constitute an important class of nonsmooth penalties,
including, in particular, the discontinuous ℓ0 penalty

λ2

2 ∥β∥0,

for which Θ is the hard-thresholding ΘH(t;λ) = t1|t|>λ, and q(t;λ) = (1/2)(λ −
|t|)210<|t|<λ. In such scenarios, if ∇l̄ is L-Lipschitz continuous, the solutions can be
characterized by the fixed points of an iterative optimization algorithm based on a
surrogate function g:

β ∈ arg min g(·,β−)|β−=β
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where g(β,β−) = l̄(Xβ−) + ⟨∇l̄(Xβ−),X(β − β−)⟩ + ∑
P (|βj|;λ) + ρ∥β − β−∥2

2/2
with ρ ≥ L∥X∥2

2, and we can prove that they all enjoy nearly minimax error rate
under a proper choice of λ and some regularity conditions (She et al. 2021b). It can be
verified that the fixed-point estimators satisfy (17) as well, under the same continuity
assumption, as long as X has been properly scaled: ∥X∥2 ≤ 1/

√
L. Unfortunately, the

thresholding equation does not belong to the estimating equation framework examined
in our companion paper—specifically, the nonlinear thresholding effect desired in sparse
learning means that (17) is not sample additive.
Below we introduce p additional slack variables to find a proper substitute for (17)
so that one can define data depth for (16) given an arbitrary thresholding Θ. Let β
be a locally optimal solution to the problem as P = PΘ, or a fixed-point solution as
P = PΘ + q. Define J = {j : βj ̸= 0} and J c = {j : βj = 0}, and denote by X[, j] the
jth column vector of X. Using the directional derivatives of f when P = PΘ (see, e.g.,
the proof of Theorem 1 in She (2016)), or the directional derivatives of g− q under the
continuity assumption when P = PΘ + q, we get

Θ−1(|βj|;λ) sgn(βj) = βj − X[, j]T ∇l̄(Xβ), ∀j ∈ J , (18)

which holds even if Θ is not strictly increasing in a neighborhood of |βj| (j ∈ J ), while
for j ∈ J c, βj = 0, and so

−λ ≤ X[, j]T ∇l̄(Xβ) ≤ λ,∀j ∈ J c. (19)

Next, define γ(β) = [γj] with

γj =

Θ−1(|βj|;λ) sgn(βj) − βj if j ∈ J
0 if j ∈ J c.

(20)

It follows from (18), (19) that XT ∇l̄(Xβ) + γ(β) + s = 0 for some s ∈ Rp, sJ = 0,
and |sj| ≤ λ, j ∈ J c.
Now, given a penalty induced by a thresholding rule Θ(·;λ) and a point of interest
β◦ ∈ Rp, the slacked data depth resulting from (16), which we call “Θ-depth”, can
be cast as a joint optimization problem with respect to direction v ∈ Rp and slack
variables s = [sj] ∈ Rp:

Θ-depth: dΘ
01(β◦) = min

(v,s)

∑
i

1≥0(⟨v,xil
′
0(xT

i β◦; yi) + (γ◦ + s)/n⟩)

s.t. ∥v∥2 = 1, s ◦ β◦ = 0, ∥s∥∞ ≤ λ,
(21)

where γ◦ = γ(β◦) and ∥s∥∞ = max |sj|. When Θ is the hard thresholding ΘH (cor-
responding to the class of ℓ0 penalties), γ◦ = 0. The user should specify a reasonably
small λ (otherwise extremely low depth values are to be expected): a theoretical choice
in sparse regression is λ = σ

√
cn log p (with say c = 2) where σ is the Orlicz ψ2-norm

of the noise, and a less conservative one can often be obtained via cross-validation. A
fascinating fact is that the slack variable approach requires no convexity of either the
loss or the penalty.
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An important alternative to penalized sparse learning is to directly limit the sparsity
level: ∥β∥0 ≤ q, instead of specifying a penalty parameter λ. Due to the lack of
nonsmoothness of

min
∥β∥0≤q

l̄(Xβ; y), (22)

we take the surrogate route. Statistically accurate estimates can be obtained from the
resulting iterative quantile-thresholding algorithm (She et al. 2022b), which all satisfy
β = Θ#(β − (1/ρ)XT ∇l̄(Xβ); q), assuming no ties occur and ρ is large enough (e.g.,
L∥X∥2

