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Abstract

Edges in images define boundaries of objects which are important for various
tasks; thus, edges are crucial components in an image. Noise can be introduced
to images through various sources which can compromise the integrity of the
edges and other component in the image. We propose an edge preserving median
filter, called the level-set adaptive median filter, for noise removal in images.
This filter uses connected sets of pixels with the same value, namely level-sets,
as flexible regions which contour to edges in the image. The filter determines
whether a set is noise or signal and it smooths the noise. These set regions are
flexible in terms of shape since they are created based on their values, and being
data-driven therefore provide the mechanism for the filter to preserve edges in
the image. To validate our approach we used metrics such as Pratt’s Figure of
Merit and Peak-Signal-to-Noise Ratio on the labelled faces in the wild data set∗,
which is a widely used collection of photographs of faces usually used for studying
facial recognition, to assess the algorithm’s performance. We concluded that the
proposed level-set adaptive median filter does remove noise while preserving the
edges in the image better than the traditional adaptive median filter.
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1. Introduction
Noise in an image is the occurrence of random variation of the pixel intensities and
obscures important information in the image that is necessary for image understanding.
This results in pixels having a different pixel intensity than the true intensity. Noise
can be caused by various factors such as lighting, dust particles on the camera lens,
or the digitisation process itself (Verma and Ali 2013). Different types of noise that
can occur in images include impulse, additive and multiplicative noise (Verma and Ali
2013; Patidar et al. 2010). Therefore, noise removal plays a significant role in image
processing since it aims to recapture the true image and should take place prior to
further modelling (Peters 1995).
Jain et al. (1995) defined a region as a set of connected pixels that share similar prop-
erties. Objects in an image consist of one or more regions, and regions are typically
separated by edges. An edge in an image can thus be defined as a significant local
change. It is important that a noise removal filter applied to an image preserves the
edges while removing noise (Patidar et al. 2010). Preserving the edges in an image is
important because the loss of edges can lead to an incorrect representation of the true
image.
Numerous noise removal filters have been developed. These algorithms can be classified
into linear and non-linear filters. An example of a simple linear filter is the mean filter
(Al-Amri et al. 2010). Non-linear filters have also been developed (Hwang and Haddad
1995; Wang et al. 2010). These types of filters are more robust i.e., the output is less
affected by small changes in the input. Non-linear filters also preserve edges in images
better than linear filters (Patidar et al. 2010). These filters along with two-dimensional
structuring elements have been used to construct filters to smooth and remove noise
from images (Dougherty and Astola 1994).
The median filter is a non-linear filter that was introduced by Tukey in 1977 for smooth-
ing time series data (Tukey 1977). Since then median filtering has been used to smooth
and filter noise from digital images (Verma et al. 2015; Lin and Willson 1988). The
simplicity of the median filter is attractive. The median filter uses a neighbourhood
around the pixel of interest and replaces it with the median pixel value of that neigh-
bourhood if the pixel is noise-contaminated (Justusson 1981). The median of the set
is a better measure of pixel intensity of the set around the pixel of interest since it is
more robust to outliers, namely other neighbouring pixels. For this reason, the median
filter is a popular technique for noise removal. In literature, the median filter is used
extensively as it outperforms linear filtering when denoising images where the object
in the image has edges (Verma et al. 2015; Arias-Castro and Donoho 2009).
The traditional median filter although powerful, does have some shortcomings. It does
not provide sufficient smoothing of non-impulsive noise and struggles with removing
impulse noise which occurs with high probability (Hwang and Haddad 1995). Hwang
and Haddad (1995) extended the median filter to make use of windows of variable size.
This improved the algorithm’s capability to smooth non-impulse noise and impulse
noise occurring with high probability. In this adaptive median filter, a square window
of increasing size is defined for each pixel of the image which is then used as the
neighbourhood. Albeit the windows can vary in size, the shape of the window is rigid.
This extension further includes a detection step in which the algorithm determines
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whether the pixel is noise-contaminated or not, and then replaces this value with the
median value if the pixel is noise-contaminated (Hwang and Haddad 1995).
Much work has since gone into advancing adaptive median filters such as combining it
with partition clustering (Pang et al. 2018), fuzzy switching median (Singh and Mah-
eswari 2017) and hybrid versions (Mustafa et al. 2012). We investigate an alternative
involving level-sets.
Level-sets have been used in applications such as image segmentation with colour, shape
movement, and texture (Cremers et al. 2007). The reason for using level-sets are, to
name some, their flexibility, ease of use, and a priori information (Wang et al. 2021).
We propose a level-set adaptive median filter with flexible, data-driven window shapes.
Level-sets in an image are a collection of pixels that have the same pixel intensity and
each pixel in the collection is the neighbour of at least one other pixel. The proposed
filter uses the idea of level-sets to choose more flexible neighbourhood areas. These
sets of pixels are naturally closely related to each other and therefore it provides more
relevant data to determine if a specific pixel or set of pixels is noise-contaminated. It
also replaces contaminated pixels with more informative values. As level-sets are sets
of connected pixels with the same pixel intensity, it can be said that if one of these
pixels is classified as noise the rest of the set is also noise. These level-sets are flexible
since a pixel only has to be connected to one pixel in the set to be included in the set.
The flexibility of level-sets forms a basis on which a strong and adaptive filter can be
built. This new filter also allows for edge preservation.
In Section 2, the proposed filter is presented and some of its properties are discussed.
In Section 3, edge preservation and its importance is discussed. In Section 4, an im-
plementation of the algorithm on the labelled faces in the wild data set is shown and
compared to existing filters. In Section 5 the results of the application are discussed.

