
April 2024, Volume IV, Issue III. doi: 10.52933/jdssv.v4i3.72

RoA: Visual Analytics Support for
Deconfounded Causal Inference in

Observational Studies

Dennis Dingen
Eindhoven University of Technology

Marcel van ’t Veer
Catharina Hospital Eindhoven

Eindhoven University of Technology

Tom Bakkes
Eindhoven University of Technology

Erik Korsten
Catharina Hospital Eindhoven

Arthur Bouwman
Catharina Hospital Eindhoven

Jarke J. van Wijk
Eindhoven University of Technology

Abstract

The gold standard in medical research to estimate the causal effect of a treat-
ment is the Randomized Controlled Trial (RCT), but in many cases these are
not feasible due to ethical, financial or practical issues. Observational studies
are an alternative, but can easily lead to doubtful results, because of unbalanced
selection bias and confounding. Moreover, RCTs often only apply to a specific
subgroup and cannot readily be extrapolated. In response, we present Rod of
Asclepius (RoA), a novel visual analytics method that integrates modern tech-
niques designed for identification of causal effects and effect size estimation with
subgroup analysis. The result is an interactive display designed to combine ex-
ploratory analysis with a robust set of techniques, including causal do-calculus,
propensity score weighting, and effect estimation. It enables analysts to conduct
observational studies in an exploratory, yet robust way. This is demonstrated by
means of a use case involving patients undergoing surgery, for which we collabo-
rated closely with clinical researchers.
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1. Introduction
The process of determining and estimating the relationship between a cause and effect
is referred to as causal inference. This process is intrinsically important in scientific
disciplines and especially when conducting observational studies to analyze data that
have already been recorded. In these types of studies, the development of prediction
models can benefit from the theory behind causal inference to reduce or minimize the
unfavorable effect that confounding variables have on the estimation of a cause and
effect relationship (Pearl et al. 2016a). Because no control on the data acquisition can
be exerted (anymore), the researcher is required to have a sufficient understanding of
how the causal relationship of interest is embedded in the bigger causal structure to
properly apply the theory. Such an understanding is often expressed using a graph
that maps variables onto nodes and causal relationships onto directed edges (arrows).
The graph structure is obtained by synthesizing scientifically established results with
empirical domain knowledge and educated guesses, which is therefore inherently prone
to different interpretations and usually leaves room for debate among domain experts
(Hill 1965).
Several statistical techniques exist that minimize confounding effects to assess differ-
ences in groups, such as matching, weighting or stratification (Leite 2016a). Traditional
software packages like SPSS (IBM Corp. 2021) and interactive notebooks based on R
(R Core Team 2021) or Python (Python Software Foundation 2021) currently offer only
part of an interactive process to facilitate these techniques (see Table 4 in Appendix B).
Some interactive visualization methods have been developed in support of causal infer-
ence, but generally these are limited to causal graph discovery and lack more thorough
support for deconfounded effect estimation.
The goal of our work is to directly address practical aspects of causal inference by means
of a novel visual analytics tool, dubbed Rod of Asclepius (RoA). To this end, we utilize
statistical methods interactively to support causal effect estimation for observational
studies in an exploratory setting. This enables researchers to efficiently explore the data
and investigate implications of a causal model under consideration during debates. The
gathered insights can be used to form new hypotheses and support confirmatory studies
later on. Although our tool is generally applicable, it was developed within clinical
setting as part of collaboration between academia, industry and healthcare providers
(e/MTIC 2021).

2. Method
This section starts with the introduction of two different study designs used for causal
inference; the randomized controlled trial and the observational study. Next, the work-
flow for estimating causal effects in an observational study is discussed. A key step
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Figure 1: The operational context of the Randomized Controlled Trial (RCT) and the
Observational Study (OBS) augmented with Exploratory Data Analysis (EDA).

of this workflow is controlling for confounding, by balancing a proper set of variables
associated with the causal relation being studied. In order to find such a set, we need to
analyze the structure of the causal graph that embeds the causal relation being studied
by utilizing a method developed by Pearl, called “do-calculus” (Pearl et al. 2016b).
Finally, we detail the translation of these steps and methods into interactive visualiza-
tions and how these have been integrated into the design of our visual analytics system
to support observational studies in an exploratory setting.

2.1. Causal inference
The gold standard for estimating the causal effect size of a specific phenomenon onto an-
other phenomenon is the Randomized Controlled Trial (RCT)(Beal and Kupzyk 2014;
Fonarow 2016). In a RCT, the a priori control of variables is used by the researcher
to randomly assign subjects to (treatment) groups. If applied adequately, this avoids
confounding effects caused by other associated variables by assuring that the groups
under consideration are as similar as possible in statistical terms. It is, however, not
always possible or responsible to conduct a RCT to properly estimate a causal effect,
due to practical or ethical considerations. In those cases, researchers can fall back to
conducting an Observational Study (OBS).
The main characteristic of observational studies is that no variable can be manipulated
beforehand and therefore a researcher can only retrospectively inspect the recorded
data. With no a priori control over variables, the group membership (treatment) of
the subjects being studied can therefore not be influenced. The major consequence is
that confounding variables can affect an estimation of the treatment effect. Hence, the
influence of confounding variables needs to be adjusted for when conducting an OBS
to obtain sound causal effect estimates, which is done using domain knowledge (Collins
et al. 2020). Our visual analytics tool is designed to support the operational context
for conducting an OBS in such a way that domain knowledge can be easily integrated
within an exploratory setting. This also enables us to conduct an OBS more easily in
a complementary setting with respect to the RCT, as shown in Figure 1.
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2.2. Estimating treatment effects in an observational study
To estimate the causal effect size of one phenomenon Z on another Y , for a given causal
relationship Z → Y , we follow the analysis workflow shown in Figure 2. The goal is to
obtain unconfounded treatment effect estimates. After selecting a causal relationship,
we inspect the remaining covariates for their potential influence on the treatment effect
estimation. For this, we need to distinguish between the following:

1. The (potential) size of the influence a variable can have across treatment groups
onto another variable.

2. Whether or not it is confounding the treatment effect estimate (i.e., actually
exerting its influence).

Firstly, the (potential) size of the influence of a variable depends on the similarity of
its distributions across the treatment groups. Thus, if these distributions are similar or
made similar by “balancing” them, the potential influence is negligible. This concept is
illustrated in Figure 3a. In addition to visual inspection, we need to quantify whether or
not its distributions are similar statistically. For this purpose, we use the Standardized
Mean Difference (SMD).
Secondly, whether a covariate can confound the treatment effect estimate depends on
its position in the causal diagram. For example, a confounding variable can directly
influence the causal relation under consideration, as illustrated in Figure 3b. In general,
however, the situation may be more complex. The causal diagram is defined either:
by experts, by an automated mining algorithm, or a combination of both. Hence, in
order to obtain unconfounded treatment effect estimates, we need to make sure that
the influence of all confounding covariates is eliminated. To this end, we use propensity
score weighting to balance dissimilar distributions of covariates. The set of covariates
to balance can be chosen manually or determined by the application of do-calculus
based on the causal diagram. These steps are indicated in the top part of Figure 2.
When the influence of confounding covariates is eliminated, unconfounded treatment
effect estimation is possible, which is the last step of the workflow.
Furthermore, the workflow is adopted specifically to facilitate interactive exploratory
data analysis of generic datasets of common size in a clinic in the medical field; dozens of
variables and thousands of subjects. On top of that, propensity score weighting does not
impose restrictions on the type of model used for treatment effect estimation. Generally,

Figure 2: Main analysis workflow based on (Leite 2016b) with additions for clarification
and integrative purposes. The data preprocessing step is considered outside of our scope
and the sensitivity analysis step is an extra step to be considered in future work.
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(a) (b)

Figure 3: (a) Illustrations of unbalanced and balanced distributions for a categorical
and numerical variable. (b) The variables studytime and absenses acting as confounding
variables on the causal relationship between romantic and g3.

one should in principle be able to use alternative statistical techniques without affecting
the workflow nor the design of RoA too much. To further illustrate the steps of the
workflow, we consider a running example based on a publically available dataset about
final grades of math students (Cortez and Silva 2008). For mathematical details behind
the analysis workflow for causal inference in an OBS, shown in Figure 2, see Appendix A.

