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Abstract

Tree-based regression and classification has become a standard tool in mod-
ern data science. Bayesian Additive Regression Trees (BART) has in particular
gained wide popularity due its flexibility in dealing with interactions and non-
linear effects. BART is a Bayesian tree-based machine learning method that
can be applied to both regression and classification problems and yields com-
petitive or superior results when compared to other predictive models. As a
Bayesian model, BART allows the practitioner to explore the uncertainty around
predictions through the posterior distribution. In this paper, we present new
visualisation techniques for exploring BART models. Our work is designed as a
visualisation add-on to some of the more popular BART R packages available,
namely BART, dbarts, and bartMachine. We construct conventional plots to
analyse a model’s performance and stability as well as create new tree-based
plots to analyse variable importance, interaction, and tree structure. We employ
Value Suppressing Uncertainty Palettes (VSUP) to construct heatmaps that dis-
play variable importance and interactions jointly using colour scale to represent
posterior uncertainty. Our approach is implemented in the R package bartMan
(BART Model ANalysis).

Keywords: Model visualisation, Bayesian Additive Regression Trees, posterior uncer-
tainty, variable importance, uncertainty visualisation.
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1. Introduction
Bayesian Additive Regression Trees (BART) is a non-parametric sum-of-trees-based
ensemble method developed by Chipman et al. (2010), who demonstrate its excellent
predictive performance. BART has been applied in diverse areas such as risk manage-
ment (Liu et al. 2015), proteomics (Hernández et al. 2015), and avalanche forecasting
(Blattenberger and Fowles 2014). The BART method has also been extended into
many areas, such as survival analysis (Sparapani et al. 2016) and causal inference (Hill
2011; Hahn et al. 2020). BART now enjoys widespread use due to its competitive per-
formance against other tree-based predictive models, such as random forest (Breiman
2001) and gradient boosted trees (Friedman 2000). BART models are used for making
predictions for both binary and continuous response variables and can be fit using a
variety of R packages, such as; BayesTree Chipman and McCulloch (2016), dbarts
(Dorie 2020), bartMachine (Kapelner and Bleich 2016), and BART (Sparapani et al.
2021). Implementations are also available in other programming languages, such as the
PyMC (Salvatier et al. 2016) or bartpy (Coltman 2020) in Python. In our work we focus
only on the dbarts, bartMachine, and BART packages as they are some of the more
popular BART fitting packages in R.

Visualisation techniques are crucial for black-box regression tree ensemble models, such
as random forests and gradient boosting machines, in addition to BART. These models,
while powerful and flexible, can suffer from interpretability issues, making it challeng-
ing for practitioners to understand the model results. Visualisation techniques help
address this limitation by providing a more in-depth look at the nature of predictions.
The previously mentioned R-packages provide only a limited set of visualisations, and
in certain cases, they require the user to create their own visualisations by extracting
relevant information from the fitted model, such as the tree structure (which indi-
cates tree stability and variability as the algorithm iteratively builds the posterior) and
measures of variable importance/interaction or model performance (which can assist in
comprehending the model fit). Our goal is to create visualisations and to streamline this
process for the three aforementioned R-language BART packages by creating a suite of
plots for and evaluating both the BART fit and the posterior distribution. In our work,
we present three novel visualisations for examining different aspects of a BART fit,
as well as a suite of visualisations for examining model performance. Various aspects
of a BART model can be assessed (e.g., variable importance and variable interaction)
by analysing the structure of the trees used in the model. However, our approach
goes beyond many standard machine learning visualisation techniques by allowing for
uncertainty in the posterior to propagate into the diagrams.

Examining the posterior can provide valuable insights into the uncertainty surrounding
the estimated importance of each variable, and similarly for the interaction scores of
variable pairs (for example, see Hahn et al. (2020) or Deng et al. (2022)). In linear
regression, models the standard tool for measuring variable importance is the regression
coefficient, which would always be presented with uncertainty to gauge the level of
confidence. In our work, we transfer the concept of variable importance with associated
uncertainty to complex machine learning models. In the Bayesian setting, the posterior
distribution of the variable importance/interaction values provide an assessment of the
associated uncertainty in that particular measure.
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One of the more challenging aspects of model visualisation is the depiction of uncer-
tainty. Due to the Bayesian inferential framework and full likelihood specification of
BART, the uncertainty around predictions is easy to quantify through examination of
the posterior distribution. This makes BART an ideal candidate for visualising uncer-
tainty. However, how we choose to represent this uncertainty may have an impact on
how the model is analysed and how our audience interprets the findings. This issue has
been well studied in areas that regularly deal with uncertainties in data (e.g., Pang et al.
1997; Brodlie et al. 2012). For example, error bars, confidence intervals, or quantile
intervals are common tools used to display uncertainty. However, these tools cannot
be universally applied to all situations where displaying the uncertainty is necessary,
such as in heatmaps or point clouds. When using point clouds to map data over many
iterations, 95% confidence ellipses can be used to encircle points. An example of this
can be seen in Section 3.3.
Methods for producing visualisations of importance and interaction for standard ma-
chine learning models can be found in Inglis et al. (2022). However, in Bayesian models,
it is important to include the uncertainties that arise as part of the calculation of a full
joint posterior distribution. Our first new display uses a method called Value Suppress-
ing Uncertainty Palettes (Correll et al. 2018), which allows for both the value and the
uncertainty to be displayed in a single plot. Traditional methods for displaying a value
and uncertainty simultaneously require a 2D bivariate map, conventionally displayed
as a square (for example, see Robertson and O’Callaghan 1986; Teuling et al. 2011).
However, due to the large colour-space of 2D bivariate maps, the ability to distinguish
between two different visual aspects can become challenging. VSUPs improve on this
method by using an arc to assign colours and blend together data values with high
uncertainty so that values become more distinguishable as the uncertainty decreases.
This reduction of the visual colour-space helps to both distinguish between low and high
uncertainty and promotes caution when the uncertainty is high (Correll et al. 2018).
Hastie et al. (2009) note that when two or more variables interact, their individual
effects on the response may be reduced by the presence of the other variable, poten-
tially making some variables appear less important than they really are (see; Inglis
et al. (2022) for an example). Our heatmap display provides the advantage of allowing
users to identify both the important individual predictors and the pairs of variables
that jointly affect the response whilst taking their associated uncertainty into account,
thereby mitigating any potential interpretation issues.
By examining the trees in a BART model we can learn about the stability and variability
of tree structures as the algorithm iterates to build the posterior. For our second
offering, we display new tree-based plots that focus attention on certain aspects of the
model fit in an intuitive way. We provide space-saving layouts as well as providing
various sorting/filtering methods and colouring options. When combined with ordering
techniques, we provide easy to use tools which aid in highlighting interesting aspects
of the model fit, such as variable importance or common interactions.
For our third display, we employ multidimensional scaling (MDS) plots, which are a
common method for graphically displaying relationships between objects in multidi-
mensional space (Torgerson 1952). Objects that are similar appear closer on the graph,
whereas objects objects that are less similar are farther away. MDS can be used to
reduce the number of dimensions in high-dimensional data as well as to interpret dis-
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similarities as graph distances. We construct an MDS display of a BART fit and extend
it to display the uncertainty. For each iteration of the BART fit, we perform MDS on
proximities and rotate each plot to match a particular target iteration. From this we
get a point cloud, where a confidence ellipse is used to encircle each observation. With
this display the analyst can explore, for example, outliers that may require further
investigation.