2. Level-set adaptive median filter
Consider an image f with pixel intensities {f(xij)} on A(Z2) where A(·) is a vector
lattice and Z is the set of integers. The pixel intensities f(·) are defined on a range [0, n]
for some n1. The connectivities of pixels in the image f are based on the definition for
a morphological connection as defined in Definition 1 (Serra 2006). A morphological
connection implies the elements (pixels) of a set are connected if the elements touches
or overlaps; in image processing this is typically quantified by pixel adjacency such as 4-
or 8-connectivity. For the purpose of this work, the connected pixels are determined by
using 8-connectivity. In 8-connectivity, a pixel is connected to its immediate neighbours,
which include the four pixels that are directly adjacent (above, below, left, right) as well
as the four diagonal pixels (for instance, top-right or bottom-left). This results in eight
connected pixels surrounding each central pixel. The reason for using 8-connectivity
is that, since it is using the eight pixels around it, it closely aligns with the variable
square-shaped window used in the adaptive median filter. In general, any connectivity
can be used provided it satisfies Definition 1.

1This is usually integers between 0 and 255 for grayscale. It can also be defined as real numbers
ranging between 0 and 1.
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Definition 1. A connection (Serra 2006)
Let B be a non-empty set. A family C of subsets of B is a connection if:

1. ∅ ∈ C,

2. {x} ∈ C for each x ∈ B and

3. for any family {Ci, i ∈ I} ⊆ C we have
⋂
i∈I

Ci ̸= ∅ =⇒
⋃
i∈I

Ci ∈ C.

Then any Ci ∈ C is called a connected set.

Based on Definition 1, any set C of connected class C is connected. In the context of
any image, the pixels make up the non-empty set in this case. Definition 1 (1) states
that any empty set is connected i.e., a set of no pixels is seen as being connected.
Definition 1 (2) state that a set containing only one element is connected, i.e., a set
containing only 1 pixel is a connected set. Definition 1 (3) states that if groups that
are by themselves connected share an element, they can be combined to create a larger
group which will still be connected. For example, if in a image we have a group of
pixels C1 and C2 and the element xi is in both these connected groups, C1 and C2 can
be combined into a one single group which will still be a connected set. A set of pixels
which satisfy the criteria of Definition 1 is called a morphological connection. This
paper is focusing on the image we will be referencing to a set of connected pixel, since
the set we are considering here is one of pixels. The set of connected pixels of size n+1
that includes the pixel x for any x ∈ Z2 and n ∈ N is defined as Nn(x) (Anguelov and
Fabris-Rotelli 2010). This is also known as the neighbourhood of pixel x.
Level-sets in a gray-scale image are sets of connected pixels, using the connection defi-
nition from Definition 2 of constant value.

Definition 2. A level-set (Braga-Neto and Goutsias 2004)
Consider an image defined by f on A(Z2) and a non-empty set of pixels C ∈ C where
C is a connection. If,

1. C is a connected set of pixels as defined in Definition 1.

2. f(x) = k ∀ x ∈ C for some constant k,

then C is a level-set.