Select causal relationship
Suppose we want to estimate the effect size of having a romantic relationship on the
(third and) final grade of math students for a math exam: romantic → g3, where
romantic and g3 are a dichotomous (binary) and real-valued variable, respectively.
Suppose also that the data had already been recorded beforehand, and we could not
have randomly assigned romantic relationships to students for our study. Given this
situation, we conduct an observational study to estimate the effect size of having a
relationship on the final math grade of students. If we knew beforehand, with absolute
certainty, that no confounding variable existed, we could immediately estimate the
causal effect, but generally, this is not the case, and we need to proceed with the
intermediate steps of the workflow.

Balance check of associated variables
In order to obtain a sound unconfounded effect estimate, we need to ensure that vari-
ables that could have had a confounding influence on our causal relationship of interest
are balanced. A balanced variable has statistically similar distributions in the treat-
ment groups, which can be quantified with the SMD. The SMD is computed differently
for continuous and dichotomous variables (see Equation 9 and Equation 10 in Ap-
pendix A), but should in both cases be (close to) zero for optimal balance. Hence, in
practice, the distributions are considered similar when the SMD is within an acceptable
range. Commonly used cut-off values for the acceptable range are [−0.1, 0.1] (Austin
2011) and [−0.25, 0.25] (Stuart and Rubin 2007; Stuart 2010).
The SMD values for our covariates can also be inspected visually using a decorated
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(a) (b)

Figure 4: (a) Causal diagram for estimating the effect of having a romantic relationship
on the final math grade g3. (b) A backdoor path as a generalization of the basic
confounding variable. It is a sequence of variables X that connects the cause variable
Z with the effect variable Y , whereby the first variable X1 of the sequence is connected
via an arrow directed towards the cause Z.

love plot, as shown in Figure 5a. The plot is sorted on decreasing SMD value for the
variables. The acceptable SMD range is indicated with dotted lines centering around
the zero axis and the tickmarks indicate which variables are part of the adjustment set
that is used for the balancing process, which is discussed below. Please note that while
the SMD indicates the potential influence of a covariate, it does not imply whether or
not a covariate acts as a confounding variable for our causal relation of interest. As
stated before, this depends on the position of the covariate in the causal graph.
In a properly conducted RCT, the randomized assignment of treatments to subjects to
create the treatment and control groups ensures that the SMD values for all covariates
are close (enough) to zero. Consequently, the influence of all possible confounding
covariates is eliminated effectively at once. In that case, the positions of covariates in
the causal diagram are no longer of interest. When conducting an OBS, we do not
have the benefits of randomization, and we need to ensure all relevant covariates are
balanced. The main problem in doing so is that covariates act together, depending
on the structure of the causal diagram. As a result, an improperly picked adjustment
set of covariates to balance can lead to even more confounding and bias in the effect
estimates. Therefore, the strategy of adding covariates to the adjustment set based on
only SMD values is expected not to work. Hence, current (clinical) guidelines often
suggest adding a covariate based on domain knowledge and whether it is associated
with the causal relation of interest (Beal and Kupzyk 2014; VanderWeele 2019; Witte
and Didelez 2019; Loh and Vansteelandt 2020; Talbot et al. 2021).

Propensity score weighting and causal graph analysis
As mentioned before, the proper set of variables to balance depends on the causal graph
structure. This is where do-calculus helps us out. For our running example, we assume
that the bigger causal graph embedding our relationship of interest is as shown in
Figure 4a. In practice, a graph like this would be delineated during expert discussions,
optionally with the aid of graph mining algorithms (see Table 5 in Appendix B).
Following do-calculus, adjusting for the effects of confounding variables entails the elim-
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ination of all so-called “backdoor paths“ in the causal graph in which the relationship
of interest is embedded. A backdoor path resembles a generalized confounder; it is a
substructure consisting of a sequence of one of more variables that form a path from
the cause to the effect. The first variable on this path needs to point to the cause, but
there are no further constraints on the directions of the remaining edges (arrows) on
the path, as shown in Figure 4b. For example, romantic ← studytime ← age → g3,
romantic ← sex ← walc → g3 and romantic ← sex ← walc → absences → g3 are
backdoor paths in the graph. The variable walc indicates “weekend alcohol consump-
tion”.
Applying do-calculus yields possible sets of variables we can balance to block con-
founding effects via backdoor paths. In our example, out of all possible adjustment
sets yielded by do-calculus, we have picked the set {absences, age, sex, studytime}. If
do-calculus does not yield a possible adjustment set, we at least know which parts of
the causal graph are problematic. This information is helpful during the next round
of debate or for determining new real-world measurements, which may lead to an up-
dated graph. Alternatively, we can accept that our estimates are confounded and try
to reduce confounding manually as far as possible by falling back to using empirical
rules in conjunction with our causal diagram (Leite 2016b).
After deciding on the adjustment set, we need to balance its covariates. Generally, a
variable can be balanced by using matching, weighting, stratification, or randomization.
The use of matching is an option when conducting an OBS if enough subjects are
available in the dataset, and one knows which variables to match. We have chosen
to adopt the weighting (reshaping) of the distributions based on propensity scores
because it is often more readily applicable in practice and easily integrates into our
analysis workflow. Furthermore, the method is computationally efficient and does not
impose assumptions on our causal relation, such as linearity, and therefore leaves room
for choice of the effect size model later on. The use of stratification is an option when
separate models for the subgroups (strata) are of interest.
The propensity score for a given subject is defined as the conditional probability of
treatment assignment based on the values of covariates (in the adjustment set) and is
commonly computed using logistic regression (see Equations 3–5 in Appendix A). Once
computed, it is used as a weight for computing the balanced distributions (Figure 3a)
to obtain adjusted SMD values (Figure 5a). In the latter figure, our adjustment set
{absences, age, sex, studytime} is used, as indicated by the tickmarks. The SMD values
before balancing are indicated with dashed circles connected with a dotted curve, while
the values after balancing are indicated with solid circles connected with a solid curve
(these types of curves resemble snakes curling around the Rod of Asclepius (RoA) and
lead to the name of our tool). The unbalanced and balanced SMD values summarize
differences between pairs of distributions shown in mirrored-liked fashion in Figure 3a,
on the left and right sides, respectively. Please note that because covariates act as a
whole depending on the causal graph, balancing a particular covariate might cause a
shift in the balanced SMD value of other covariates.
Finally, how the propensity score is used as a weight depends on the estimand one
wants to use for the treatment effect estimation (see Table 3 in Appendix A). We use
the Average Treatment Effect (ATE) and the Average Treatment Effect on the Treated
(ATT). The ATE estimates the treatment’s effect on the entire population, while the
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absences
age
guardian

failures
studytime
mjob

SMD

0

Balanced?

higher
sex

(a)

11.00

romantic: no yes

11.03

Glass’s delta: 0.0001

(b)

10.58

romantic: no yes

10.75

Glass’s delta: 0.0047

(c)

Figure 5: (a) Similarity of distributions of potentially confounding variables across
the levels of the variable romantic. Open circles and connected with a dashed curve
indicate SMD values before balancing, while filled circles connected with a solid curve
indicate the SMD values after balancing some of the variables (those indicated by the
check marks). (b) Effect estimation of having a romantic relationship on the final math
grade before balancing. The distributions of math scores are shown using violin plots.
(c) Same estimation as (b) but after balancing.

ATT estimates the effect the treatment has on only the treated group (see Equations 1–
2 and Equations 7–8 in Appendix A). After propensity score weighting, the treatment
effect can be estimated, but as discussed below, we can improve the estimate by using
an additional step.