Aside from our three main novel visualisations, we include a selection of standard
diagnostic plots, such as trace, residual, and overall model fit plots, that will quickly
assess aspects such as convergence and model behaviour. Each of our plots can be run
on any of the aforementioned R-packages, despite their differing formats and function
arguments. While we make what we believe to be good default choices for the plots
we produce, we provide the option to adjust many of the settings. Each aspect of
the design of our plots is given careful consideration; we focus on efficient layouts,
which includes both clustering and filtering, colour choice, and effectively displaying
uncertainty. Our new displays are appropriate for regression and classification fits
and are designed to work with the three aforementioned BART packages but, as our
approach makes use of individual R methods for each BART model fitting package,
our proposal could readily be extended to incorporate other BART packages. Our
implementation is available as the R package bartMan (BART Model ANalysis) which
is found at https://github.com/AlanInglis/bartMan.

The outline of this paper is as follows: in Section 2, we describe the formulation of
a BART model and provide a brief discussion on how to access variable importance
and variable interactions. In Section 3, we describe our new visualisations for assess-
ing variable importance and variable interactions with uncertainty, tree-based analysis,
outlier identification with multidimensional scaling, and a selection of enhanced model
diagnostic plots on a simple example. In Section 4, we study BART’s variable impor-
tance and variable interaction methods compared to a model agnostic approach. In
Section 5, we demonstrate our new methods on a case study. Finally, in Section 6, we
conclude by discussing potential advantages and disadvantages of our approach, as well
as potential avenues for further research.

2. Bayesian Additive Regression Trees

2.1. An Introduction to Bayesian Additive Regression Trees

In this section, we provide a brief overview of the BART model to aid the reader in
understanding our later visualisations. Those looking for a more complete description
should see Chipman et al. (2010). BART is a Bayesian non-parametric model based
on an ensemble of trees that can be used for predicting continuous and multi-class
responses. Unlike regression models where a linear structure is pre-specified, BART
assumes a flexible functional form and so can automatically uncover main and interac-
tion effects, (see Equation 1). Given a continuous response variable yi with associated

https://github.com/AlanInglis/bartMan
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predictors xi, the BART model, with m trees is expressed as:

yi =
m∑

j=1
g(xi, Tj, Mj) + ϵi, (1)

where ϵi ∼ N(0, σ2) and g(xi, Tj, Mj) = µjℓ is a function that assigns a predicted
value for the observations falling into terminal node ℓ of tree j. Tj represents the
structure/topology of tree j including the split variables and the values associated with
the splits Mj = (µj1, · · · , µjbj

) represent the set of predicted values at the bj terminal
nodes of the trees. In Chipman et al. (2010), the authors recommend through personal
experience a value of m = 200, though they mention that the number of trees can also
be chosen via cross-validation.
The tree structure T is composed of binary splitting rules of the form [xj ≤ c], where
xj is the variable on which to split and c is the split value. Both quantities are ran-
domly selected and updated as part of the model fitting process, which changes slightly
between implementations. The trees are updated at each iteration in a Markov chain
Monte Carlo approach where each tree structure is modified by either growing, pruning,
changing, or swapping nodes. Growing a tree means that a terminal node is randomly
chosen and two new terminal nodes are created, while pruning collapses a pair of ter-
minal nodes to their parent. A splitting rule can also be changed to a different rule, or
swapped for another splitting rule in the same tree. In the grow and change moves, a
new splitting rule is required, and is proposed by uniformly sampling a splitting vari-
able and a split value though the exact generation of these rules is implementation
dependent.
Figure 1 shows an example of the tree structure modifications in action. In Figure 1, a
tree, T k

1 , is generated from BART in 4 different instances, where k = 1, 2, 3, 4 indicates
the iteration number in which the tree is updated. In the full BART model, multiple
trees are estimated and the predictions are created from the sum of the µ values across
the trees. The tree is displayed as an icicle plot (Kruskal and Landwehr 1983) with the
splitting rules (that is, covariates and split points) shown as coloured rectangles, and
the terminal nodes µjℓ are shown as grey rectangles. Icicle plots were first introduced by
Kruskal and Landwehr (1983) as a way to display hierarchical data in a space efficient
manner. We use icicle plots to display our tree plots in later sections.
In panel (a) of Figure 1 at iteration 1, observations that satisfy the splitting criterion
go left and tree T

(1)
1 has two internal nodes and three terminal nodes. The grow move

is shown going from panel (a) to panel (b), that is T
(1)
1 to T

(2)
1 . An example prune

move would correspond to T
(2)
1 reverting to T

(1)
1 . In panel (c) we can see the change

move as the splitting rule that defines µ13 and µ14 in T
(2)
1 is changed. Finally, in (d),

the swap move can be seen when comparing the internal nodes of T
(3)
1 and T

(4)
1 .

As a Bayesian model, BART adopts a set of prior distributions for the tree structure,
terminal node parameters, and residual variance. Posterior sampling is based on a
Metropolis-within-Gibbs MCMC structure where the trees are sequentially updated
through partial residuals. For one MCMC iteration, each tree in the ensemble is modi-
fied and then compared to its previous version via a Metropolis-Hastings update. The
update involves a marginalised likelihood and the tree prior. Here, the likelihood is
marginalised in order to avoid reversible jump MCMC algorithms (Green 1995), which
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x4 ≤ 1

x1 ≤ 0.5 µ13

µ11 µ12

(a) T
(1)
1

x4 ≤ 1

x1 ≤ 0.5 x2 ≤ 0.6

µ11 µ12 µ13 µ14

(b) T
(2)
1

x4 ≤ 1

x1 ≤ 0.5 x6 ≤ 0.7

µ11 µ12 µ13 µ14

(c) T
(3)
1

x1 ≤ 0.5

x4 ≤ 1 x6 ≤ 0.7

µ11 µ12 µ13 µ14

(d) T
(4)
1

Figure 1: An example of a tree, T k
1 , generated from BART over k = 1, 2, 3, 4 iterations.

displayed as an icicle plot with the splitting rules (that is, covariates and split points) shown
as coloured rectangles and the terminal nodes µjℓ are shown as grey rectangles. In panel (a),
tree T

(1)
1 has two internal nodes and three terminal nodes. Moving from panel (a) to (b)

shows the grow move for the tree. Reverting from (b) back to (a) corresponds to a prune
move. Panel (c) shows the change move as the splitting rule that defines µ13 and µ14 in T

(2)
1

is changed. Finally, in (d) the swap move can be seen when comparing the internal nodes of
T

(3)
1 and T

(4)
1 .

in turn simplifies computation. We highlight that marginal likelihoods, in general, are
not analytically easy to obtain, though in BART it is possible due to the use of conju-
gate priors; see Section 3.1 of Chipman et al. (2010) for further details on the BART
full conditionals.
We have described the BART model for a univariate and continuous response variable,
however as previously outlined there are BART extensions for many other modelling
problems. Our visualisation techniques could in future be extended to these settings.