The level-sets of size p, for our proposed filter, are defined as,

J (p) = {V : V ∈ C, f(x) = f(y)∀x, y ∈ V, card(V ) = p},

where C is a connectivity class (Serra 2006). Therefore J (p) are sets of size p where all
the elements in the set have the same value and are all connected based on the chosen
connectivity C.
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The level-set adaptive median filter is applied to each level-set size sequentially in the
image i.e., J (p) for p = 1, . . . , pmax. The algorithm has two hyperparameters namely,
pmax and nmax, where pmax is the maximum size of the level-sets that will be investigated,
and n is the size of the neighbourhood which is increased at each step if the level-set is
determined to be signal rather than noise, up to a maximum of nmax. The parameter
nmax plays the same role as the increasing window size in the original adaptive median
filer.
With the adaptive median filter, we define a window Sij centred at xij as Sij =
{xi−u,j−v : −L ≤ u ≤ L, −L ≤ v ≤ L} resulting in a window of size (2L+1)× (2L+1),
where (2L+1) ≤ wmax and where wmax is the hyperparameter defining the maximum
window size to be considered. Herein, the proposed level-set adaptive median filter
defines this window as the neighbours of the level-sets, V ∈ J (p), instead of the usual
square window, Sij, around pixel x. This data-driven window is defined as

B
(n)
V =

⋃
(i,j)∈V ∈J(p)

⋃
K∈Nn(i,j)

K, for n = 1, ..., nmax.

Therefore, B
(n)
V is the union of the level-sets V ∈ J (p) under consideration and the

neighbourhood of size n of each pixel xij in V . An example of this set is shown in
Figure 1(b) for B

(1)
V and Figure 1(c) for B

(2)
V . It can be seen that the window adapts to

the shape of the level-set which distinguishes it from the traditional adaptive median
filter that uses a square window. By using these flexible windows, the filter is able
to adapt to the underlying structures in the image. The shape of the region B

(n)
V is

dependent on the definition of connectivity. Since the pixel intensities of image f are
defined as {f(xij)}, f

B
(n)
V

is the set of pixel intensities of the set B
(n)
V . Therefore, f

B
(n)
V

is a subset of the original image with the level-set and all its neighbours.

(a) (b) (c)

Figure 1: (a) V ∈ J (3): Level-set of size 3. (b) B
(1)
V : The neighbourhood of V for n = 1.

(c) B
(2)
V : The neighbourhood of V for n = 2.

The algorithm for the level-set adaptive median filter is provided in Algorithm 1. The
algorithm starts by determining all the level-sets in the image. Level-set size 1 up to
pmax are investigated. It is determined whether the level-set is noise-contaminated or
not by looking at a neighbourhood of size 1 to nmax of the level-set of interest. If a set
is determined to be noise-contaminated, it is smoothed.
To decide if the set of interest is noise that should be smoothed or not, as well as
the value to smooth it to, follows the same logic as the traditional adaptive median
filter. This follows a two-step approach namely noise detection and noise reduction.
In the first step, it checks if the set is likely to be noise based on the range of its
neighbourhood. If it falls outside this range the set is more likely to be corrupted. In
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Algorithm 1 Level-set adaptive median filter.
Input: f : The images to be smoothed

nmax: The maximum window size
pmax: The maximum level-set size to be smoothed

Output: f : The smoothed image
Procedure LevelSetAdaptiveMedian(f , nmax, pmax):

for p = 1, . . . , pmax do
Obtain J (p)

if J (p) ̸= ∅ then
for each V ∈ J (p) do

set n = 1
while n < nmax do

Obtain B
(n)
V

f smth, n = SmoothNoise(f
B

(n)
V

, V , n, nmax)
fij = f smth ∀ (i, j) ∈ V

return f

the second step, if the set is determined to be noise, it is corrected by replacing this
value with the median of the set’s neighbourhood. This is shown in Algorithm 2.