Causal effect size estimation
To estimate the effect size of having a romantic relationship on the final math grade, we
subtract the (weighted) mean final grade g3 of the group having no romantic relation-
ship from the (weighted) mean final grade of the group having a romantic relationship
(see Equation 11 in Appendix A). The weights used are computed in accordance with
the required estimand; the ATE or ATT. For improved treatment effect estimation,
we adopt the doubly robust method that substitutes the expected value for individual
subjects with a predicted expected value based on the propensity score (see Equa-
tions 12–13 in Appendix A).
Next, we compute whether this difference is statistically significant. In Figure 5b and
Figure 5c, the effect estimates are shown without and with the prior balancing of
the adjustment set. There is, however, also an alternative estimation method called
Glass’s Delta (see Equation 14 in Appendix A) that uses a form of normalization,
which is shown on the top of the figures. The motivation for this is that the raw mean
difference is generally not stable and homogeneous because it depends on the unit of
measurement.
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Without balancing the covariates in the adjustment set, we observe a statistically non-
significant slight difference of 0.03 in the mean math grades with a Glass’s Delta of
0.0001. Next, after balancing the covariates in the adjustment set, we observe a non-
significant yet slightly bigger difference of 0.17 in the mean math grades with a Glass’s
Delta of 0.0047. Therefore, conditional on the correctness of our causal graph and the
set of covariates to be balanced yielded by it, we can conclude that having a romantic
relationship caused a slight, yet statistically insignificant, increase of 0.17 in final math
grade for the students involved in a romantic relationship.

2.3. Visual analytics solution
In this section, we discuss the start of the art in visual analytics for causal inference.
Next, we detail the design of our tool RoA by showing how the parts discussed in
Secion 2 have been integrated via interactive visualizations.

State of the art
Although visualization for causality analysis is not new, only relatively few papers
have been published on the topic. Recent papers typically deal with one or more of the
subareas of causal inference (Tikka and Karvanen 2017):

1. the discovery of the causal model (from data);

2. the identification of causal effects using a known model;

3. the actual estimation of an identified causal effect from data.

However, most papers are related because they focus on visualizing (some type of)
causal relations. Others are related more strongly because they are centered around the
theory developed by Pearl and others, for either Bayesian networks or causal diagrams.
Earlier visualization methods focused on showing causal relationships using connected
polygonal shapes (Elmqvist and Tsigas 2003) and animated graphs (Kadaba et al.
2007). Later, a tool was developed for causality analysis in biological pathways using
a combination of node-link diagrams, arc diagrams, and animation (Dang et al. 2015).
Two systems explicitly designed for causal inference in the context of event sequence
data have been published by (Xie et al. 2021) and (Jin et al. 2021). A user study on
medication recognition was published by Yen et al. (2019).
More recent work has been primarily focused on the first subarea in causal inference–
the discovery of causal models. Visualization support for Bayesian network structure
learning was published by Vogogias et al. (2018). It was shown that drawing all the
edges for just a couple of networks simultaneously connected to a small number of shared
nodes made the visualization already hard to read. The solution involved augmenting
adjacency matrices with glyphs comprised of one or two colored triangles to encode
an edge’s networks and direction. Many hundreds of networks could be compared
by showing multiple augmented matrices side-by-side after applying a form of graph
filtering on nodes and edges.
Next, we have two systems published by (Wang and Mueller 2016, 2017). Both utilize
the theory of causal inference developed by Pearl and others. The first one, called The
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Visual Causality Analyst, offers an interactive interface for causal reasoning. The user
is enabled to draw a causal diagram in the form of a graph. The system then auto-
matically computes a regression model for each node, such that the variable associated
with the node is the responder, and the variables in the parent nodes are the covariates.
The model weights are then used to indicate the strength of the relationships on the
associated edges. Notably, a novel method was proposed to transform categorical vari-
ables into numerical ones to aid the computations. The second system is designed for
causal graph mining. It shows associations between variables for data partitions based
on which candidate causal graph can be computed. The associations are shown in a
parallel coordinates plot and heatmap, respectively. These computed graphs are aggre-
gated using counts or strengths of mined relations into a single graph representation to
show the user’s overall causal patterns using curved edges.
The first system shows the graph with color-coded nodes and edges, with an arrowhead
on the center of each edge indicating the direction of the relation. The color of a node
encodes the variable type (blue for numerical and yellow for categorical). The color
of an edge encodes the type of causal relation (green for positive relations, red for
hostile relations, and yellow if the source or target node is associated with a categorical
variable). This way, the system can explore the causal graph’s properties while filtering
out edges using a strength threshold. The second system comes with an improved visual
encoding for the graph. Nodes have a blue rectangle for categorical variables and yellow
for numerical ones, with varying width, depending on the goodness of fit measure of
the underlying regression model. The width of an edge corresponds to the strength of
a relationship, computed with regression coefficients, and its color is green for positive
relations and red for negative ones. A yellow edge reflects a compound relationship
between levels of a categorical variable and other variables. Next to the edge, a red
minus sign or green plus sign is shown when a relationship should be added or removed
from the aggregated model. The resulting causal graph is shown as a path diagram,
such that nodes are more aligned and the overlapping of the (now curved) edges seems
to be reduced. A plus or minus sign next to the edge is used to communicate whether
an edge should be present or not in the mined aggregated graph.
Finally, we have a system designed by (Xie et al. 2020). The system offers the user
an interactive graph visualization with the option to collapse subgraphs in a node.
Additional panels show the histograms of all variables in the dataset along with more
detailed information about all the values. The F-GES algorithm is applied interactively
for conditional independence testing of variables. The resulting value is encoded as the
thickness of the edges connecting nodes representing the tested variables. The user can
then fix values for specific variables or change the attribution of variables in the causal
discovery process to explore what-if scenarios.
In conclusion, the systems designed by Wang and Mueller (2016, 2017) and Xie et al.
(2020) are the most closely related to our work. These systems comprised the first
and third subareas of causal inference and were not designed for explicitly adjusting
for confounding. Furthermore, regression models assume that treatment (nodes) and
effect (nodes) are related linearly. In our work, we address these aspects in our work
to accommodate for observational studies and focus while focusing more on the second
and third subareas of causal inference.
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Visualizing causal graphs
An important aspect of the systems discussed in the previous section is the visual
encoding used for the causal graphs. Nodes are colored depending on the variable type,
and the directed edges (arrows) depend on the combination of connected variable types.
An edge’s width is used to reflect a relationship’s strength, corresponding to regression
model coefficients. Small icons can be used near edges or nodes to convey additional
information as well. More details on on-edge encoding methods have been published
Nobre et al. (2019).
Another important aspect is path analysis, for which dedicated support should be
considered. There is evidence that a node-link diagram outperforms matrix-based vi-
sualizations for path analysis (Ghoniem et al. 2004). Topological sorting of the graph
is helpful, but a sequential layout did show a significant difference in understanding in-
direct causal relationships, according to Bae et al. (2017a). A node’s position and the
number of connected edges were critical visual cues for finding root causes and derived
effects. The graph also displayed strength and certainty information encoded through
edge width and color brightness. Also, hierarchical graph structures performed better
than energy-directed ones.
For visualization, tapered edges or arrows are well suited for causality, and one should
consider the width of arrows over hue for strength. In another paper, Bae et al. (2017b)
presented findings of visual representations of cause and effect relationships regarding
their direction (using arrows and tapered lines), strength (using hue, width, and numeric
values), and uncertainty (using granularity fuzziness and numeric values). The authors
concluded that:

• arrows and tapered lines both work well,

• width is preferred over hue for encoding strength, and,

• brightness or fuzziness are preferred over granularity for encoding certainty.

Additionally, Guo et al. (2015) recommends using brightness, fuzziness, and grain to
depict causality clues, but the design should be carefully investigated for the task at
hand.

Design of RoA
Most papers seem to focus on the first and third subarea of causal inference. Generally,
we found that if authors mentioned the problem of confounding, it was usually not
adequately adjusted for in the estimates. Furthermore, typically, the use of a method
such as regression to estimate causal effects demand assumptions like linearity, which
is not necessarily adequate. We address these aspects in our work to accommodate for
observational studies by focusing more strongly on the second and third subareas of
causal inference. In particular, our solution exhibits the following properties:

• a single cause and effect relationship of interest is considered at a time;

• no assumption is made about the type of causal relationship (in the design of our
system as a whole);
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Figure 6: Overview RoA. (a) Groups and subgroups panel. (b) Cause variable selection
panel. (c) Effect variable selection panel. (d) Variable balance panel. (e) Causal graph
editor. (f) Causal graph diagnostics panel.

• alternative methods for techniques like matching and stratification for ensuring
balance could be used instead of weighting;

• alternative causal effect estimation techniques can used, like the doubly robust
method based on regression (Leite 2016c);

• manual selection of a set of variables to adjust for confounding is supported;

• optimal adjustment sets are computed, if possible, based on the causal graph;

• interactive subgroup analysis for subgroups is supported; and

• automated graph mining algorithms have been implemented to aid expert discus-
sions.