2). Here, the quantile thresholding Θ#(α; q) for any α ∈ Rp is a vector ζ with
ζ(j) = α(j) if 1 ≤ j ≤ q, and 0 otherwise, where α(1), . . . , α(p) are the order statistics
of α1, . . . , αp satisfying |α(1)| ≥ · · · ≥ |α(p)|. Θ#(α; q) can be viewed as a variant of
ΘH(α;λ) (by setting λ = |α(q+1)|, say), but it uses an adaptive threshold. Again, we
suppose that the regularization parameter q is already given.
By use of slack variables to rewrite the Θ#-equation (details omitted), we can define
the q-sparse constrained ℓ0-depth (which we call “Θ#-depth”) for any β◦ : ∥β◦∥0 = q
as

Θ#-depth: min
(v,s)∈Rp×Rp

∑
i

1≥0(⟨v,xil
′
0(xT

i β◦; yi) + s/n⟩)

s.t. ∥v∥2 = 1, s ◦ β◦ = 0, ∥s∥∞ ≤ ∥XT
(J ◦)c∇l̄(Xβ◦)∥∞,

(23)

where J ◦ = {j : β◦
j = 0}, X(J ◦)c is a submatrix of X by selecting the columns

corresponding to the complement of J ◦, and both γ◦ and ρ (as long as ρ > 0) disappear
in the ℓ0-constrained depth, just like in the ℓ0-penalized case. Of all the constraints on
s, the equality ones are affine, and the inequality ones are convex. The deepest q-sparse
estimate is defined as the saddle point that maximizes (23) over all β◦ : ∥β◦∥0 = q (cf.
(35) in She et al. (2022a)).
Clearly, in the special case of q = p, all slack variables are removed, but as q < p,
the constrained problem (22) results in more stringent estimating equations that are
easier to violate, compared with the plain (non-regularized) problem. This is reflected
by the inclusion of s during the minimization, thereby lower depth values. The same
conclusion holds for the Θ-depth (21) due to the existence of additional slack variables.
On the other hand, sparsity depths may be very low for large p and λ in (21) or
large p and small q in (23). To alleviate the issue, it is beneficial to change the crude
“0-1 loss” to some more elegant φ, as discussed in our companion paper (She et al.
2022a). For example, (23) could be replaced by min(v,s)

∑
i φ(⟨v,xil

′
0(xT

i β◦; yi)/ρ +
s/n⟩) s.t. ∥v∥2 = 1, s ◦ β◦ = 0, ∥s∥∞ ≤ ∥XT

(J ◦)c∇l̄(Xβ◦)/ρ∥∞, with φ(·) nonzero for
mild or moderate negative inputs, which warrants further investigation in the future.
A tight upper bound of sparsity depths is also worth studying in theory.
Slacked data depth can be introduced for groupwise variable selection and low-rank
matrix estimation (She 2012, 2013) as well; see, e.g., Section 3.2.

Remark 2 (Computation of slacked depth). A simple alternating optimization or block
coordinate descent (BCD) algorithm can be used to to compute slacked data depth. Take
the φ-form of (21) as an example. Given s, the optimization problem for v,

min
v∈Rp,∥v∥2=1

∑
i

φ(⟨v, rixi + (γ◦ + s)/n⟩)
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where r = ∇Θl̄|Θ=Xβ◦, has been investigated in She et al. (2022a). Fixing v, we can
rewrite the s-problem as

min
s∈Rp

∑
i

φ(⟨v, rixi + γ◦/n+ s/n⟩) s.t. sJ = 0, ∥s∥∞ ≤ λ.

The problem has a differentiable criterion in s and some simple box constraints, and
conventional numerical methods apply, including L-BFGS-B, interior point, and proxi-
mal gradient descent algorithms (Byrd et al. 1995; Boyd and Vandenberghe 2004; Parikh
and Boyd 2014).

3.2. Reduced-rank regression depth
Applying ordinary least squares on multiple responses may easily result in a large num-
ber of unknowns. Researchers often prefer adding a low-rank constraint in estimating
the coefficient matrix, leading to the celebrated reduced-rank regression (RRR) (An-
derson 1951)

min
B∈Rp×m

f(B; X,Y ) ≜ 1
2∥Y − XB∥2

F s.t. rank(B) ≤ r, (24)

where Y = [y1 . . .yn]T ∈ Rn×m and X = [x1 . . .xn]T ∈ Rn×p are the (centered)
response and predictor matrices. A weighted criterion to account for the dependency
between the responses can be given, but the problem can be converted to (24) with
a simple reparametrization. If the variables are not centered, an intercept term 1αT

should be added in the loss, but the depth derivation below carries over (cf. Section
2.2). We assume that (xi,yi) are i.i.d. (or in an approximate sense), and so the data
depth in this subsection does not apply to PCA where X = I, thus distinct from the
PC-depth and OC-depth introduced earlier; see some related discussions in Section 2.3
of our companion paper.
RRR provides a low-dimensional projection space to view and analyze supervised mul-
tivariate data, and finds widespread applications in machine learning and econometrics
(Reinsel and Velu 1998; Izenman 2008). In fact, once an estimate B of rank r is ob-
tained, we can write B = B1B