2.2. Variable Importance and Variable Interaction for BART
Variable importance measures are common and widely used in general machine learning
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approaches, for examples see Grömping (2015) or Wei et al. (2015). Variable impor-
tance is a measure of a single variable’s impact on the response and is used to provide
insights into model behaviour. Multiple methods exist for evaluating variable impor-
tance, depending on the model; for a comprehensive review of different variable impor-
tance techniques see Wei et al. (2015). Measures of variable importance are beneficial
for BART models as they give users a more in-depth comprehension of the model’s
behaviour, allowing them to make more informed decisions and improve the model’s
performance. Chipman et al. (2010) propose a method called the inclusion proportion
to evaluate the variable importance in a BART model from the posterior samples of the
tree structures. Their measure of variable importance first calculates for each iteration
the proportion of times a variable is used to split nodes considering all m trees, and
then averages these proportions across all iterations.
More formally, let K be the number of posterior samples obtained from a BART model.
Let crk be the number of splitting rules using the rth predictor as a split variable
in the kth posterior sample of the trees’ structure across m trees. Additionally, let
c.k = ∑p

r=1 crk represent the total number of splitting rules found in the kth posterior
sample across the total p variables. Therefore, zrk = crk/c.k is the proportion of splitting
rules for the rth variable, and the average use per splitting rule is given by:

VImpr = 1
K

K∑
k=1

zrk (2)

As noted by Chipman et al. (2010), the value of m can be used to assist with variable
selection. A small value of m, for example, will restrict the number of variables that can
appear in the trees, and so guide the user as to which are most important, potentially
at the expense of a superior model fit. By contrast, as m increases, unimportant or pure
noise variables have a greater chance of being included in the trees. This issue occurs
because, when m is large, the contribution of each tree to the likelihood is smaller and
less important variables can be included by chance in the MCMC updates.
Variable interaction is generally considered as when a pair (or more) of variables jointly
impact on the response. In our work, we focus on bivariate interactions only. Note that
if the structure of Tj (i.e., a single tree) depends on two variables or more, then Tj

may model an interaction, see for example, panel (a) of Figure 1. Following from
Chipman et al. (2013), Kapelner and Bleich (2016) suggested a measure of interaction
obtained by observing successive splitting rules in each tree. A similar method has been
proposed for random forests, which uses the concept of minimal depth (Ishwaran et al.
2010) to assess both importance and interaction strength by examining the position
of a variable within the trees (which is implemented in the randomForestExplainer
package (Paluszynska et al. 2020) in R). Let crqk be the number of splitting rules
using predictors r and q successively (in either order) in the kth posterior sample.
Additionally, let c..k = ∑p

r=1
∑p

q=1 crqk represent the total number of successive splitting
rules found in the kth posterior sample. We follow the convention of Kapelner and
Bleich (2016) and we treat the order of successive splits as not important and we sum
the r, q counts with the q, r counts. While in random forests the splitting rules are
chosen so that they are the best given a loss function, the learning process in the BART
model takes place through a stochastic search where the splitting rules are randomly
proposed. That is, they are not optimised to be the best, which allows the order of the



8 Visualisations for Bayesian Additive Regression Trees

splits to be ignored. Therefore, the proportion zrqk = crqk/c..k, provides an estimate of
the interaction between variables r and q:

VIntrq = 1
K

K∑
k=1

zrqk. (3)

As this method follows a similar technique to evaluating the inclusion proportion, the
same pitfalls noted by Chipman et al. (2010) apply, namely that the prior distribution
may favour trees containing successive predictor variables where there is no true inter-
action present if the number of trees is large. For a comparison of both the variable
importance and variable interaction methods against a model agnostic approach for
evaluating these metrics, see Section 4.
It should be noted that if any of the variables used to build the BART model are
categorical, the aforementioned BART packages replace the categorical variables with
d dummy variables, where d is the number of factor levels. For some of our plots,
the inclusion proportions for variable importance and interaction are then adjusted by
aggregating over factor levels. This provides a complete picture of the importance of a
factor, rather than that associated with individual factor levels.
Since both the VImp and VInt values are calculated from the full posterior, it is trivial
to compute an uncertainty associated with their measurement, simply by storing the
importance and interaction calculations per iteration. These can be summarised by
the usual means by which posterior distributions are analysed. We will use uncertainty
metrics obtained from these distributions in our variable importance and interaction
displays of Section 3. In this work we focus on using the structure of trees to assess vari-
able importance and interactions, but other agnostic methods, such as SHAP (Shapley
1997) or those described in Section 4, can be used. For an example of using Shapley
values to measure importance in BART models see Schwartz et al. (2022).

3. New Visualisations for BART
To illustrate our new visualisations we use a subset of the iris data (Fisher 1936) where
the response is binary and made up of two species (that is, setosa and versicolor). We
then fit a BART model to the data using bartMachine, using the default setting of
1000 iterations with a burn-in of 250. For simplicity of exposition we set the number
of trees to be 20.
We introduce the following visualisations: improved plots of variable importance and
interaction which include the uncertainty induced by the posterior distribution of trees;
plots of the tree structures which show the splitting variables, the split distribution, and
the terminal node values; the ability to identify outlying and influential observations
through the terminal node proximity matrix and multi-dimensional scaling; and a set
of enhanced model diagnostics for identifying convergence and performance issues.

3.1. Variable Importance and Interaction with Uncertainty
In this section, we present visualisations of the variable importance methods described
in Section 2.2. In Figure 2, we show the median of the inclusion proportion as a black
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point, with the variables ordered from the largest median importance measure (at the
top) and descending. In this case, the 25% to 75% quantile interval extending from each
point is displayed as a grey bar. We can see that Petal.Width is the most important
variable and that Petal.Length and Sepal.Length have similar inclusion proportions.
Sepal.Length importance has a lower degree of uncertainty, as indicated by the relatively
small quantile interval, whereas the Petal.Length importance has a larger quantile
interval associated with it, and therefore its importance measure should be viewed
with a level of caution.

Sepal.Width

Sepal.Length

Petal.Length

Petal.Width

0.1 0.2 0.3 0.4 0.5

Importance

Figure 2: Inclusion proportions for the iris data are shown with the 25% to 75% quantile in-
terval extending from the points. Here Petal.Width is ranked as the most important variable.