A screenshot of RoA is presented in Figure 6. The key motivation for developing RoA
was to provide support for real-time interactive exploratory analysis during expert
discussions. To this end, RoA offers interactive design and diagnostics of the causal
graph diagram, along with dynamic balancing of either computed or manually selected
sets of confounding variables and automatic updates of the causal effect estimations.
For designing RoA we listed a number of design requirements (see Table 1) based on the
analysis workflow discussed in Section 2.2. We have mapped these requirements into vi-
sualization requirements for the tool, for which acronyms are listed in the third column.
These are used in the remainder of this section to indicate which part of RoA fulfills
each requirement. For convenience, the fourth column lists the corresponding panel
labels in Figure 6. The algorithms and packages used to implement the computational
aspects of the tasks are listed in Table 2.
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Table 1: The mapping of the main consecutive workflow tasks onto visualization requirements: (a)
Selection of a causal relationship. (b) Balance check of associated variables. (c) Analysis of the causal
graph structure. (d) Causal effect size estimation.

Tasks Visualization requirement Acronym Label in
Figure 6

Define (sub)groups Show group names, associated colors and
sizes

VR1 A

Select dichotomous cause (treatment) variable
Select continuous effect variable

Selector for variable showing distribution
Selector for variable showing distribution

VR2
VR3

B
C

(a) Selection of a causal relationship.

Tasks Visualization requirement Acronym Label in
Figure 6

Determine method for weighting and estimation (ATE / ATT)
Compare unweighted and weighted distributions of variables
for each level of the cause variable
Inspect SMD values for the distributions of variables

Selector for weighting and estimation method
Show both distributions

Show SMD differences w.r.t. a treshold

VR4
VR5

VR6

B
D

D
(b) Balance check of associated variables.

Tasks Visualization requirement Acronym Label in
Figure 6

Mine causal graphs
Edit causal graphs
Minimize visual complexity for graphs

Compare causal graph with mined version or of another group
Analyze backdoor paths for a causal graph

Compute adjustment sets for a causal graph
Import / export causal graphs

Menu options
Graph editor
Application of graph layout algorithm
Removal of less important parts of graphs
Difference visualization for causal graphs
List backdoor paths
Highlight backdoor paths in the causal graph
Show adjustment sets (per group)
Menu options

VR7
VR8
VR9
VR10
VR11
VR12
VR13
VR14
VR15

E
E
E
E
E
F
F
F
-

(c) Analysis of the causal graph structure.

Tasks Visualization requirement Acronym Label in
Figure 6

Inspect effect variable across cause variable levels
Compute Glass’s Delta

Show effect variable distributions
Show Glass’s Delta

VR16
VR17

C
C

(d) Causal effect size estimation.

Before discussing the individual panels we start with the high-level functionality. Based
on the main analysis workflow, shown in Figure 2, we have designed a more detailed
operational workflow for RoA, shown in Figure 7.
Starting from an initial hypothesis, the researcher selects the causal relationship of in-
terest. In response, RoA automatically computes balance measures for all remaining
variables. In parallel, the researcher is presented with a minimal causal graph reflecting
the causal relationship being studied. The researcher can then instruct RoA to auto-
matically mine a bigger causal graph based on the data and/or make adjustments to
the causal graph manually based on experts discussions.
When the causal graph has been changed, RoA computes backdoor paths and possible
sets of variables to be balanced – adjustment sets – for optimal causal effect estimation,
which can be selected by the researcher. If the set of variables to be balanced is changed,
the causal effect estimates are updated automatically. Alternatively, the researcher can
decide to define subgroups based on variables that are suspected of confounding the
causal effect estimates. The consequence is of course that the causal estimates are now
being studied for subgroups instead of the main group.
The researcher interacts with RoA through a series of panels, shown in Figure 6. Using
panel (A), the researcher can define multiple subgroups to be used in the tool (in this
example there is only one). The checkbox in front of a (sub)group indicates whether the
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Table 2: Methods and packages used by RoA for computation.

Method Package Computational purpose
density() stats (R Core Team 2021) (Un)weighted density plots
hist() graphics (R Core Team 2021) Unweighted histograms
weighted.hist() plotrix (Lemon 2006) Weighted histograms
glm() stats (R Core Team 2021) Propensity scores, using logistic

regression
Equations 7-8 Custom implementation* Weights for ATE and ATT esti-

mands
bal.tab() cobalt (Greifer 2022) (Un)weighted standardized

mean differences
adjustmentSets() dagitty (Textor et al. 2016) Adjustment set based on causal

graph
Equations 11-13
svyglm(), predict()

Custom implementation*

survey(Lumley 2020)
Doubly robust effect estimation
using propensity score weighting

pc.skel() and pc.or() MXM (Lagani et al. 2017) Causal graph mining
Orthogonal,
Sugiyama, Energy

ogdf (Chimani et al. 2014) Causal graph layout

markovBlanket() dagitty (Textor et al. 2016) Markov Blanket
Equation 14 Custom implementation* Glass’s Delta estimation
* See Appendix A.

group is currently enabled. The size of the group is shown on the right, along with a bar
to show the relative sizes of subgroups. Each subgroup has also two associated colors
(VR1). The hue of these colors (blue, red, ...) indicates the subgroup, and the intensity
(light - dark) is used to distinguish between the two levels of the binary cause variable
Z, which is selected in panel (B) by the researcher (VR2). In this panel also, the type
of estimand is chosen (ATE or ATT), which is used for propensity score weighting and
effect size estimates (VR4). We picked the ATT for now. The two colors associated
with the group “All” are used to differentiate between levels of the treatment variable
romantic.
Next, the effect variable Y is selected in panel (C) to convey our relationship of interest
Z → Y (VR3). In this case, we see that the relationship romantic → g3 has been
selected, as discussed earlier in Section 2.2. Violin-whisker plots show the distributions
with the average values shown next to the center and Glass’s delta is shown on top. If
the two distributions are statistically different, the Glass’s delta value is shown with a
red background.
After selecting the causal relationship, we can inspect the balance of the other variables
(covariates) with respect to the variable romantic by inspecting the SMD plot and
distributions drawn next to them in panel (D). The distributions on the left correspond
to subgroups defined by the cause variable, indicated with the two colors associated with
the group “All” (VR5). Distributions of continuous variables are plotted using density
plots and categorical variables using histograms. By plotting the two distributions of a
variable in a “mirrored” fashion, visual comparison becomes more easy. In the second
column, the variable name is shown along with checkboxes that indicate whether this
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Figure 7: Workflow supported by RoA.

variable is in the adjustment set for balancing. This is indicated for each active group,
but in this case only the group “All” is active. Clicking on a checkbox the researcher
can manually include or exclude a variable to or from the adjustment set per group.
Furthermore, the SMD values are plotted on the right to indicate the difference between
the distributions shown on the left (VR6). SMD values are connected using a curve to
aid visual inspection. The button on the top right enables or disables showing of the
unadjusted SMD values, which are drawn with dotted circles and dashed curves. In
this case, the group colors are used to further differentiate the curves visually. On top
of the panel is a selector to pick one of the sorting methods based on: variable name,
unadjusted SMD values or adjusted SMD values.
The researchers involved in the study can draw their causal graphs in panel (E) (VR8).
After selecting the causal relation using panels (B) and (C), an initial causal graph
is generated automatically that reflects the cause and effect relationship. In this case
we have romantic → g3. In the graph, these variables are represented by rectangular
boxes to emphasize the central role of the relationship. The researcher can now import
or manually add more parts of the graph (VR15). In Figure 6, five more variables have
been added along with some edges.
When the causal graph is edited, RoA automatically updates the diagnostics panel
(F). This panel contains several tabs to be inspected, which are shown in Figure 8a-8c.
These show for each enabled group the number of open backdoor paths (VR12) and
possible adjustment sets, the adjustment sets, and open backdoor paths, respectively
(VR12)(VR14). Double-clicking one of the adjustment sets shown in Figure 8b will
cause RoA to update the checkboxes shown in the panel accordingly(C). Double-clicking
one of the (open) backdoor paths, shown in Figure 8c, will cause RoA to highlight the
backdoor path in red in panel (E) (VR13).
While interacting with the graph it is helpful to use import or export using the top
menu (VR7). To minimize clutter, one of the built-in automatic layout algorithms can
be used Chimani et al. (2014): orthogonal, energy-based, and Sugiyama layouts, which
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(a) (b)