T
2 for B1 ∈ Rp×r, B2 ∈ Rm×r. This suggests that r

factors can be constructed by XB1 from p predictors to explain all response variables.
The number of factors required in real applications is often much smaller than the
number of input x-variables.
Limiting the rank of the matrix estimators at r, how to perform a “center-outward”
ranking in high dimensions, or more generally, test

H0 : B ∈ Ω0 ∩ {rank(B) = r} vs. Ha : B ∈ Ωc
0 ∩ {rank(B) = r},

where the set or event Ω0 is not necessarily a singleton (cf. Remark 1 in She et al.
(2022a)), is an intriguing open question.
In the following, we extend multivariate regression depth (Rousseeuw and Hubert 1999;
Bern and Eppstein 2002) to the reduced-rank regression depth (27), using the techniques
developed in the last subsection. Toward this, we first give a fixed-point formulation of
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all RRR estimators. Define a matrix version of the Θ# introduced in the last subsection

Θσ#(B; r) ≜ Udiag{Θ#([σi(B)]; r)}V T , ∀B ∈ Rp×m (25)

where U , V , and diag{σ(B)i} are from the SVD of B = Udiag{σi(B)}V , and Θ# is
applied to the vector [σi(B)], with σi(B) denoting the ith largest singular value of B.
Construct a surrogate function

g(B,B−) = f(B−) + ⟨∇f(B−),B − B−⟩ + ρ∥B − B−∥2
F/2,

where ρ is larger than ∥X∥2
2. Let B̂rrr be an RRR estimator that solves (24). Then for

B̃ ∈ arg minB:rank(B)≤r g(B, B̂rrr), it follows from the chain inequalities f(B̂rrr)−f(B̃) =
g(B̂rrr, B̂rrr) − f(B̃) ≥ g(B̃, B̂rrr) − f(B̃) ≥ (ρ− ∥X∥2

2)∥B̃ − B̂rrr∥2
F/2 that B̂rrr = B̃.

On the other hand, it is easy to show that B̃ = Θσ#(B̂rrr − 1
ρ
XT (XB̂rrr − Y ); r) (She

2013), and so B̂rrr satisfies the matrix thresholding equation

B = Θσ#(B − 1
ρ

XT (XB − Y ); r). (26)

(In fact, under the mild condition that Y T X(XT X)+XT Y has distinct eigenvalues,
the RRR estimator is unique (Reinsel and Velu 1998), and ρ can be way smaller than
∥X∥2

2.) Perform a compact SVD of B: B = P DQT with P ∈ Op×r and Q ∈ Om×r,
and denote by P ⊥ ∈ Op×(p−r) and Q⊥ ∈ Om×(m−r) their orthogonal complements
(which can be obtained from the full SVD of B). Like in the Θ#-case, based on (26),
we work on (1/ρ)XT (XB − Y ) + S = 0 for a slack matrix S satisfying

P T S = 0,SQ = 0, ∥S∥2 ≤ ∥1
ρ

P ⊥P T
⊥XT (XB − Y )Q⊥QT

⊥∥2.

Now, given a regularization parameter r : 1 ≤ r ≤ p ∧ m and a matrix of interest
B◦ ∈ Rp×m : rank(B◦) = r, obtain the associated P ◦

⊥ ∈ Op×(p−r), Q◦
⊥ ∈ Om×(m−r) as

above; the rank-r RRR depth of B◦ is defined by

dRRR

01 (B◦) = min
(V ,S)

∑
i

1≥0(⟨V ,
1
ρ

xi(xT
i B◦ − yT

i ) + 1
n

S⟩)

s.t. ∥V ∥F = 1,P ◦T S = 0,SQ◦ = 0, ∥S∥2 ≤ ∥1
ρ

P ◦T
⊥ XT (XB◦ − Y )Q◦

⊥∥2,

or equivalently,

RRR-depth: dRRR

01 (B◦) = min
(V ,L)