In Inglis et al. (2022), the authors propose using a heatmap to display both importance
and interactions simultaneously, where the importance values are on the diagonal and
interaction values on the off-diagonal. The advantage of such a display is that it allows
one to easily identify which variables are relevant as separate predictors while also seeing
which variable pairs have high interaction. This method, coupled with the seriation
technique described by Inglis et al. (2022), brings predictors with high importance and
interaction to the top-left of the heatmap and less relevant predictors to the bottom-
right.
Here we adapt the heatmap displays of importance and interactions to include the
uncertainty using a VSUP. The colours for the VSUP heatmap were carefully chosen to
be distinguishable, colour-blind friendly, and to aid in highlighting high values, while
still making the uncertainty prominent. To achieve this, we follow the advice of Strode
et al. (2019), who build upon the work of Trumbo (1981), and aim to highlight and
focus the reader’s attention on the interesting data.
Figure 3 presents a comparison of heatmaps showing the importance and interactions
jointly with and without uncertainty. In both heatmaps, the variable importance is
displayed on the diagonal and the interactions on the off-diagonal. In (a), we can
see that Petal.Width is the most important variable when predicting Species. There
also appears to be a strong interaction between Petal.Width and Sepal.Length. In
(b), the same values are shown but with a measure of uncertainty included in this
case, the coefficient of variation (CV). Other error metrics such as standard deviation
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(a)

Petal.Width Sepal.Length Petal.Length Sepal.Width

Sepal.Width

Petal.Length

Sepal.Length

Petal.Width
Vint

0
0.0620.1250.188

0.25

C
V

6

4.5

3

1.5

0

Vimp

0
0.1120.2250.338

0.45

C
V

0.7

0.55

0.4

0.25

0.1

(b)

Figure 3: In (a), the importance values are on the diagonal and interaction values on the
off-diagonal. Petal.Width is the most important variable and there is a strong interaction
between Petal.Width and Sepal.Length. In (b), the same values values are shown but with
the coefficient of variation included by use of a VSUP. Both the importance measure of
Petal.Width, and the interaction measure between Petal.Width and Sepal.Length have low
coefficient of variation.

can be applied, though in the case of using proportions, larger values tend to have
greater uncertainty and so our preference is for the CV. In both (a) and (b), the
same method is used to obtain the importance and interaction scores, resulting in
comparable scales. Comparing the two plots we observe that in (b), the most important
variable, Petal.Width, has a small variation relative to its mean. The Petal.Width and
Sepal.Length interaction value has a low coefficient of variation and is consequently
highlighted in (b), whereas Petal.Width and Sepal.Width have a low interaction score
with relatively high variation.

3.2. Tree-Based Plots
In this section we examine more closely the structure of the decision trees created when
building a BART model. Examining the tree structure may yield information on the
stability and variability of the tree structures as the algorithm iterates to create the
posterior. By sorting and colouring the trees appropriately, we can identify important
variables and common interactions between variables for a given iteration. Alternatively
we can look at how a single tree evolves through the iteration to explore the fitting
algorithm’s stability. In Figure 4, we show how a single selected tree changes over all
1000 post burn-in iterations. We use an icicle plot to display the trees. As noted by
Barlow and Neville (2001), icicle plots are preferred by users when compared to other
methods to display decision trees and use space more efficiently. Additionally, the
number of observations within each decision tree node is represented in icicle plots by
scaling the node size accordingly. In Figure 4, each parent node is coloured according to
the variable with the terminal nodes all coloured a dark grey. A stump is represented
by a solid grey square, although stumps can be removed from the plots if desired
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Variable

Petal.Length

Petal.Width

Sepal.Length

Sepal.Width

Stump/Leaf

Figure 4: A single tree over 1000 iterations. The coloured bars indicate which variable is
used for the split at that point. Grey boxes indicate stumps or terminal nodes. The vertical
black lines in the terminal nodes indicate the proportion of the data being split into the left
or right terminal node.

(More options to colour the nodes by certain parameters are shown in later plots in
this section.) With this display we see how a tree evolves over iterations. Here we see
the prevalence of Petal.Width as a splitting variable (lime green rectangles) once again
indicating the importance of this predictor.
In our tree displays, it is also useful to view different aspects or metrics. In Figure
5, we explore some of these aspects by displaying all the trees in a selected iteration
(in this case, we chose the iteration with lowest residual standard deviation). We
consider variations which colour terminal nodes and stumps by the mean response
(panel (a)), colour them by the terminal node parameter value (panel (b)), sort the
trees by structure starting with the most common tree and descending to the least
common tree found for easy identification of the most important splits (panel (c)), or
sort the trees by depth (panel (d)). As the µ values in (b) are centred around zero,
we use a single-hue, colourblind friendly, diverging colour palette to display the values.
For comparison, we use the same palette to represent the mean response values in (a).
Different interesting findings are seen in the four panels. Panel (b) indicates that tree
12 (column two, row three) has a much greater influence on the overall predictions
than the others, which seems surprising given the nature of the shrinkage prior used
in BART which aims to shrink the terminal node parameters towards zero. From (c),
we observe that the most common tree structure in this iteration is Petal.Width as the
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(a) (b)

(c) (d)

Figure 5: All trees in a selected iteration. In (a) the terminal nodes and stumps are coloured
by the mean response. In (b) the terminal nodes and stumps are coloured by the predicted
value µ. In (c) we sort the trees by structure starting with the most common tree and
descending to the least common tree shape and in (d) we sort the trees by tree depth.

root with a single binary split. The second most common is Petal.Length as the root
with a single binary split. In (d), it is quickly identified that the vast majority of trees
in this iteration are split only once this is representative of the tree-depth found over
the entire ensemble while using the default parameter settings when fitting the model
on this data).
When the number of variables or trees is large it can become harder to identify inter-
esting features. We provide a plot that can be used to highlight interesting features by
accentuating selected variables by colouring them brightly while uniformly colouring
the remaining variables a light grey. When coupled with the sorting shown previously
in Figure 5, we have found that this more clearly identifies relationships of interest. As
the iris data has very few predictors, we omit this plot here but an example of it can
be seen the larger case study example of Figure 14 in Section 5.
Finally, as an alternative to the sorting of the tree structures, seen in Figure 5 (c),
we provide a bar plot summarising the tree structures. Figure 6 shows a barplot of
the frequency of the tree types over all iterations, filtered to show the top 10 most
frequent trees, where the legend indicates the tree structure with the node sizes equally
proportioned. To count the tree structures, we use the same sorting algorithm as Figure
5 (c). This seems most useful when summarising a large number of trees (though again
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these plots can also be created for a single tree across iterations or to display all trees
in a single iteration). We can see that the most common tree type over all iterations is
the tree that has a single binary split on Petal.Width, with the second most common
being the tree that has a single binary split on Petal.Length. Additionally, we can see
that Petal.Width appears in several of the other top 10 most common tree structures.
This is in agreement with the inclusion proportion variable importance plot of Figure 2
which tells us that Petal.Width is used as a splitting rule most often. In addition, most
of the trees with more than one split involve Petal.Width, indicating that this variable
impacts on the response in a more complex way and interacts with other predictors,
verifying the findings of Figure 3.

0 2000 4000 6000

Count

Variable Petal.Length Petal.Width Sepal.Length Sepal.Width Stump

Figure 6: Bar plot of the top 10 most frequent tree types over all iterations. Trees with a
single binary split on Petal.Width occur the most often.

As the structure of BART trees can be controlled to favour shallow trees, this mitigates
very deep trees from being created. However, as the trees in Figure 4 are plotted on
a grid, if deep trees do exist, the visualisation will scale the space automatically. This
may result in a visualisation with a lot of white space. In this situation, selecting
a subset of trees or using the summary plots (as shown in Figure 5 and 6) may be
preferable.

