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Abstract

Many fields of science and industry collect and analyze multivariate time-
varying measurements, e.g., healthcare, geophysics, or finance. Such data is often
high-dimensional, correlated, and noisy. Experts are interested in latent compo-
nents of the dataset, but due to the properties above, these are difficult to ob-
tain. Temporal Blind Source Separation (TBSS) is a suitable and well-established
framework for these data. However, the wide choice of methods and their tuning
parameters impede the effective use of TBSS in practice. Visual Analytics (VA)
aims to create powerful analytic tools by combining the strengths of humans and
computers. We designed, developed, and evaluated VA contributions in previous
work to support TBSS-related analysis tasks. This paper highlights the benefits
and opportunities of VA concepts for statistics-oriented problems. We demon-
strate how their analysis workflow can be supported using an important TBSS
application example with a real-world dataset of meteorological measurements in
Italy.
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1. Introduction
Multivariate time series are commonly collected in many fields of science and indus-
try. Geophysical time series are relevant, e.g., for meteorologists. Financial investors
are interested in stocks and currency exchange rates. Medical professionals, on the
other hand, often measure biomedical time series, such as electrocardiograms (ECG),
magnetoencephalographies (MEG), or functional magnetic resonance images (fMRI).
Common challenges in analyzing such datasets are correlated variables, noisy measure-
ments, and the often high number of dimensions. Domain experts look for latent sources
in the dataset. Such sources may be visually analyzed to learn about the measured phe-
nomenon, e.g., recovering a fetus’ heartbeat from its mother’s ECG (de Lathauwer et al.
2000) to inspect it for diseases. Another use for latent sources is dimension reduction
and modeling. Often, a few latent sources are sufficient to describe the structures and
dynamics of the data, thus helping interpretability and future modeling. Modeling mul-
tivariate serial dependence is a challenge that benefits from reducing dimensions and
decomposing the time series into components that could be modeled univariately. It is
well known that ignoring serial dependence in dimension reduction might i) be ineffi-
cient and ii) miss important structures, indicating that standard multivariate methods,
like principal component analysis (PCA), are not appropriate in such a context. On the
other hand, blind source separation (BSS) is a general multivariate modeling technique
with many different approaches, many of which are suitable for multivariate time series.
However, these approaches often require selecting tuning parameters, making it crucial
to compare different BSS approaches, which is quite challenging. BSS originated from
signal processing but is nowadays a well-established multivariate method used in many
application areas to gain better insights into processes driving the observed data.

However, even when a BSS model is specified, many different BSS approaches exist,
which usually have tuning parameters that need to be specified by the user. A general
challenge in BSS is that the models have many indeterminacies, and hence, it is difficult
to compare the output of different BSS approaches or even the results from the same
approach but using different parameter settings. Therefore, using BSS in practice is
demanding, as choosing methods and tuning parameters is not straightforward. Fur-
ther, data dimensionality and model indeterminacies are common challenges. Note also
that, in general, not much research has been done concerning selecting these parame-
ters. In a few cases, the focus was mainly on independent component analysis (ICA) in
the context of multi-subject neuroscience experiments (Artoni et al. 2012, 2014), which
might not easily transfer to other BSS models, methods, and applications.

Relief for these challenging tasks of visual analysis, interpretability, and modeling may
come from Visual Analytics (VA). The general idea of VA is to combine the strengths
and capabilities of humans with those of computers/machines by using visual repre-
sentation and interaction techniques to enable effective communication between them.
One definition of VA is by Keim et al. (2010), stating “Visual analytics combines auto-
mated analysis techniques with interactive visualizations for an effective understanding,
reasoning, and decision making on the basis of very large and complex datasets”. By
combining human reasoning with computers, VA provides methods, analytical work-
flows and software systems that combine these strengths and supply appropriate visual
displays and interaction techniques so that communication between both sides can hap-
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pen most effectively. VA solutions follow two popular mantras of VA and information
visualization to achieve that goal: “Overview first, zoom and filter, then details-on-
demand”, the information-seeking mantra by Shneiderman (1996), and “analyze first
- show the important - zoom, filter and analyze further - details on demand”, the VA
mantra by Keim et al. (2008).
Although many complex VA systems incorporate primarily basic visualizations curated
within complex software environments enriched with powerful computation and analyt-
ics methods, they can also include more advanced data visualization techniques. Many
of these are extensions or generalizations of basic data visualization techniques. For
example, parallel coordinate plots (PCP) (Inselberg and Dimsdale 1990) can be con-
sidered multi-dimensional scatter plots, where parallel and equidistant axes represent
multiple variables. A polygonal chain (polyline) represents a data tuple by linking the
corresponding variable values (Aigner et al. 2023).
In prior work (Piccolotto et al. 2022a), the design and evaluation of such a VA so-
lution for the temporal BSS method gSOBI (Miettinen et al. 2020) were discussed.
However, the paper focused on visualization designs and data mining algorithms. It
did not describe practical design decisions and considerations helpful in working with
BSS. Neither did the paper describe a BSS- and VA-supported real-world data anal-
ysis scenario in detail. A tutorial-style document, which may be translated to other
datasets, is needed to make VA-assisted BSS more prominent in modern data analysis
tool kits. This paper intends to be that document, including the whole workflow from
data preparation to parameter selection to interpretation of latent sources.
The paper is structured as follows. In Section 2, we recall various BSS models and reflect
on the challenges of typical analysis tasks. Section 3 describes how custom interactive
visualizations support these TBSS-related analysis tasks. In Section 4, we present a
case study where we apply the interactive visualizations on a real-world environmental
dataset from Italy. The benefits over plain R/RStudio are discussed separately in detail
in Section 5, which concludes this paper.