2.1. Edge Strength
We next define a measure of strength for the local change required for an edge definition.
An edge is defined as a boundary between two regions of different constant gray level
(Davis 1975). In the example below, a simple edge is shown. For this simple example
we compare the regions on either side of the edge. Later herein, we make use of a
metric which measures the preservation/strength of all edges in an image rather than
for a single edge. Consider Figure 2. The original image has a definite, strong edge.
The image is divided into two regions, one on each side of the edge.
Let the within-region variation be represented by δ and the between-region variation
by γ. Then δ and γ are defined for regions R1 and R2 on either side of an edge are as
follows,

δ =
2∑

i=1

∑
x∈Ri

(x − x̄Ri
)2,

γ =
2∑

i=1
ni(x̄Ri

− x̄)2,

where x̄R1 and x̄R2 denote the mean pixel values in the regions R1 and R2 respectively,
ni denotes the number of elements in region Ri and x̄ the overall mean. In general,
regions R1 and R2 are chosen as the neighbourhoods of similar pixels on either side of
the edge, determined appropriately by the application under consideration.
An edge is clear when δ is small enough and γ is large enough. We make use of the
ratio of within and between region variation,

β = δ

γ
. (1)
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Algorithm 2 Detect and Reduce noise.
Input: f

B
(n)
V

= {fij : (i, j) ∈ B
(n)
V }: The set of pixels to be smoothed and its neigh-

bours.
V : The pixel intensity value of the set.
n: The current window size.
nmax: The maximum window size.

Output: f smth: The smoothed set.
n: The adapted windows size.

Function SmoothNoise(f
B

(n)
V

, V , n, nmax):
Determine min(f

B
(n)
V

), med(f
B

(n)
V

) and max(f
B

(n)
V

)

if min(f
B

(n)
V

) < med(f
B

(n)
V

) < max(f
B

(n)
V

) then
if min(f

B
(n)
V

) < V < max(f
B

(n)
V

) then
f smth = V

else
f smth = med(f

B
(n)
V

)
n = nmax

else
f smth = med(f

B
(n)
V

)
n = n + 1

return f smth, n

We refer to β as the edge strength. In Figure 2, the within-region variation δ increases
from the left to the right. The between-region variation γ decreases from the top to
the bottom. It is visible that as the edge strength, β decreases, the clearer the edge
becomes.
To show that the algorithm proposed herein will at worst keep the edge strength the
same and at best result in stronger edges, the within- and between-region variation will
be considered. The greater the between variation and smaller the within variation of
two regions on either side of an edge, the stronger the edge is, as seen in Figure 2.
When the filter is applied to an image the within-region variation will remain the same
or decrease. Similarly, the between-region variation will remain the same or increase.
This is shown in Proposition 1. For the proof of Proposition 1, see the Appendix.

Proposition 1. Consider and image f . Let L : A(Z2) → A(Z2) be the level-sets
adaptive median filter such that

fsmoothed = L(f)

The level-set adaptive median filter results in

δ(fsmoothed) ≤ δ(f)

and,
γ(fsmoothed) ≥ γ(f)

and,
β(fsmoothed) ≤ β(f)
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Figure 2: Examples of edges for different combinations of high and low between and
within region variation. The within-region variation increases from the left to the right.
The between-region variation decreases from the top to the bottom. Here β is as in
Equation 1

where fsmoothed is the resulting image after applying the level-set adaptive median filter
to image f .

3. Edge preservation
Pratt’s Figure of Merit (Yu and Acton 2002) is used to evaluate the preservation of
edges after the image is smoothed. This index is calculated as

FOM = 1
max(Noriginal, Nsmoothed)

Nsmoothed∑
i=1

1
1 + 1

9d2
i

,

where Noriginal is the number of edge points detected in the original noise-free image,
Nsmoothed the number of edge points detected after the noisy image is smoothed, d2

i is
the Euclidean distance between the ith edge point in the original image and its closest
edge point in the smoothed image. This index is bounded between 0 and 1, where 1 is
perfect edge preservation and 0 is no edge preservation.
To investigate the edge-preserving ability of the level-set adaptive median filter com-
pared to the adaptive median filter, we simulate an edge, see Figure 3(a). Salt and
pepper noise is randomly added to 10%, 20% and 30% of the image. Both the adaptive
median and level-set adaptive median filters are then applied to this noisy image and
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(a) (b)

(c) (d)

Figure 3: (a) Simple example of an edge, contaminated with (b) 10% (c) 20% (d) 30%
salt and pepper noise.

the FOM is calculated to evaluate the edge preservation under various speckle noise
strengths.
The simulation is repeated 100 times. The means of the FOM values for the 100
repetitions are shown in Table 1. The results are shown for the level-set adaptive
median filter for pmax = 2, 3, . . . , 10, and for the original adaptive median filter for
wmax = 2, 3, . . . , 10.