3.3. Outlier Identification with Multidimensional Scaling
Proximity matrices combined with multidimensional scaling (MDS) are commonly used
in random forests to identify outlying observations (Breiman 2001). Both proximites
and MDS have been shown to be useful tools and can be applied to wide range of
data types, including genomic and ecological data (for example, see Englund and
Verikas 2012; Cutler et al. 2007). However, to our knowledge, these methods have
not yet been implemented for a BART model. When two observations lie in the same
terminal node repeatedly they can be said to be similar, and so an N × N proximity
matrix is obtained by accumulating the number of times at which this occurs for each
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pair of observations, and subsequently divided by the total number of trees. A higher
value indicates that two observations are more similar. The proximity matrix is then
visualised using classical MDS (henceforth MDS) to plot their relationship in a lower
dimensional projection.
In BART there is a proximity matrix for every iteration and thus a posterior distribution
of proximity matrices. While trivial to then apply MDS to each matrix, we introduce
a rotational constraint so that we can similarly obtain a posterior distribution of each
observation in the lower dimensional space. We first choose a target iteration (we
use the iteration with lowest residual standard deviation) and apply MDS. For each
subsequent iteration we rotate the MDS solution matrix to match this target as closely
as possible using Procrustes’ method. We end up with a point for each observation
per iteration per MDS dimension. We then group the observations by the mean of
each group and produce a scatterplot, where each point represents the centroid of the
location of each observation across all the MDS solutions. This allows for an easier to
read estimate of potentially outlying data points. We extend this further by displaying
the 95% confidence ellipses around each observation’s posterior location in the reduced
space. Since these are often overlapping we have created an interactive version that
highlights an observation’s ellipse when hovering the mouse pointer above the ellipse
(Figure 7 shows a screenshot of this interaction in use). The observation number is also
displayed during this action.

Figure 7: Interactive MDS plot of the iris data where the points are coloured by class (in this
case, either Species). Each 95% confidence ellipse corresponds to each observation’s posterior
location. When hovering the mouse pointer over an ellipse, the ellipse is highlighted and the
observation is displayed.

In Figure 7, each point represents the centroid of the location of each observation
across all the MDS solutions and are coloured according to their class (in this case,
either Species). We can see that most of the variability is, unsurprisingly, in the first-
dimension, and while some points have quite different posterior distributions, the uncer-
tainty on many of them is large. Observation 44 appears to have a moderate uncertainty
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and is separated by some distance from the other observations in that class, indicating
that this observation may be an outlier. This is in agreement with previous studies
(such as Acuna and Rodriguez (2004)), which identify this observation as an outlier.

3.4. Enhanced BART model diagnostics
In this section, we examine some of the more common issues a researcher may face
when running a BART model. These include checking for convergence, the stability of
the trees, the efficiency of the algorithm, and the predictive performance of the model.
In our experience, most popular BART R packages are limited in scope for creating
informative model visualisations (with the possible exception of bartMachine which
features versions of Figures 8 and 9). Our goal in these plots is to provide a convenient
and useful summary of the model’s characteristics which is invariant to the choice of
package. A useful side effect of these plots is the ability to compare BART fits from
different BART R packages. In the following section we show a selection of diagnostic
plots using both the bartMachine and dbarts packages to build our models. Both
models have the same hyperparameters of 1000 iterations with a burn-in of 250 and 20
trees. We use the same two-species subset of the iris data as before.

Acceptance Rate of Trees
As discussed in Section 2, BART uses a Metropolis-Hastings algorithm to determine
the type of tree structure accepted at each tree in each MCMC iteration. The trees are
individually modified by either a grow, prune, change, or swap step and compared to its
previous version by calculating the acceptance ratio. The acceptance rate is therefore
measured as the percentage of accepted proposed trees across the iterations.
Figure 8 shows the post burn-in percentage acceptance rate across 1000 iterations for
both BART models, where each point represents a single iteration. A regression line is
shown to indicate the changes in acceptance rate across iterations and to identify the
mean rate. Both plots are forced to display the same vertical axis range. Clearly there
is a higher acceptance rate (approx 20%) in the dbarts fit. None of the iterations in
dbarts have zero trees accepted, while this occurs commonly for bartMachine. This
can also be seen in Figure 4 where there are runs of identical trees, indicating that no
new trees were accepted during this period.

Tree Depth, Node Number, and Split Distribution
As with the acceptance rate, the average tree depth and average number of all nodes per
iteration can give an insight into the fit’s stability. Both of these statistics play a key
role in the branching process prior distribution used in all the versions of BART and are
useful for determining both the behaviour of the posterior distribution in comparison
to the prior, and also to check convergence. Figure 9 displays these two metrics for
both BART fits. A locally estimated scatterplot smoothing (LOESS) regression line is
shown to indicate the changes in both the average tree depth and the average number of
nodes across iterations. From Figure 9, we can see that both the post burn-in average
tree depth and the average number of nodes per iteration is much more stable in the
dbarts fit. However, although we use the default number of iterations suggested by the
bartMachine package, increasing this may improve stability.
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(a) Acceptance rate per iteration using
bartMachine

0.00

0.25

0.50

0.75

1.00

0 250 500 750 1000

Iteration

%
 A

c
c
e

p
te

n
c
e

 R
a

te
 o

f 
T

re
e

s

(b) Acceptance rate per iteration using
dbarts

Figure 8: Post burn-in acceptance rate of trees per iteration for a bartMachine and dbarts
fit in (a) and (b), respectively. A black regression line is shown to indicate the changes in
acceptance rate across iterations and to identify the mean rate. We can see that the dbarts
fit has a higher acceptance rate than the bartMachine fit.
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(a) Average tree depth from bartMachine.
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(b) Average tree depth from dbarts.
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(c) Average number of nodes from bartMachine.
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(d) Average number of nodes from dbarts.

Figure 9: In the top row we show the post burn-in average tree depth per iteration for a
bartMachine and dbarts fit in (a) and (b), respectively. In the bottom row we show the post
burn-in average number of nodes per iteration for a bartMachine and dbarts fit in (c) and
(d), respectively. A black LOESS regression curve is shown to indicate the changes in both
the average tree depth and number of nodes across iterations.

Figure 10 shows the densities of split values over all post burn-in iterations for each vari-
able for both models (in green), combined with the densities of the predictor variables
(labelled “data”, in red). This plot appears to be new; we have not found anything
similar in any of the existing packages. We can see that the split value density for
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Sepal.Width in the bartMachine fit, in (a), has large peak at around 3.2 and the
bartMachine fit’s split values have more modes. In (a), the split density somewhat
resembles the data density for some of the variables in the bartMachine fit, though
it should be noted that in general, there is no specific expectation that the density of
splitting values should resemble the density of the data. However, when the number
of trees is large there is a potential for noise or unimportant predictors to be included
in the tree structure in which case we would expect random splits in the trees which
correspond to the predictor data distribution.
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(a) Split value distribution obtained from a
bartMachine fit.
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(b) Split value distribution obtained from a
dbarts fit.