(c) (d)

Figure 8: (a) Diagnostics panel showing overview of backdoor paths and adjustment
sets. The yellow icons indicates that backdoor paths were found, but that adjustments
are possible. A red icon would indicate backdoor paths with no possible adjustment
sets. A green icon would indicate that no backdoor paths were found. (b) Diagnostics
panel showing the possible adjustment sets. (c) Diagnostics panel showing the found
backdoor paths. (d) Dialog for selecting viewing options for the causal graph.

are accessible via the “Layout” button on the top-right side of panel (E)(VR9). In
addition, we have added two more options that are accessible through a dialog that
pops up when clicking the “View options” button, which is shown in Figure 8d (VR10).
The first option selects whether the full graph is shown or a reduced one based on the
Markov Blanket that we will explain shortly. The second option is to select whether
unconnected nodes, representing variables, are shown or hidden.
For a given causal relationship under study, the (minimal) Markov Blanket (MB) is a
set of nodes of the graph that correspond to variables that are relevant for deconfounded
effect estimation. In other words, these are the nodes to consider when searching for
open backdoor paths. During expert discussions and while editing the causal graph,
it may be convenient to consider nodes that are not the MB but are still close to in
terms of graph distance. For this reason, the researcher can select a distance threshold
to view nodes close the boundary of the MB as well, see Figure 9. Graph reduction
based on the MB is used for our use case described in Section 3.
Thus, using the panels discussed so far, the researcher can interactively select a causal
relationship of interest, manually balance variables, update the causal graph embedding
the relationship, monitor open backdoor paths and counter the confounding effects al-
lowed for by open backdoor-paths by balancing variables based on computed adjustment



Journal of Data Science, Statistics, and Visualisation 17

Figure 9: The Markov blanket for effect variable g3. All variables that are relevant
for estimating a causal effect size on g3 are inside the Markov blanket, indicated by
the shaded bounded area. Variables outside this area have a certain distance to the
Markov blanket in terms of edges (arrows) in between. For instance the variable fjob,
which indicates the job of the father, has a distance of 1 to the Markov blanket, while
the variable freetime has a distance of 2.

sets if these exist. During this process, the treatment effect estimates with associated
distributions and Glass’s delta values, are updated in real-time and shown in panel (C)
(VR16)(VR17). If variables have been balanced, the effect estimated is the adjusted
one. The visualizations used in these panels corresponds to the ones shown in Figure 5.
For our example, the ATE estimand option would measure how the phenomenon of
having romantic relationships in general changes the average math grade on a popula-
tion level. As shown in Figure 10, the effect is bigger than for the ATT (0.52 instead of
0.17, with Glass’s delta 0.249 instead of 0.0047) and the effect distributions are different
in a statistically significant manner, as indicated by the red background color behind
the Glass’s delta text. Also the SMD values are different in the balance panel.
Finally, we have implemented support for comparing subgroups during the analysis.
Comparison of subgroups can be helpful during debates to eliminate the confounding
effects of a variable (that cannot be adequately adjusted for), a scenario included in
Figure 7. For instance, if the variable sex turns out to be problematic, subgroups can
be defined based on it to eliminate its confounding effects. This yields two separate
models for males and females.
Once defined, RoA associates each subgroup with two similar colors for visualizations
and individual causal models, whereafter individual effect estimates are computed. The
panels are then updated to contrast group sizes, variable distributions, SMD values,
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Figure 10: The effect of romantic relationships on the average math grade on a popu-
lation level, estimated using the ATE.

effect sizes, and diagnostics, as shown in Figure 11. Furthermore, variables can be
adjusted using checkboxes on a group basis in the “Balance”-panel on the left. The
“Causal relations”-panel offers a pairwise comparison of graphs. Each subgroup has
a causal graph associated that can be compared with the causal graph of another
subgroup or with the outputted graph of the mining algorithm for the same group.
These graphs to be compared can be selected using the “Graph #1” and “Graph #2”
comboboxes. The first is used for layout algorithms and view options; the second is
shown using a difference visualization (VR11).
To support the visual comparison of two causal diagrams, we have experimented with
different edge encodings (see Figure 12a). In the end, we settled on the encodings shown
in Figure 12b for comparing the causal diagram of a group with the automatically
mined causal diagram. Similarly, for comparing two different subgroups, we settled on
the encodings shown in Figure 12c. We focussed on showing differences with minimal
clutter; therefore, when two causal diagrams both include an edge (arrow), it was
colored to appear more in the background. When two causal diagrams disagree on the
direction of an edge, the edge is drawn bigger to draw more attention to it.
Arrows are colored to highlight differences, see Figure 12b. Arrows colored with a
primary group color are only part of the graph of that group and white arrows indicate
that the two graphs both include an arrow. Again, when the two graph include arrows
of opposite direction these are drawn close together and a little thicker to make them
stand out more. In this way, the differences between the graphs are emphasized. This
technique is also used to compare the graph of a group with an automatically mined
graph (see Section 3). The arrows in the mined graph are then drawn in dark gray, see
Figure 12c.
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Figure 11: RoA supporting comparison of subgroups.

3. Predicting recovery time after epidural administration
In this section, we discuss our use case for a real-world experiment. The research team
consisted of five members: one data scientist, three clinical researchers (usually working
as anesthesiologists), and a statistician, with the first one interacting with the software
during the discussions.

Data and research question
For our use case, we used a data set that was compiled by clinical researchers in the
intensive care unit of our local hospital (with approval by the institutional review
board). This data set contains over 21k records of patients that underwent surgery
and includes 80 variables related to their condition and recovery process. Our research
objective was to estimate the effect epidural administration (anesthesia using nerve
blocking injections) on the recovery time in minutes (epidural → time_min_recovery),
motivated by improving post-operative planning. For this study endpoint, we used the
ATT estimand.

Constructing the causal graph
A causal graph was constructed for a related project, so we could take that as a starting
point. The full graph is shown in Figure 13a. After selecting the cause and effect
variables and importing the expert graph, we employed our mining algorithm (see
Appendix A) to automatically mine more edges (arrows). Using the causal relations
panel we compared the expert graph with the mined graph, see Figure 13b. It was found
that most mined edges were in less relevant parts of the graph. Typically, when explicit
disagreement was found between the graphs, the experts could dismiss the mined edges
based on clinical reasoning. Some small discussion followed on particular edges, but
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(a)

(b) (c)

Figure 12: Directed edge (arrows) color encoding for graph comparison. (a) Experi-
mental encodings. (b) Edges associated for groups obtain the group color, indicated by
a → b. Edges mined with a mining algorithm based on the data are colored gray, see
c→ d. If the graph of a group and the mined graph agree on an edge this is indicated
with a white color to make the edge less visually striking, see e → f . If the group
graph and mined graph disagree this is indicated by a bi-directional edge, like g → h.
These type of edges are also drawn a bit larger to make them stand out more. (c)
The coloring is analogous to that of (b) but now for the causal graphs of two different
subgroups, using their primary group colors.

after reducing the expert causal graph using the Markov Blanket, the experts agreed
on the graph (see Figure 13c–13d).

Balance check
During discussions the SMD value of variables under consideration were inspected
to gauge their potential impact using the balance panel, see in Figure 14 and Fig-
ure 15. RoA found 169 open backdoor paths and one adjustment set: {age, bmi,
spoed(urgency), surgery_group}. The adjustment set was selected and used to update
the effect estimates.

Effect estimation
Without adjustment, the average recovery time was close to 70 minutes for both dis-
tributions. After applying the adjustment set these changed to 77.45 and 76.77, for
patients without and with epidural administration, respectively. The two distributions
are statistically significantly different, but based on the difference of 0.68 minutes, we
conclude given this dataset, that epidural administration does not have a clinically
relevant effect on recovery time.
To show that in an OBS the ATE and ATT indeed lead to two different estimates
we selected the ATE option in the treatment panel and recompute the estimates, see
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(a) (b)

(c) (d)

Figure 13: (a) The full expert causal graph. (b) The full expert graph compared with
the mined causal graph after applying the energy-based graph layout algorithm. (c)
The expert graph reduced using its Markov Blanket, while being compared with the
mined graph. (d) The expert graph reduced using its Markov Blanket.