Table 1: The FOM values comparing the performance of the adaptive median (AM)
filter against the level-set adaptive median (LS-AM) filter for different hyperparame-
ters. This is done for 10%, 20% and 30% simulated Salt and Pepper noise.

pmax/ AM10% LS AM10% AM20% LS AM20% AM30% LS AM30%
wmax

2 0.94 0.87 0.75 0.51 0.46 0.29
3 0.94 0.91 0.75 0.74 0.45 0.43
4 0.94 0.92 0.75 0.84 0.45 0.58
5 0.94 0.91 0.80 0.85 0.67 0.69
6 0.94 0.91 0.80 0.86 0.66 0.76
7 0.91 0.92 0.73 0.85 0.58 0.80
8 0.91 0.91 0.73 0.86 0.58 0.81
9 0.89 0.91 0.64 0.85 0.52 0.81
10 0.88 0.91 0.65 0.86 0.52 0.81

From Table 1 it can be seen that the level-set adaptive median filter overall performs
better than the adaptive median filter in terms of edge preservation. It can also be
noted that the level-set adaptive median filter performs better for larger values of pmax.
To further investigate the relationship between FOM and γ, δ and β, a simulated an
image with a strong edge is presented with the noise increased systematically, similar
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to Figure 2. After the image is smoothed, the within (Figure 4(a)) and between (Figure
4(b)) region variation as well as the ratio (Figure 4(c)) of within and between region
variation are calculated and plotted against the FOM of the smoothed image. It can
be seen that the smaller δ and β are and the larger γ is the stronger the edge.

(a) (b)

(c)

Figure 4: The (a) within- and (b) between-region variation and (c) the ratio plotted
against the FOM of an edge where noise was added systematically (see Figure 2)

3.1. Hyperparameter effect on edge preservation
The level-set adaptive median filter has two hyperparameters namely pmax and nmax. To
investigate the effect of these two parameters, we simulate images of different sizes with
a clear edge as in Figure 2. The images were then contaminated with three types of noise
namely 20% salt and pepper noise, noise from a Gaussian distribution with µ = 0 and
σ2 = 20 and noise from a Gumbel distribution with µ = 0 and β = 20. We use salt and
pepper noise as this type of noise commonly occurs in images. Gaussian and Gumbel
noise are also used to see the performance on symmetrical as well as asymmetrical
noise. The level-set adaptive median filter is applied to the simulated images using
various combinations of nmax and pmax values. Table 2 contains the combination of
hyperparameter values that resulted in the highest FOM value for each image size.
During the investigations, it was found that choosing nmax as 2 and pmax as 3 generally
yielded better results. From Table 2 it seems that the larger the image the larger pmax
should be for better results. Although in larger images, a larger value for pmax can be
used, using nmax as 2 and pmax as 3 are good starting parameters. In larger images,
sometimes a higher value for nmax yielded better results but more often than not 2 was
a better choice regardless of image size. The filter smooths based on the underlying
structures in the image, and therefore it makes sense that the parameters increase since
the underlying structure in a larger image will be made up of larger level-sets as well



Journal of Data Science, Statistics, and Visualisation 11

Table 2: The FOM values for three different noise types, Salt and Pepper (S&P),
Gaussian, and Gumbel noise. The results of the level-set adaptive median filter
are shown for images of various sizes with the best-performing hyperparameter
combination.

S&P noise Gaussian noise Gumbel noise
Image size nmax pmax FOM nmax pmax FOM nmax pmax FOM

10×10 2 3 1 3 1 1 2 4 0.85
20×20 3 4 0.92 3 1 0.58 3 3 0.56

128×128 2 6 0.90 4 5 0.12 2 8 0.13
256×256 4 6 0.89 3 7 0.06 4 8 0.07
512×512 2 8 0.87 2 3 0.03 2 2 0.03

as more level-sets. Therefore, we recommend when using this algorithm to start with
nmax as 2 and pmax as 3.