Figure 10: Split values densities (in green) over all iterations for each variable overlayed on
the densities of the predictors (in red) for a bartMachine fit in (a) and a dbarts fit in (b).

In addition to the previous plots, we provide a panel of basic summary diagnostics
of the model fit which can be used for both classification and regression models. For
the former, we display metrics such as precision-recall and ROC (with uncertainties
included), a confusion matrix, fitted value plots, and a histogram of predicted proba-
bilities. For the latter, we show a trace plot of the model variance, a Q-Q plot, and an
array of model performance plots and residual plots over all iterations. In the interest
of space, we exclude the summary diagnostics for the classification model and display
the summary diagnostic plots for the regression model only, as seen in Section 5.

4. Comparing Variable Importance and
Interaction Methods for BART

In this section we provide an examination of the variable inclusion proportion methods
for evaluating importance and interactions in a BART model (as outlined in Section
2.2) by comparing the raw inclusion proportions with and without uncertainty included
against alternative methods used to assess the importance and interactions of variables.
These alternative methods do not allow for the inclusion of uncertainty in the metrics
they create.
As previously discussed, BART models obtain a measure of importance by observing
the proportion of times a variable is used as a split variable across all trees, averaged
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over all iterations. The more times a variable is used as a split variable, the more
important that variable is deemed to be. Similarly, a measure of interaction can be
obtained in a BART model by observing the proportion of successive splits over all
trees, averaged over all iterations. However, as noted by Chipman et al. (2010), this
method of assessing importance (and interactions) comes with certain pitfalls. Namely,
if the number of trees is large, then non-important predictor variables can be preferred
as the likelihood is relatively flat and so the tree prior dominates. This can lead to
to spurious importance and interactions scores for variables that, in reality, have little
influence on the response. This effect can be mitigated somewhat by the inclusion
of uncertainty to evaluate the reliability of the measured importance or interaction
scores. Additionally, Chipman et al. (2010) state that decreasing the number of trees
when building the model diminishes this effect as less important variables get swapped
out of the trees for more informative variables.
To compare the usefulness of a BART model’s importance and interactions, we com-
pare the BART methodology, with and without uncertainty included, against a model
agnostic approach to assess the importance and interactions. To measure the agnostic
variable importance we use a permutation method. Permutation importance was first
introduced by Breiman (2001) and works by calculating the change in the model’s pre-
dictive performance after a variable has been randomly permuted. That is, a model
score is initially recorded, then a single variable is randomly permuted (this is repeated
for each variable) and the model score is recalculated on the new dataset. The differ-
ence between the baseline model’s performance and the permuted model’s performance
is taken as the variable importance score. To measure the agnostic interactions we use
Friedman’s H-statistic (or H-index) (Friedman and Popescu 2008). For this method
the partial dependence for a pair of variables is compared to their marginal effects.
Friedman’s H-statistic is defined as:

H2
jk =

∑n
i=1[fjk(xij, xik) − fj(xij) − fk(xik)]2∑n

i=1 f 2
jk(xij, xik) (4)

where fjk(xj, xk) represents the two-way partial dependence function of both variables,
fj(xj) and fk(xk) represent the partial dependence functions of the single variables, and
all partial dependence functions are mean-centered. The obtained measure is scaled in
the range (0,1). Inglis et al. (2022) note, however, that variations in the numerator
can lead to spuriously high H-values when the denominator in (4) is small because the
partial dependence function for the variables j and k is flat in this case. To combat this,
the square-root of the average un-normalized (numerator only) version of Friedman’s
H2 for calculating pairwise interactions is suggested:

Hjk =
√√√√ 1

n

n∑
i=1

[fjk(xij, xik) − fj(xij) − fk(xik)]2 (5)

To explore and compare the variable importance and variable interactions, we generate
data using the Friedman benchmark equation (Friedman 1991):

y = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 + ϵ

where xj ∼ U(0, 1), j = 1, 2, . . . , 10; ϵ ∼ N(0, 1).
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We simulate 250 observations and fit a BART model using the dbarts R package, using
the default number of iterations (1000) and burn-in (100). We then set the number
of trees to be 20, 100, and 200 to evaluate how well the BART model can capture
the importance and interactions. There are five important variables and an interaction
between x1 and x2 in Equation 6, and five additional predictors x6, x7, . . . x10 unrelated
to the response.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

x10

x9

x8

x7

x6

x5

x4

x3

x2

x1

0.0

0.1

0.2

0.3

0.4
Vint

0

1

2

3

Vimp

(a) Agnostic Method
with 20 trees.
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(b) Inclusion proportion method
with 20 trees.

(c) Inclusion proportion with
uncertainty with 20 trees.
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(d) Agnostic Method
with 100 trees.
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(e) Inclusion proportion method
with 100 trees.

(f) Inclusion proportion with
uncertainty with 100 trees.
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(g) Agnostic Method
with 200 trees.
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(h) Inclusion proportion method
with 200 trees.
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Figure 11: Comparison of different methods to determine importance and interactions in a
BART model with 20, 100, and 200 trees in the first, second, and third rows respectively.

In the first column of Figure 11 (panels (a), (d), and (g)), we use the alternative
agnostic permutation approach for measuring importance and Friedman’s H-statistic
to obtain the interaction measures. In the second column (panels (b), (e), and (h)), we
calculate the standard BART model variable inclusion proportion for the importance
and interactions. Finally, in the third column (panels (c), (f), and (i)), we display the
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same information as in the second column but with uncertainty included, in this case
via the coefficient of variation. For each row of Figure 11 we set the number of trees
to 20, 100, and 200.
Using the alternative agnostic method (first column) the five important variables are
identified with x4 being ranked as the most important and the interaction between
x1 and x2 is prominent. This remains consistent, regardless of the number of trees
used when building the model. When using the inclusion proportions (second column)
the interaction between x1 and x2 is strong and individually x1 and x2 are the most
important. In (b) the five important variables are identified. However, as the number
of trees increases (see (e) and (h)) variables x6, . . . , x10 are incorrectly designated as
important. Spurious values are measured for both importance and interactions when
increasing the number of trees. Examining the VSUPs (third column) the interaction
between x1 and x2 is prominent and the five important variables are again evident.
Increasing the number of trees has the effect of increasing the relative uncertainty for
the spurious values and therefore, highlights the variables of interest. For example, if
we compare panels (e) and (f) each based on 100 trees, we see that most of the spurious
importance and interaction values in (e) have a moderate degree of relative uncertainty
in (f).
It is worth noting that for 20, 100, or 200 trees, although the agnostic method had
relatively consistent results, this method may not be computationally practical as it
is a slow calculation which gets compounded by the increase in trees. Additionally,
the agnostic approach would have be repeated multiple times to allow a measure of
uncertainty to be obtained. Conversely, calculating the inclusion proportion is quick.
For example, calculating the inclusion proportion for importance and interactions for
when the number of trees is 20 (as in panels (b) and (c)) took approximately 1.5 seconds
on a MacBook Pro 2.3 GHz Dual-Core Intel Core i5 with 8GB of RAM. Whereas, using
the agnostic approach to measure the importance and uncertainty (as in panel (a)) took
approximately 43 seconds on the same machine. When viewed with the uncertainty
included, the inclusion proportion method performs well when compared to the agnostic
method, particularly when the number of trees is low.