Figure 14: Using RoA for predicting recovery time after epidural administration.
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(a) (b) (c) (d)

Figure 15: (a-d) Different parts of the balance panel after being scrolled. The plot
confirms that the SMD values of the variables in the adjustment set are now indeed
closer to 0.

Figure 16.

(a) (b)

Figure 16: (a) The ATE estimated without applying the adjustment set. (b) The ATE
estimated after applying the adjustment set.

During the experiment, we collected user feedback which can be found in Appendix C.
Furthermore, an additional use case can be found in the supplementary materials of
this work.

4. Discussion
We have learned many lessons during the development of RoA. Overall, user feedback
was positive. After a quick tutorial session, the tool was regarded as a welcome addi-
tion to the clinical research toolkit. A major reason is that clinical researchers value
their time and like to adopt tools that efficiently and adequately guide them in their
studies’ exploratory phase. By integrating robust statistics in an exploratory setting,
the researchers could immediately start exploring hypotheses in an intuitive way with
a high level of confidence. Furthermore, by making the domain knowledge explicit in
the form of a causal graph, differences in opinion are either resolved or lead to dif-
ferent hypotheses and implications that can be contrasted quickly. In this light, they
underlined the importance of having simple intuitive UI’s in which complexity is only
added if necessary for the task. In the remainder, we discuss some issues and suggest
improvements for future work.
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Causal graphs
We have added automated support for mining causal graphs in RoA. Because the
algorithms have a non-deterministic component, the mined graph differs after every
run. Running the algorithm multiple times and using an aggregated result helps, but
in our experience the value of mined graphs was limited, because clinical researchers
tend to rely more on their own opinion. Furthermore, smarter layout algorithms could
be adopted that are better suited for path analysis (Mennens et al. 2019). Based on
this, different types of relevant substructures could be highlighted in conjunction with
automated suggestions on how to explore different alternative CNs, depending on the
context. These might be just as important as showing the backdoor paths.
In our system, edges are either present or not in the expert graph by design, which is
required to compute the backdoor paths correctly (for mined graphs, we can already set
a cutoff value for certainty). However, showing on-demand information about certainty
on or next to the edge being considered may still be useful, along with expert anno-
tations. Another extension worth considering is adding support for detecting plausible
“front-door” paths, which can allow for treatment effect estimation in some cases when
backdoor paths cannot be adjusted (Pearl et al. 2016c).

Variables
A challenge that kept emerging when developing causal networks was interpreting pre-
recorded variables correctly. Different people tend to use different encodings. For
example, one might split a variable into two variables to represent two different mea-
surements over time. This can influence the definition of a causal network. Additionally,
two phenomena that mutually influence each other, like drugs↔ heart rate, need to be
rolled out to adhere to the assumption of causal networks being DAGs. Hence, proper
data preparation is necessary.

Support for guided subgroups selection
It could be beneficial to integrate guided subgroup selection based on group similarity
measures using a visual partition diagram (Gotz et al. 2017). We recognize that the
number of groups that can be enabled and shown simultaneously without causing too
much clutter or exhausting the available colors is limited to around three.

Future work
We envision direct extensions of the tool to include guided (sub)group selection mech-
anisms for the detection and utilization of front-door paths, smarter graph layout algo-
rithms for pathfinding and substructure highlighting, encoding for edge uncertainty (in
strength and direction) and user annotations, the support of different types of treatment
and effect variables, and perhaps other propensity adjustment methods, like matching
and stratification.

5. Conclusion
We have presented a visual analytics system for exploratory observational studies to
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estimate the causal effect of a binary treatment variable. The system comprises several
interactive plots that work cohesively together to integrate state-of-the-art statistical
techniques to cover different aspects of causal inference, like differences in variable
distributions between treatment groups, the structure of relevant causal relationships,
and proper adjustment sets of variables used to obtain deconfounded treatment effect
estimations when possible. Furthermore, automatic mining algorithms were integrated
into the system to aid clinical researchers in finding the structure of the relevant causal
relationships.
The system’s functionality was demonstrated through a real-world use case involv-
ing patients that underwent surgery, conducted in close collaboration with clinical
researchers. In particular, the interactive capability of the system enabled clinical
researchers to obtain statistically sound causal effects immediately during discussions
about the causal relations relevant to the case. Because the causal relations were shown
explicitly, the researchers could focus on efficiently exploring hypotheses together, which
they regarded as a welcome aid to their clinical practice. During the sessions, the re-
searchers tended to rely solely on their domain knowledge than the (non-deterministic)
results of the mining algorithm.

Computational Details
The main application for RoA was programmed in C++ 9.4 using the Qt 6.2 framework
(https://www.qt.io/). The statistical computations were programmed in R 4.1.0
using the following packages (https://CRAN.R-project.org/):

• plumber 1.1.0 (web API for R);

• jsonlite 1.7.2 (parsing JSON);

• RPostgreSQL 0.6-2 (database connection);

• cobalt 4.3.1 (covariate balance evaluation);

• survey 4.0 (effect estimation);

• dagitty 0.3-1 (computing of adjustment sets);

• MXM 1.5.1 (computing of causal models).

The code can be found on GitHub at https://github.com/RodofAsclepius/RoA.

Computation time
For our use case (and experiments), we selected 21k subjects and 80 variables. This
allowed for interactive use of the tool due to the computational load on a contemporary
desktop system running a local R server. Although we already selected algorithms on
the more efficient side of the spectrum, it became clear that graph mining should be
supported with dedicated (cloud) servers for use cases involving bigger datasets. The
time required by the mining algorithm is also highly sensitive to its parameters involving
edge certainty.

https://www.qt.io/
https://CRAN.R-project.org/
https://github.com/RodofAsclepius/RoA
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A. Causal effect estimation in observational studies
Observational studies are conducted to estimate the effect causal size of a phenomenon
Z on another phenomenon Y , denoted as Z → Y . The cause variable Z is often referred
to as the treatment variable, while the influenced variable Y is referred to as the effect
variable. The generic analysis workflow for conducting such a study, which is used for
our work, is shown in Figure 17.

Figure 17: Workflow for estimating causal effects based on Leite (2016b) with additions
for clarification and integrative purposes. The shaded rectangles indicate steps that are
considered outside the main focus of this work.

The causal model for effect estimation
Several types of treatment effects can be estimated. To express these treatment effects,
we adopt definitions formulated in terms of potential outcomes from Rubin’s Causal
Model (Rubin D. B 1974; Holland 1986; Shadish 2010). With this, we need to dis-
tinguish between observable and non-observable hypothetical outcomes. For a given
subject i, the treatment indicator Zi equals 1, if i is treated, and 0 otherwise. Corre-
spondingly, for the (continuous) effect variable Yi we denote the potential outcomes Y z

i

as follows.

Y z
i =

Y 0
i , potential outcome without treatment

Y 1
i , potential outcome with treatment.

Furthermore, we define realized outcome Yi = Zi · Y 1
i + (1 − Zi) · Y 0

i with observable
outcomes (left) and non-observable potential outcomes, or counterfactuals (right)

Yi =
Y 1

i | Zi = 1
Y 0

i | Zi = 0
Yi =

Y 1
i | Zi = 0

Y 0
i | Zi = 1.

Let us consider an example of counterfactual reasoning. Suppose you were concerned
with driving home to be on time for dinner and had to pick road A or B. You picked
A and arrived an hour late due to traffic congestion. Now you tell yourself that if you
had picked road B instead, the driving time would have been shorter. Hence, now you
are (re)assessing the driving time on road B while you have measured the driving time
on road A.
Note that Y 1

i and Y 0
i denote the outcome of a treated and untreated subject i, which

are invariant to assigned treatment condition Zi. Given a subject i, the treatment effect
is τi = Y 1

i − Y 0
i , but in reality one of course cannot observe Y 1

i and Y 0
i at the same
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time. Therefore, we estimate the effect size using an estimand based on the expected
values of the treated and untreated groups. Different types of estimands exist (Abadie
and Cattaneo 2018; Nogueira et al. 2022; Huang et al. 2022), but the most common
ones are listed in table 3. For a list of software packages to compute the estimands see
Table 6.