4. Application
The proposed level-set adaptive median filter (LS-AM) and the adaptive median filter
(AM) are compared on natural images. We make use of the Labelled Faces in the
Wild (LFW) dataset (Huang et al. 2007). Edges play a significant role in the features
of faces. The fact that edges are important in images of faces is the reason why this
dataset was chosen. This dataset consists of 13,233 images each of size 250×250 of
faces collected from the internet in an unconstrained manner (Huang et al. 2008).
Three types of noise are randomly added to each of the images at two levels of intensity,
10% and 20% salt and pepper noise (impulsive noise), noise from a Gaussian (symmet-
rical noise) with µ = 0 and σ2=10 and 20 and noise from a Gumbel (asymmetrical
noise) with µ = 0 and β=10 and 20. The AM filter and proposed LS-AM filter are then
applied to these noise-contaminated images. An example of an image from the dataset
as well as an example of the noise added and the result of the AM and LS-AM can be
seen in Figures 11 - 13 in the Appendix.
The performance of the filters is compared by using the peak signal-to-noise ratio
(PSNR) (Huynh-Thu and Ghanbari 2008), defined as,

PSNR = 10 log10

(
2552

1
NM

∑
i

∑
j(oij − sij)2

)
, (2)

where oij is the pixel intensity of the original images (before the noise was added)
and sij is the pixel intensity of the smoothed images (after noise was added and the
filter applied) at pixel (i, j). The PSNR values are calculated before and after the
noisy image is smoothed. An increase (decrease) in the PSNR value indicates that
the number of pixels containing signal increased (decreased) relative to the number of
pixels containing noise.
In Table 3, various PSNR values are calculated for comparison. The noisy PSNR
average is the average PSNR value calculated on all images after being contaminated
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Table 3: The average PSNR values before and after smoothing the noisy images from
the LFW dataset with both the LS-AM and AM filters.

Noise type Noise level Noisy PSNR Smooth PSNR
Average Average

AM LS-AM
Gaussian N(0, 102) 28.38 30.55 31.19
Gaussian N(0, 202) 22.54 25.23 26.20
Gumbel Gum(0,10)(µ, β) 25.36 28.03 28.69
Gumbel Gum(0,20)(µ, β) 19.56 22.55 23.36

Salt & Pepper 10% 14.76 38.87 40.33
Salt & Pepper 20% 11.75 33.82 36.82

with noise. The smooth PSNR average is the average PSNR values calculated on the
images after being smoothed. If the average PSNR value increases from before to after
smoothing, it indicates that the number of pixels containing signal is increased relative
to the number of pixels containing noise.
Table 3 presents the results on the labelled faces in the wild dataset. Figure 5 - 7
shows the distributions of the PSNR simulation results for various smoothed images.
A higher PSNR value indicates better smoothing.
From Table 3 it can be seen that the proposed level-set adaptive median filter defini-
tively outperforms the adaptive median filter in all cases. From Figures 5 - 7, it is clear
that the level-set adaptive median filter outperforms the adaptive median filter in the
case of symmetrical noise (Gaussian noise) and non-symmetrical noise (Gumbel noise)
as well as impulsive noise (Salt and Pepper noise). The distributions of the PSNR
results of the level-set adaptive median filter (green and red lines) are concentrated
higher in general than that of the adaptive median filter (blue and yellow lines).
In Figures 8 - 10 the difference between the PSNR for each image is calculated and
plotted. Since the PSNR is the ratio of peak signal-to-noise, a higher value is desired.
Therefore, to compare the performance of the algorithms, we can subtract the PSNR
results on the same images for the two different algorithms from each other. If we
subtract the PSNR of the level-set adaptive median filter from that of the adaptive
median filter, the smaller the value would indicate the LS-AM is performing better
than the AM. If this difference is negative, it means the PSNR of the LS-AM filter
is higher than that of the AM since a higher PSNR value is an indication of better
performance. It can be seen that the distribution of the difference of the PSNR for
both levels of noise contamination where Gaussian and Gumbel noise was added is in
the negative values, which supports the above-mentioned statement that the level-set
adaptive median filter does perform better than the adaptive median filter.
Figures 11 - 13 provide a snapshot of an image evaluated in the experiment discussed
above. Figures 11 - 13 show some examples of the proposed algorithm applied to
images where noise was added. In each figure, the image (a) shows the original image.
Images (b) and (e) show the same image with various types of noise added at different
intensities (Figure 11 has Gumbel distributed noise added, Figure 12 has Gaussian
distributed noise added, and Figure 13 has Salt and Pepper noise added). Images (c)
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and (f) show the results of level-set adaptive median filter. Images (d) and (g) show the
result of the adaptive median filter on the various noises and intensities. For Figures
11 and Figure 12, it can be difficult to see the noise added to the image due to the type
of noise added to it. For Figure 13, we can see the noise and the resulting much easier
since it is impulsive noise that is added to the images.
Except for Figure 13, the results are difficult to see and compare visually, therefore we
make use of metrics to measure and compare the results. One of these metrics, PSNR,
is summarised in Table 3 where we can see that although the difference in the results of
the adaptive median filter(AM) and the level-sets adaptive median filter(LS-AM) are
small the LS-AM does perform better than the standard AM. When looking at Figure
13, we can see the differences visually a bit better, and we can see both the algorithms
smooth the noise quite well overall. However, when looking at the edges of the images
we can see that the AM struggles to smooth the noise that is observed at the edge of
the image whereas the LS-AM is able to smooth this noise as well.