5. Case Study: Seoul Bike Sharing Data
In this section we apply our methods on a larger real-world data set. Here we ex-
amine and create visualisations concerning bike sharing data from Seoul, South Korea
(Sathishkumar 2020) and can be found at https://data.mendeley.com/datasets/
zbdtzxcxvg/2. The data contains 14 features and includes weather data (for example,
humidity, rainfall, snowfall, and several others), the time of the bike rental (in seasons,
months, and days), and some local information (such as if the day of rental was a holi-
day), with the total number of bikes rented per day as the response. The original data
contained 8760 hourly observations which we summarise to obtain the daily counts.
The modified data can be found at https://github.com/AlanInglis/bartMan. The
data has been previously studied in Sathishkumar and Yongyun (2020a) and Sathishku-
mar et al. (2020) who found that the temperature of the day was an important factor
for predicting the total number of rentals. Sathishkumar and Yongyun (2020b) also
found that the individual month and season play a significant role in predicting bike

https://data.mendeley.com/datasets/zbdtzxcxvg/2
https://data.mendeley.com/datasets/zbdtzxcxvg/2
https://github.com/AlanInglis/bartMan
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rentals and that there is a high degree of collinearity between these variables. It has
been shown in that in some tree-based models (such as random forests) that variable
importance measures show a bias towards correlated predictor variables (for example,
see Strobl et al. (2008)). This can lead to a misrepresentation of the importance of
the correlated variables. Consequently, careful consideration should be employed when
interpreting the VIVI measures and we recommend evaluating any potential correlation
between variables in conjunction with our proposed visualisations.
For our study we fit a BART model, using the BART package, with 1000 iterations,
a burn-in of 100, and 100 trees, with the goal of investigating which of the predictor
variables has a significant impact on the response. We apply a cube root transformation
to the response as initially the residuals displayed some evidence of non-normality. As
mentioned in Section 2.2, on factor dummy variables, we perform an aggregation of the
dummy variables’ inclusion proportions for both the importance and the interactions
so these metrics can be assessed on the entire factor. The variables treated as factors in
the data are Month (the month of the year a bike is rented), Season (season of the year
a bike is rented), Wkend (if the day of bike rental is a weekend or not), and Holiday (if
the day of bike rental is a public holiday or not).
To begin, Figure 12 shows the model’s diagnostics to assess the stability of the model fit.
The top two rows indicate a reasonable performance of the residuals with a moderately
stable convergence of the residual standard deviation. The black vertical line in the
trace plot indicates the separation between the pre and post burn-in period. The
bottom row shows that the model fits the training data well and that the Month is
clearly the most important variable for predicting the count of bikes rented. However,
in the bottom right panel, we can see that Month has a large 25-75% quantile interval
when compared to the other variables. The second most important variable is Season
followed by Temp (average daily temperature in ◦C).
We explore the impact of the variables on the response by examining the importance
and interactions jointly in the variable importance and variable interaction plots of
Figure 13. For illustration purposes only, we show the plot without uncertainty in the
left panel and with uncertainty on the right (as before we use the coefficient of varia-
tion). In Figure 13(a), we observe a strong interaction between the variable Month and
several others, notably; Rainfall (in mm), Solar.R (Solar radiance in mJ/m2), Season,
and Temp. The strongest interaction can be seen between Month and Rainfall. In
Figure 13(b), many of the low importance and interaction scores have high relative
uncertainty, so the viewer’s attention is drawn to the interesting variables. The most
important variable, Month, remains important relative to its uncertainty. Equally, the
strong interactions observed in (a) between Month and several others have a low as-
sociated variation in (b). In (a), all variables except Month have similar importance
scores, but relative to uncertainty, the importance of the last seven variables (Humid-
ity to Wind.Spd) is reduced, represented by greeny-grey colours along the diagonal
(b). The interactions between these variables are mostly low and/or with high relative
uncertainty, the interaction between Snowfall and Year being an exception.
In Figure 14, we take a deeper look at the structure of the trees for a selected iteration.
As before we choose the iteration with the lowest residual standard deviation. As with
the importance and interactions, by default we recombine the categorical variables
to display the entire factor. With such a large number of predictors, it can become
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Figure 12: General diagnostic plots for a BART regression fit on bike sharing demand data.
Top left: A QQ-plot of the residuals after fitting the model. Top right: σ by MCMC iteration.
Middle left: Residuals versus fitted values with 95% credible intervals. Middle right: A
histogram of the residuals. Bottom Left: Actual values versus fitted values with 95% credible
intervals. Bottom right: Variable importance plot with 25 to 75% quantile interval shown.
We can see in the bottom left panel that the model fits the training data reasonably well,
with a good convergence seen in the top right panel.

challenging to effectively display a distinguishable hue for each when plotting the trees.
To combat this we can select the most interesting variables observed in Figure 13 and
highlight them by using bright discernible colours. To aid in efficient examination, we
sort the trees by frequency of tree type and remove the stumps.
In this iteration, the most common tree is a single binary split with Month as the parent.
It should also be noted that Month is chosen as the root parent more frequently than
any other variable and also appears deeper in several other trees and is subsequently
the most common variable found in this iteration. The previously noted interactions
between Month and the other variables can be observed in the lower portion of the plot.
We can also see in Figure 14 that for the variable Month, most of the observations fall
into a single terminal node, making one terminal node much larger than the other.
Further investigation reveals that the ensemble tends to divide between warmer and
colder months, such that the observations corresponding to January and February (the
coldest months with the fewest bike rentals) comprise the smaller terminal nodes.
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Figure 13: In (a), Variable importance and interaction plot without uncertainty. In (b), the
same values are shown but with the uncertainty included by use of a VSUP. In (b), we can see
that the interaction values between Month and several other variables have a low coefficient
of variation associated with them.
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Figure 14: All trees from a selected iteration, highlighting the most interesting variables and
sorted by the frequency of tree type. In this case, the terminal nodes are coloured dark grey
and the stumps have been removed.

We employ our MDS plot in Figure 15 to help find outliers. Here we can see that each
observation has moderate uncertainty, represented by the surrounding 95% uncertainty
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ellipses. We have highlighted observation 347 which lies slightly farther away from the
group. Inspecting this observation in the data tells us that this observation corresponds
to bike rentals on December 24th, which is a public holiday. Bike rentals were well
below average for this day, particularly for a public holiday, which has usually high
bike rentals. The temperature on this day was also well below average. This may
indicate as to why this particular observation lies slightly farther from its group.

347

Figure 15: MDS plot of a BART fit on the Seoul bike sharing data. The observations appear
to have a moderate degree of uncertainty. Observation 347 (highlighted) appears to be an
outlier as it lies slightly farther away from its group.