Table 3: List of common estimands.

Name Target population
The Average Treatment Effect (ATE) Entire population
The Average Treatment Effect on the Treated (ATT) Treated population
The Average Treatment Effect on the Control (ATC) Control population
The Individual Treatment Effect (ITE) Individual subject
Conditional Average Treatment Effect (CATE) A subpopulation
Local Average Treatment Effect (LATE) Compliers

We have picked on the ATE and the ATT because these effect measures are easy to
interpret for a broad audience. Moreover, the ATT is often used in the medical field,
so we chose to use it in our medical use case. These two effect measures are defined,
respectively, as:

ATE = E(Y 1
i )− E(Y 0

i ), and (1)
ATT = E(Y 1

i | Zi = 1)− E(Y 0
i | Zi = 1). (2)

When conducting a Randomized Controlled Trials (RCT), the ATE, ATT, and ATC
are all equal, but this is not the case for an OBS, where an analyst commonly picks
the ATE or ATT depending on the research question. Because we are dealing with
aggregates, we can estimate all terms of the equations by just including subjects that
happen to be observed for the involved outcomes. Lastly, in order to obtain unbiased
treatment effects, two assumptions are to be met:

1. The stable subject value assumption (SUTVA), meaning that potential outcomes
for subject j are independent of subject i.

2. The strong ignorability assumption of treatment assignment (SITA), meaning
that the treatment assignment is independent of potential outcomes distributions
for a given set of observed covariates X or (Y 0, Y 1)⊥Z | X.

For our purposes, the main focus is on establishing assumption 2, while we assume
assumption 1 to hold, which requires that for the probability of treatment assignment,
for every value of the covariates, it holds that: 0 < p(Zi = 1 | X) < 1. The second
assumption is required for unconfounded causal effect size estimation. Ideally, the
distributions of all other covariates X, besides the treatment and effect variable, are
balanced (informally: exhibit a high degree of equality or similarity) over the treatment
groups. While randomization takes care of this in an RCT, we may need to manually
adjust distributions for observational studies because, with no a priori control over
the assignment of subjects to the treatment groups, randomization is impossible. For
this, we can utilize techniques such as weighting, matching, and stratification to obtain
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strong evidence that the second assumption is being met. For our work, we have
adopted the use of propensity score weighting.

Propensity score weighting
The imbalance in the distributions of covariates X across treatment subgroups can be
summarized with scalar valued scores per subject. An increasingly popular choice for
such a score is the propensity score that is defined as the conditional probability of
treatment assignment (Rosenbaum and Rubin 1983):

ei(X) = P (Zi = 1 | X). (3)

The propensity score calculation can be done with a multitude of methods (Westreich
et al. 2010), but in the case of a dichotomous treatment, the standard method is to
use a logistic regression model (Agresti 2012; Fox 2008), which practice we follow. The
logistic regression model for estimating propensity scores is defined as

logit(Zi = 1 | X) = β0 + β1Xi1 + · · ·+ βkXik, (4)

where the logit equals the log odds of the probability of getting the treatement:

logit(Zi = 1 | X) = log
 P (Zi = 1)

1− P (Zi = 1)

. (5)

The probabilities of treatment assignments ei(X), given the covariates X, are then
estimated using the logits:

ei(X) = P (Zi = 1 | X) = exp(logit(Zi = 1 | X))
1 + exp(logit(Zi = 1 | X)) . (6)

By integrating the propensity scores in a list of weights W (one per subject), it is
possible to obtain weighted distributions via weighted means or weighted proportions
that are likely to be more statistically similar in the treated and untreated groups of
subjects. In this way, the propensity score is used to establish the SITA assumption.
Specifically we have (Y 0, Y 1)⊥Z | X =⇒ (Y 0, Y 1)⊥Z | e(X) ∧ Z⊥X | e(X). Hence,
also the treatment assignment becomes independent of X.
The actual method to be used for propensity score weighting depends on the type
of treatment effect one wants to estimate. To estimate the weights W for the ATE
(Equation 1) and the ATT (Equation 2) one needs to compute the weights with:

ATE case: wi = Zi

ei(X) + 1− Zi

1− ei(X) ; and (7)

ATT case: wi = Zi + (1− Z) ei(X)
1− ei(X) . (8)

The remaining question is: which variables to include in X to establish the premise?
The misspecification of the propensity score model by including an unsuitable set of
covariates can lead to substantial bias in the estimation of the causal effects. Current
(clinical) guidelines often suggest adding a variable to X based on domain knowledge
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and whether it is associated with Z and/or Y , which decreases bias and variance of the
treatment estimations (Beal and Kupzyk 2014; VanderWeele 2019; Witte and Didelez
2019; Loh and Vansteelandt 2020; Talbot et al. 2021). Unfortunately, however, these
guidelines are insufficient to ensure a valid X to make the premise hold, and analysts
have to be pragmatic in checking the achieved balance and advocate for the plausibility
of chosen X. However, the relatively recent work by Pearl on do-calculus does offer a
theoretical basis for selecting the correct variables, which is covered below.
During the weighting process, it is important to assess the imbalance in distributions
for each covariate in X by contrasting the treatment groups. For this, we use the
Standardized Mean Difference (SMD), which is an established indicator for balance
assessment. It is defined for continuous and dichotomous variables as (Austin 2009):

Continuous case: d = (x̄1 + x̄0)√
(s1)2 + (s0)2

2

; and (9)

Dichotomous case: d = (p̂1 − p̂0)√
p̂1(1− p̂1) + p̂0(1− p̂0)

2

, (10)

where x̄1 and x̄0 denote the sample means for the covariate for the treated and untreated
group, respectively, while s1 and s0 denote the sample variance of the continuous co-
variate for respectively the treated and treated group. Furthermore, p̂1 and p̂0 denote
the prevalence (or mean) of the dichotomous covariate for the treated and untreated
group, respectively. The SMD should be as close to zero as possible for optimal bal-
ance. In practice, a cut-off value must be chosen to classify covariates as balanced or
unbalanced. A typically recommended cut-off value is 0.1 (Austin 2011) or 0.25 (Stuart
and Rubin 2007; Stuart 2010). If, after weighting, some (relevant) covariates remain
unbalanced, one can try to include higher-order / interaction terms in the propensity
model or consider stratification on unbalanced covariates (subgroup analysis).

Causal do-calculus and graph mining
Causal do-calculus relies on domain knowledge, which can be regarded as a list of
assumptions, but the representation thereof (e.g., logical statements, structural equa-
tions, diagrams) can make a profound difference. Nevertheless, causal diagrams are
a sound option for nearly all applications because of their transparency and explicit-
ness in answering questions, as stated by Pearl and Mackenzie (2018). Our adopted
representation of a causal diagram is a Directed Acyclic Graph (DAG), although more
complex variations exist (Pearl et al. 2016d; Kalisch et al. 2012). Furthermore, there
are three steps or subareas in causal inference (Tikka and Karvanen 2017):

1. the discovery of the causal model (from data);

2. the identification of causal effects using a known model;

3. the actual estimation of an identified causal effect from data.
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Only “identifiable” effects can be adequately estimated, for which it holds that con-
ditional upon the correctness of the DAGs structure: the absence of confounding is
guaranteed, the presence of confounding can be adjusted for, or the presence of con-
founding cannot be adjusted for. This is the case when specific relevant substructures,
called backdoor paths, are either absent in the DAG or can be adjusted for. An example
of a simple backdoor path is illustrated in Figure 18a.
Given a DAG containing the causal treatment-effect relationship of interest Z → Y , a
backdoor path is a sequence of connected nodes that connects Z and Y , such that Z
is connected to the sequence via an incoming edge. One can consider these backdoor
paths as a more complex variant, or generalization, of a confounding variable that
would express itself as a node that is directly connected with directional edges pointing
towards Z and Y . In the case of an RCT, the randomization process neutralizes possible
confounding effects of backdoor paths by “cutting” all incoming arrows of Z. In the case
of an OBS, we need to identify these backdoor paths using do-calculus and adjust for
them if possible to obtain deconfounded treatment effect estimates Pearl et al. (2016a).
The sequence of connected nodes in a backdoor path does not have to be connected
via consecutive edges, all pointing in the same direction along the path. Only the
nodes connected to the treatment and effects variables need to point in the direction
of the treatment and effect nodes, making the situation more complex than having
only a straightforward path connected. Causal do-calculus is designed to work with
different substructures like the four primary substructures compactly illustrated in
Figure 18b: the confounder, mediator, collider, and the proxy variables. These are
used for computing proper adjustment sets when backdoor paths are present.