5. Conclusion
The proposed level-set adaptive median filter takes advantage of the underlying struc-
ture and detail in the image by allowing for variable size as well as variable shape
windows which adapt to the image content, namely the level-sets. In doing so it per-
forms well in terms of edge preservation, an important characteristic of a filter, and
specifically better than the traditional adaptive median filter. The filter performs well
on impulsive, skewed, and symmetrical noise.
The filter examines all level-sets of size nmax and smaller. This, along with the fact
that the level-sets are investigated sequentially, can lead to computational intensity,
especially in larger images. The same shortcoming does however apply to the traditional
adaptive median filter.
An added benefit of the proposed filter is that similarly to the traditional adaptive me-
dian filter, the level-sets are investigated to determine whether it is noise-contaminated
or not. Therefore, if a set is determined to be noise and subsequently smoothed, the
reasoning as to why this happened can be explained.
In this paper, a level-set adaptive median filter to remove noise in images while preserv-
ing the edges in the image is proposed. This filter was compared to the adaptive median
filter. Three different types of noise were considered namely salt and pepper, Gaussian
and Gumbel noise. The performance of these filters were compared using the Pratt’s
Figure of Merit and Peak Signal-to-Noise Ratio. The proposed filter outperformed the
adaptive median filter for all types of noise albeit the difference are small for some of
the scenarios. Both the AM and LS-AM were coded in Python and optimised as far as
possible, but further optimisation may be possible in a low-level programming language
like C++.
Future work could investigate optimisation of pmax choice using total variation con-
vergence criteria or investigating the difference of total variation in the image is less
than some predefined value, δ. The filter proposed herein provides a useful addition to
the pool of robust median filters, with the added robustness of edge preservation and
adaptiveness to the image content.
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A. Proposition proof

Proposition 2. Consider and image f . Let L : A(Z2) → A(Z2) be the level-sets
adaptive median filter such that

fsmoothed = L(f)

The level-set adaptive median filter results in

δ(fsmoothed) ≤ δ(f),

γ(fsmoothed) ≥ γ(f)

and
β(fsmoothed) ≤ β(f)

where fsmoothed is the resulting image after applying the level-set adaptive median filter
to image f .

Proof. Consider and image f and the set V and f(B(n)
V ) being the set V with its n-order

neighbours. Let L : A(Z2) → A(Z2) be the level-sets adaptive median filter such that

fsmoothed = L(f).

From Algorithm 1 it is clear that there are four scenarios that can occur when the level-
set adaptive median filter is applied to image f with two possible outcomes, namely
fsmoothed(V ) = med(f(B(n)

V )) or fsmoothed(V ) = f(V ).
Now consider the four scenarios:
Scenario 1
med(f(B(n)

V )) = min(f(B(n)
V )) and f(V ) ̸= med(f(B(n)

V )).
This will occur if at least half of the values in f(B(n)

V ) are equal to the min(f(B(n)
V )),

resulting in, fsmoothed(V ) = med(f(B(n)
V )).