To summarise, we have used our visualisations to identify and examine variables associ-
ated with the prediction of bike rentals in Seoul, South Korea. Our approach allowed us
to examine the overall model fit and how individual and pairs of variables impact on the
fit. Through our tree-based plots we can examine the inner structure of our fit. Specif-
ically, we found the month a bike was rented was ranked the most important variable.
Our methods rated Season as an important predictor, agreeing with previous studies
(Sathishkumar and Yongyun 2020b). We also find Temperature to be important, again
verifying the findings of Sathishkumar and Yongyun (2020a) and Sathishkumar et al.
(2020).

6. Discussion
We have presented new and informative visualisations for posterior evaluation of BART
models. We extend the traditional method of assessing variable importance and vari-
able interactions by including the uncertainty that comes with Bayesian models in our
point plots and heatmaps that feature the value suppressing uncertainty palettes meth-
ods of Correll et al. (2018). With our tree-based plots in Section 3.2, we can examine
the structure of the decision trees that are created when building the model as well as
providing useful summaries of tree types by way of grouping tree structures by different
metrics. We display outlier detection methods by way of an interactive multidimen-
sional scaling plot in Section 3.3 to provide an in-depth examination of a model’s fit.
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Finally, we provide a selection of enhanced model diagnostic plots in Section 3.4, which
are practical for assessing a model fit via a suite of plots that visualise aspects of a
model such as stability, tree acceptance rate, average number of nodes, and average
tree depth plots. These plots also provide a useful summary of the overall model fit via
convergence, residual, and Q-Q plots (for regression), and ROC, precision-recall, and
confusion matrices (for classification). Our tools can be used to explore areas of the
model that are not well explored. This might involve, looking at particular combina-
tions of variables that are not regularly featured in trees, despite being known to be
important, or patches of residuals identified by the MDS that indicate a missing split
or covariate. Our approach is simple to use, adaptable, customisable, and can be useful
for comparing different BART model fits.
Our importance and interaction plots can be useful in determining which variables
have the greatest impact on the response and the inclusion of uncertainty can help in
deciding if a given variable’s importance is worthwhile. A drawback to this method is
that the use of inclusion proportions as an importance/interaction measure relies on
the splitting rules in the model. Since BART chooses the splitting rule uniformly across
all variables, non-important variables can be included. This effect can be mitigated by
selecting a smaller number of trees, however this may limit the predictive performance
of the model, as noted by Chipman et al. (2010). The examples of Section 4 show that
using the proportions alone as an importance measure can be misleading, but that the
use of a VSUPs with relative uncertainty provide a correction.
A current drawback occurs when the number of trees and/or MCMC iterations is large,
so that the computational time to build the data frame of trees used for producing these
visualisations can vary, depending on the R package used. For example, a model with
20 trees and 500 MCMC iterations took approximately 8.2, 9.2, and 90 seconds for a
BART, dbarts, and bartMachine fit, respectively, on a MacBook Pro 2.3 GHz Dual-
Core Intel Core i5 with 8GB of RAM. The disparity between bartMachine and the
other packages is due to the way bartMachine uses a Java back-end to extract the raw
node data from the model. Although some steps were taken to speed up this process,
it remains largely outside of our control.
Our methods are flexible and can be easily extended to work with other BART packages,
such as bayesplot (Gabry et al. 2019), which is an R package that provides a large library
of plotting methods for use with Bayesian models fits. Similarly, our methods could be
extended to incorporate different extensions of BART, such as the methods of Prado
et al. (2021) for model trees BART (MOTR-BART). Rather than having a single value
for the prediction at the node level, MOTR-BART estimates a linear predictor using
the covariates that were used as split variables in the relevant tree.
For future work, coupling the acceptance rate (seen in Figure 8) with the average
tree type plot (seen in Figure 6) would give an interesting additional check for model
space that remains unexplored and could provide insight on problems of the algorithm.
Additionally, providing an option to allow the user to select an observation (or subset of
observations) and colour the nodes which contain the selected observation(s) would aid
interpretability. A different method for measuring and visualising the importance and
interactions could also be investigated for future work. A method such as DART (Linero
2018), which modifies a BART model by placing a Dirichlet hyper-prior on the splitting
proportions of the regression tree prior, could be used to assess importance. When
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using DART, Linero (2018) recommend selecting predictor variables from a so-called
median probability model (Barbieri and Berger 2004) to conduct variable selection,
where the median probability model is defined as a model containing variables whose
posterior inclusion probability is at least 50%. Alternatively, other methods, such as
Shapley values or an order dependent measure of importance and interaction (that is,
considering the order of splits as important) would be worthy of investigation in future.

Computational Details

The results in this paper were obtained using R 4.1.0 and the R package bartMan avail-
able at: https://github.com/AlanInglis/bartMan. All additional packages used
are available from the Comprehensive R Archive Network (CRAN) at https://CRAN.
R-project.org/. The source code and data for generating the experimental results is
available at https://github.com/AlanInglis/bartMan/tree/master/paperCode.
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Supplementary Materials

Here we provide a list of the relevant functions from the bartMan package. The main
construction function is extractTreeData which employs S3 methods and is used to
create a list of tree attributes which can be used for the heatmap, tree-plot, prox-
imity, and MDS visualisations. All listed functions work with the BART, dbarts or
bartMachine packages.

https://github.com/AlanInglis/bartMan
https://CRAN.R-project.org/
https://CRAN.R-project.org/
https://github.com/AlanInglis/bartMan/tree/master/paperCode
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Table 1: Summary of functions available in the bartMan package. The main construc-
tion function is extractTreeData which is used for the heatmap, MDS, and tree-plot
visualisations.

bartMan Package Functions
Function Name Description Type
extractTreeData Creates a list of all tree attributes for a

model created by either the BART, dbarts or
bartMachine packages.

Construction

viviBartMatrix Returns a matrix or list of matrices which
can be used for plotting variable importance
and interactions with the uncertainty in-
cluded.

Construction

proximityMatrix Creates a matrix of proximity values. Construction
viviBartPlot Plots a Heatmap showing variable impor-

tance on the diagonal and variable interac-
tion on the off-diagonal with uncertainty in-
cluded.

Visualisation

plotTree Plots individual trees from the R-packages
BART, dbarts or bartMachine.

Visualisation

plotAllTrees Plots all the trees from a selected iteration
or plots a selected tree over all iterations.

Visualisation

treeBarPlot Creates a barplot displaying the frequency of
different tree structures.

Visualisation

plotProximity Plots a proximity matrix constructed from
the proximityMatrix function.

Visualisation.

mdsBart Plots a multi-dimensional scaling plot of a
proximity matrix from a BART model.

Visualisation

bartDiag Displays a selection of diagnostic plots. Visualisation
acceptRate Plots the acceptance rate of trees. Visualisation
treeDepth Plots the tree depth over iterations. Visualisation
treeNodes Plots the number of nodes over iterations. Visualisation
splitDensity Density plots of the split value for each vari-

able used in the model.
Visualisation

vimpBart Plots the variable importance (based on
the inclusion proportion) with uncertaity in-
cluded.

Visualisation
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