(a) (b)

Figure 18: The relevant substructures in causal diagrams: (a) Illustration of a backdoor
path. (b) The confounder, mediator, and collider are all associated with variables Z and
Y, but the underlying causal directions differ. The proxy is relevant because adjusting
for it means implicitly adjusting for a collider, which in turn can cause an open backdoor
path to form.

Depending on the overall structure, it can be the case that: there are no open backdoor
paths (which allows for immediate effect estimation), there are open backdoor paths,
but these can be compensated for using a proper adjustment set of covariates, or there
are unadjustable open backdoor paths (which implies that no unbiased effect estimation
is possible). Naturally, the result is always conditional on the correctness of a given
causal network.
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Generally, a causal network is specified using domain knowledge, by guessing and check-
ing, or by utilizing mining algorithms (see Table 5 in Appendix B). Earlier tests had
been developed for either categorical or numerical variables only, but the method pub-
lished by Tsagris et al. (2018) can readily handle varied situations. For RoA, we have
deployed this method and injected it into the PC mining algorithm (Kalisch et al.
2012).

Causal effect estimation
For estimating a causal treatment effect using propensity score weighting, we use
(Schafer and Kang 2008):

∆ =
∑T

t=1 wtyt∑T
t=1 wt

−
∑U

u=1 wuyu∑U
u=1 wu

, (11)

where wt, yt and T are the weights, observed outcomes and size, respectively, for the
treated group, wu, yu and U are the weights, observed outcomes and size, respectively,
for the untreated group. Please note that an individual subject is either part of the
treated or untreated group. Therefore the effect is estimated with the difference in the
weighted average of the outcomes in these groups. Depending on whether the ATE or
ATT is required, the weights are computed using Equation 7 or Equation 8.
With balancing being performed in the study’s design phase, one can pick any from a
diverse set of techniques for treatment estimation Ho et al. (2007). Since we designed
our tool for exploratory purposes, we have adopted the doubly robust method for
treatment effect estimation (Kang and Schafer 2007; Schafer and Kang 2009), based on
propensity scores, to minimize bias. A key characteristic of the doubly robust method is
that if either the propensity model (treatment assignment mechanism) or the outcome
(response) model is correct (concerning the real world), the treatment effect estimates
are unbiased Imbens and Wooldridge (2009). Using this method the values yt and yu in
Equation 11 are substituted with predicted values ŷt and ŷu. To obtain these predicted
values, we first fit two separate outcome models (Leite 2016d):

Mt = βt + β1tPt + β2tP
2
t + β3tP

3
t + ϵt; and (12)

Mu = βu + β1uPu + β2uP 2
u + β3uP 3

u + ϵu, (13)

where Mt models the outcome for the treated subgroup, based on a linear, quadratic,
and cubic function of the propensity score Pt (= et(Xt)), along with their associated
βt coefficients and a final ϵt term for the error. Furthermore, Mu analogously models
the untreated subgroup outcome. Finally, we apply these models to obtain the values
for ŷt and ŷu for each individual across the subgroups. Depending on the estimand,
we need to pass the propensity scores of either the untreated or treated group to the
models, as follows:

ŷt =
Mt(Pt), for ATT estimand

Mt(Pt), for ATE estimand
ŷu =

Mu(Pt), for ATT estimand
Mu(Pu), for ATE estimand
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The raw mean difference, however, is not generally stable and homogeneous because it
depends on the unit of measurement of the effect variable. Therefore, measures have
been developed to quantify the effect size in a standardized manner (Ledesma et al.
2009). For treatment effects based on means, the most commonly used ones include
Glass’s Delta, Hedges’s g, and Cohen’s d. We have adopted Glass’s Delta, which is
defined as

Glass’s ∆ = (yt − yu)/σ(yu). (14)

where yt and yu are the (weighted) mean outcome of the treated group and untreated
group, respectively, and σ(yu) is the related standard deviation of the outcome of the
untreated group.
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B. Software and algorithms

Table 4: List of software packages designed for causal inference (Nogueira et al. 2022).

Language Name Description
Python DoWhy Causal inference
Python CausalML Machine learning, causal inference
Python EconML Machine learning, causal inference
R DoWhy Causal inference
Python Matching Matching
R MatchIT Mathing
R R-FLAME Matching
Python dame-flame Matching
R PSW Propensity score
R ipw Inverse probability
R PSweight Inverse probability
R RISCA Causal inference, cohort-based analysis
R CausalGAM Inverse propensity scores methods
R tmle Targeted maximum likelihood estimator
R BART Bayesian Additive Regression Trees
R grf Generalized Random Forests
Python CEVAE Causal Effect Variational Autoencoder
Python SITE Individual Treatment Effect, Deep Represen-

tation Learning
R, Python rdrobust Regression Discontinuity Design
R rddtools Regression Discontinuity Design
R rdd Regression Discontinuity Design
R plm Panel data
Python linearmodels Panel data, instrumental variables
R Synth Synthetic Control Method
R causalimpact Synthetic Control Method
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Table 5: Overview of software packages for causal discovery (graph mining algorithms)
in observational data (Nogueira et al. 2022).

Software Type of data Type of algorithm

Categorical Continuous Mixed
Time-

series

Causal

sufficiency

Constraint-

based

Score-

based

Non-

Bayesian

bnlearn
MMPC • • • • •
PC • • • • •
pcalg
AGES • • • • •
FCI • • • •
FCI_JCI • • • •
Anytime FCI • • • •
Adaptative Any-
time FCI

• • • •

FCI+ • • • •
GDS • • • • •
GES • • • • •
GIES • • • • •
LINGAM • • • •
PC • • • • •
CPC • • • • •
PC Select (PC
simple)

• • • • •

RFCI • • • •
Tetrad
PC and PC-
Stable

• • • • •

CPC and CPC-
Stable

• • • • •

PcMax • • • • •
FGES/FGES-
MB

• • • • •

IMaGES • • • •
FCI • • • •
RFCI/RFCI-
BSC

• • • •

GFCI • • • •
MBFS • • • • •
GLASSO • • • •
FOFC • • • • •
FTFC • • •
LiNGAM • • • •
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Table 6: List of software packages for computing effect size estimands, extracted from
the work of Nogueira et al. (2022).

Language Name Estimand
ATE ATT ITE CATE LATE

Python dowhy • • • • •
Python econML • • • • •
R Matching • • •
R MatchIT • • •
R R-FLAME • •
Python dame-flame • •
R PSW • • •
R CBPS • • • •
R ipw • • •
R PSweight • • •
R RISCA • •
R CausalGAM • •
R tmle • • •
R BART • • •
R grf • • •
Python causalML • • • • •
Python CEVAE • • •
Python SITE • • •
- ivreg •
- rddrobust •
R rddtools •
Python rdd •
R plm •
Python linearmodels •
R Synth •
R, Python causalImpact •
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C. User feedback
During the experiment we collected the following user feedback.

1. Confounding (and bias) is one of the major problems in current clinical research.
Therefore, having a (complementary) support system for this purpose can bring
added value.

2. The real-time iterative estimation of the treatment effect is highly appreciated
during discussions.

3. Adaptive graph reduction based on the Markov Blanket was helpful.

4. The mined graph was interesting, but also taken with a grain of salt. Consider
guiding the mining algorithm using the expert graph.

5. Consider support for importing expert graphs from elsewhere next to mined
graphs and show certainty on edges (perhaps also for mined graphs).

6. Add version support to the graph editor, along with annotations and certainties
(and use only edges with enough certainty for computations).

7. Add markers for edges with uncertain direction to let the researcher know what
to measure and establish in clinical practice to update the graph.
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