∑
i

1≥0(⟨V ,xi(xT
i B◦ − yT

i ) + 1
n

P ◦
⊥LQ◦T

⊥ ⟩)

s.t. ∥V ∥F = 1, ∥L∥2 ≤ ∥P ◦T
⊥ XT (XB◦ − Y )Q◦

⊥∥2, (27)

where ρ vanishes due to the scale invariance of 1≥0, regardless of how small or large
ρ is. Clearly, in the full rank case r = m ∧ p, either P ◦

⊥ or Q◦
⊥ must vanish, and

so L = 0, meaning that (27) reduces to the multivariate regression depth (Bern and
Eppstein 2002).
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Remark 3 (Combined treatment). The manifold approach and slack variable approach
can be combined together to define data depth for some challenging problems. Consider
a sparse RRR (one of the variants in She (2017)) that constructs r predictive factors
from a subset of predictors

min
S∈Rp×r,U∈Rm×r

1
2∥Y − XAUT ∥2

F s.t. ∥ vec (A)∥0 ≤ q, UT U = Ir×r. (28)

The overall coefficient matrix B = AUT has rank at most r as in RRR, but sparsity is
imposed on the loading matrix A. By use of a slack matrix S for A, and a Riemannian
tangent space for U , the depth for (A◦,U ◦): A◦ ∈ Rp×r, ∥ vec (A◦)∥0 = q, U ◦ ∈ Om×r

is given by minW ∈Rm×r,V ∈Rp×r,S∈Rp×r

∑n
i=1 1≥0(−⟨W ,yix

T
i A◦⟩+⟨V ,xi(xT

i A◦−yT
i U ◦)+

S/n⟩) s.t. ∥W ∥2
F +∥V ∥2

F = 1,V T U ◦+U ◦T V = 0, vec (A◦)◦vec (S) = 0, ∥S∥max ≤ λ◦,
with λ◦ = ∥ vec (XT (XA◦−Y U ◦))[(J ◦)c]∥∞ = ∥(I⊗XT )[(J ◦)c, ] vec (XA◦−Y U ◦)∥∞
and J ◦ = {j : vec (A◦)[j] ̸= 0, 1 ≤ j ≤ pr}.

4. Experiments
This section performs real data experiments to illustrate the usefulness of some new
notions of depth.

4.1. Reduced-rank depth in time series
We consider the 52 weekly stock log-return data for nine of the ten largest American
corporations in 2004 (Rothman et al. 2010), with yt ∈ R9 (t = 1, . . . , T ) and T = 52.
For the purpose of constructing market factors that drive general stock movements, a
reduced-rank vector autoregressive (VAR) model can be used, i.e., yt+1 = B∗T yt +
et, with B∗ of low rank. By conditioning on the initial state y0 and assuming the
normality of et, the conditional likelihood function leads to a least squares criterion,
so the estimation of B∗ can be formulated as a reduced-rank regression problem; see
Lütkepohl (2007) for more details. We fit the reduced-rank VAR with r = 6. The
optimization algorithm for (27) (implemented based on Remark 2) however shows that
the objective function can reach zero for some feasible (V ,L). Hence, although the
standard RRR approach is widely used in multivariate times series and econometrics,
our analysis revealed a perhaps surprisingly low data depth on this financial series
dataset.
We then considered the Cauchy-based reduced rank regression (Zhao and Palomar 2017;
Yang and Zhao 2020) (denoted by C-RRR) and robust reduced rank regression (She
and Chen 2017) (denoted by R4, with 5% of data treated as outliers), as well as a
deeper estimate obtained by random sampling (denoted by D-RRR). The rank-6 depth
values of these estimates are 0.02, 0.08 and 0.12, respectively, suggesting more reliable
fitted models than the plain RRR from the perspective of data depth.
To further illustrate the differences between the estimates, we plot the fitted models
of Ford (x4,t) in response to Walmart (y1,t+1) in Figure 1. Notably, the right-most
point has high leverage, and the RRR model passes close to that particular observation.
In contrast, D-RRR seems to fit better the majority of the sample.
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Figure 1: The fitted models y1,t+1 ∼ x4,t using different methods in the low-rank VAR(1),
to demonstrate how the log-return of Walmart is related to that of Ford in the previous
week. Notice the right-most point that has a high leverage.