This will result in more values in set V being equal to one another, so that δ(fsmoothed) <
δ(f), γ(fsmoothed > γ(f) and β(fsmoothed < β(f).
Scenario 2
med(f(B(n)

V )) = max(f(B(n)
V )) and f(V ) ̸= med(f(B(n)

V )).
This will occur if at least half of the values in f(B(n)

V ) are equal to the max(f(B(n)
V )),

resulting in fsmoothed(V ) = med(f(B(n)
V )). This will result in more values in set V being

equal to one another, so that δ(fsmoothed) < δ(f), γ(fsmoothed) > γ(f) and β(fsmoothed) <
β(f).
Scenario 3
min(f(B(n)

V )) < med(f(B(n)
V )) < max(f(B(n)

V )) and either f(V ) = min(f(B(n)
V )) or

f(V ) = max(f(B(n)
V )).

Then we have fsmoothed(V ) = med(f(B(n)
V )); in other words, one of the extremes

was replaced with the median, so that δ(fsmoothed) < δ(f), γ(fsmoothed) > γ(f) and
β(fsmoothed) < β(f).
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Scenario 4
min(f(B(n)

V )) < med(f(B(n)
V )) < max(f(B(n)

V )) and min(f(B(n)
V )) < f(V ) < max(f(B(n)

V )).
In this scenario, the value of the set remains unchanged, so that δ(fsmoothed) = δ(f),
γ(fsmoothed) = γ(f) and β(fsmoothed) = β(f).
Therefore, we can conclude that when the level-set adaptive median filter is applied to
an image, δ(fsmoothed) ≤ δ(f), γ(fsmoothed) ≥ γ(f) and β(fsmoothed) ≤ β(f).
Thus this filter will at worst result in the same strength edge or result in a stronger
edge.
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B. Peak Signal to Noise Comparison

Figure 5: Distribution of simulation results for images with salt-and-pepper noise (red:
sevel-set AM, contamination = 10%; yellow:AM, contamination = 10%; green: level-set
AM, contamination = 20%; blue:AM, contamination = 20%).

Figure 6: Distribution of simulation results for images with noise from the Gaussian
distribution (red: level-set AM, std. dev=10; yellow:AM, std. dev=10; green: level-set
AM, std. dev=20; blue:AM, std. dev=20).
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Figure 7: Distribution of simulation results for images with noise from the Gumbel
distribution (red: level-set AM, std. dev=10; yellow:AM, std. dev=10; green: level-set
AM, std. dev=20; blue:AM, std. dev=20).

Figure 8: Distribution of image-specific difference between PSNR after smoothing im-
ages with salt-and-pepper noise (red: 10% contamination; blue: 20% contamination).
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Figure 9: Distribution of image-specific difference between PSNR after smoothing im-
ages with noise from the Gaussian distribution (red: std. dev=10; blue: std. dev=20).

Figure 10: Distribution of image-specific difference between PSNR after smoothing
images with noise from the Gumbel distribution (red: std. dev=10; blue: std. dev=20).
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C. Results

(a)

(b) (c) (d)

(e) (f) (g)

Figure 11: (a) The original image. (b) The images with Gumbel(0,10) noise. (c) Results
of level-set filter on images with Gumbel(0,10) noise. (d) Results of adaptive median
filter on images with Gumbel(0,10) noise. (e) The images with Gumbel(0,20) noise
added. (f) Results of level-set filter on images with Gumbel(0,20) noise. (g) Results of
adaptive median filter on images with Gumbel(0,20) noise.
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(a)

(b) (c) (d)

(e) (f) (g)

Figure 12: (a) The original image. (b) The images with Gaussian (0,10) noise. (c)
Results of level-set filter on images with Gaussian (0,10) noise. (d) Results of adaptive
median filter on images with Gaussian(0,10) noise. (e) The images with Gaussian(0,20)
noise added. (f) Results of level-set filter on images with Gaussian(0,20) noise. (g)
Results of adaptive median filter on images with Gaussian(0,20) noise.
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(a)

(b) (c) (d)

(e) (f) (g)

Figure 13: (a) The original image. (b) The images with 10% salt and pepper noise
added. (c) Results of level-set filter on images with 10% salt and pepper noise. (d)
Results of adaptive median filter on images with 10% salt and pepper noise. (e) The
images with 20% salt and pepper noise added. (f) Results of level-set filter on images
with 20% salt and pepper noise. (g) Results of adaptive median filter on images with
20% salt and pepper noise.
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