A careful examination of the series shows the point corresponds to the log-return of
Ford at week 17, a real major market disturbance attributed to the auto industry.
Several other stock returns experienced dramatic short-term changes as well, and we
occasionally observe that the slopes obtained from RRR and its robust counterparts
can have opposite signs. Financial time series often contain anomalies or demonstrate
heavier tails than those of a normal distribution due to extreme market movements.
The issue may jeopardize the recovery of common market behaviors and asset return
forecasting: the autoregressive structure can make any outlier in the time series also a
leverage point in the covariates. Although an elaborate robustification of the low-rank
VAR merits further investigation, our depth-based analysis seems to offer an effective
fix in this regard.

4.2. Sparsity depth for performance evaluation
Data depth provides a nonparametric means of performance evaluation. In this experi-
ment, we use the sparsity depth defined in (23) to conduct a comparison between some
commonly used sparse learning methods on the Boston housing dataset (Harrison and
Rubinfeld 1978). The dataset was collected by the U.S. Census Service and consists of
13 predictors regarding socioeconomic and environmental conditions for 506 neighbor-
hoods in the Boston area. The response is the median value of owner-occupied homes
in the area.
We compare Lasso (Tibshirani 1996), SCAD (Fan and Li 2001), sparse LTS (S-LTS)
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(Alfons et al. 2013), quantile-SCAD (Q-SCAD) (Sherwood and Maidman 2019) and
PIQ (She et al. 2022b), in terms of data centrality defined in (23) for the same given
support size q. More concretely, assuming that the observations are i.i.d., we split the
dataset in halves, fit the methods on the first half, and then evaluate their performance
via sparsity depth on the rest half. The whole procedure is repeated 20 times.

Lasso

PIQ

SCAD

Q-SCAD

S-LTS

0.01 0.02 0.03 0.04

(a) q = 7

Lasso

PIQ

SCAD

Q-SCAD

S-LTS

0.01 0.02 0.03 0.04

(b) q = 8

Lasso

PIQ

SCAD

Q-SCAD

S-LTS

0.01 0.02 0.03 0.04

(c) q = 9

Lasso

PIQ

SCAD

Q-SCAD

S-LTS

0.01 0.02 0.03 0.04

(d) q = 10

Figure 2: Sparsity depth comparison between Lasso, SCAD, sparse LTS (S-LTS), quantile
SCAD (Q-SCAD) and PIQ estimates with respect to the support size q.

Figure 2 shows a series of radar plots for the median Θ#-depths in respect to the
number of selected variables. The depth values are small but present useful ranking
information. The estimates are quite different seen from the data depth comparison:
Lasso and SCAD exhibit lower depth in most cases, Q-SCAD and PIQ often give deeper
estimates, and S-LTS is unstable (and costly) in our experiments. The last three
methods all use a more robust loss, as well as a nonconvex regularizer, while Lasso
solves a convex optimization problem with the ordinary ℓ2-loss and ℓ1-penalty. The
depth differences between these sparse learning methods indicate that the data must
deviate from Gaussianity and may contain anomalies, and incorporating the desired
type of regularization into data depth can provide a helpful tool for robust performance
evaluation.

5. Summary
Our work investigated Tukey’s notion of depth for robustifying a given optimization cri-
terion, an estimating equation, or an algorithm in statistical inference and estimation.
In Part I, we introduced a polished subspace depth framework, where the elements
like the influence space constraint, rectified redescending discrepancy measures, and
subspace projection are new to the best of our knowledge. In Part II, we proposed two
novel approaches based on manifolds and slack variables to extend the concept to prob-
lems defined in some restricted parameter spaces or with a nonsmooth regularizer. Our
matrix formulation of the problems, together with state-of-the-art optimization tech-
niques (particularly momentum-based acceleration), gave rise to a new class of efficient
algorithms that has guaranteed convergence and scales up with problem dimensions.
The efficient computation of the deepest point or composite depth (cf. Remark 1 of
Part I) is yet more difficult, and recent advances in nonconvex min-max optimization
(Razaviyayn et al. 2020) may shed new light on the topic.
The proposed computational inference tool caters to machine learning applications
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beyond the standard likelihood setup. For example, given a feedforward neural network,
it can be used to evaluate the reliability of a given estimate, or an event concerned with
some properties of the unknowns, which only requires the gradient information that can
be obtained from back propagation with ease. Moreover, the influence-driven deepest
estimation provides a universal means of accommodating distortions and anomalies
given any criterion or estimation equations. We hope that the work is helpful to advance
the practice of data depth in sophisticated setups and in higher dimensions.
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