2. Temporal Blind Source Separation
In general, BSS considers various statistical models for different forms of data, based
on model-stringent estimators for the unmixing matrix. The basic BSS model states
that

x = Az + µ, (1)

where x is a p-variate observable random vector, z a standardized latent p-vector with
at uncorrelated or independent components, A is the non-random p × p mixing matrix
and µ is a non-random p-variate location vector. The goal of BSS is to estimate z
based on x alone, i.e., to find an unmixing matrix W such that W (x−µ) recovers the
latent components. The motivation of BSS is that the latent components are easier to
interpret and model than the original variables, allowing deeper insights into the data.
Clearly, the BSS problem is not solvable without further assumptions, and BSS ap-
proaches differ by the various assumptions they impose on z. The most popular branch
of BSS is ICA, where it is assumed that z consists of non-Gaussian independent com-
ponents. However, many other BSS approaches target, e.g., time series or spatial data.
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For general reviews, see for example, Nordhausen and Oja (2018); Nordhausen and
Ruiz-Gazen (2022) and for a review focusing on BSS methods in the context of time
series, see for example, Pan et al. (2022). In the following, we detail the commonly
used model in TBSS in Section 2.1 and present the estimator. For this estimator, the
parameters involved need to be set by the analyst. We highlight practical challenges
and guidelines to support these choices in Section 2.3.

2.1. Independent Component Time Series Model
The model we will consider in more detail in this paper is the independent component
time series model, which we denote by

xt = Azt + µ, t = 0, ±1, ±2, . . . , (2)

where xt is an observable p-variate times series, the mixing matrix and location are as
above and for the latent p-variate zt the following assumptions are made:

IC1: E(zt) = 0 and Cov(zt) = Ip for all t.

IC2: The components of zt are independent.

We will refer to this model as the temporal blind source separation model. Such a
model has been, e.g., considered for automatic artifacts removal for EEG data (Joyce
et al. 2004), finding meaningful signals in brain imaging (Tang et al. 2000, 2005b; Tang
2010), monitoring buildings (Popescu and Manolescu 2007), wind speed forecasting
(Firat et al. 2010), financial time series modeling (Nordhausen et al. 2021), or for
analyzing the sediment cores from geological drilling projects (Bábek et al. 2022).
In TBSS, the location vector is usually not of interest. For the remainder of this paper,
we assume without loss of generality that µ = 0. Moreover, the TBSS model is not
well defined as the signs and order of the latent components are not fixed, i.e.,

xt = Azt = (AJP )(P ⊤Jzt) = A∗z∗
t ,

where zt and z∗
t fulfill the model assumptions and yield the same process xt for all

p × p sign-change matrices J (diagonal matrices with ±1 on its diagonal), and all p × p
permutation matrices P (matrices with only zeros and ones and each row and column
has exactly one value one). These indeterminacies are not considered a problem in
practice. One of the reasons is that BSS is often used in a dimension reduction context,
and it is assumed that only q < p components are of interest. These q components
are often hand-picked after visually inspecting all p components. Two approaches to
formalizing such a dimension reduction approach that extends Model (2) have been
suggested in the literature and are recalled as follows.
In the external noise model (ENM), one assumes

xt = Azt + ϵt, t = 0, ±1, ±2, . . . , (3)

where now zt is q-variate following assumptions (IC1) and (IC2) while being indepen-
dent of the p-variate white noise process ϵt. The mixing matrix A is accordingly p × q.
In the internal noise model (INM), on the other hand, one assumes that

xt = Azt = A(z⊤
s,t, z⊤

n,t)⊤, t = 0, ±1, ±2, . . . , (4)
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where A is the p × p mixing matrix and the q-variate signal of interest is zs,t while the
p − q-variate noise zn,t is not of interest. Noise can be defined in many different terms
as long as it is independent of the signal. Most commonly, it is modeled as a white
noise process.
Note that Model (2) is not the classical ICA model, as there is no limitation on the
distribution of the components as long as at least the first two moments are finite.
Still, ICA methods are often used in this context, although they are not a natural
choice as classical ICA methods are designed for independently identically distributed
data. Therefore, ICA ignores information from serial dependence in the data. Further,
in contrast to ICA, the TBSS model allows multiple Gaussian components.

2.2. gSOBI for TBSS
The method we will consider in the following to solve the TBSS problem is gSOBI
(Miettinen et al. 2020) as it is a flexible method and has many other popular methods
as special cases.
The gSOBI unmixing matrix W gS is defined as the maximizer of

b
∑

τ∈k1

p∑
i=1

(E(w⊤
i xtw

⊤
i xt+k))2 + (1 − b)

∑
τ∈k2

p∑
i=1

(E((w⊤
i xt)2(w⊤

i xt+k)2 − 1))2,

under the constraint W Cov(xt)W ⊤ = Ip, with centered xt and the parameter b ∈ [0, 1]
and the sets k1 and k2 which specify lag sets of interest. The vector w⊤

i denotes here
the ith row of W , i = 1, . . . , p.
For specific values for b, k1 and k2, special TBSS methods can be obtained.

• For b = 1 and k1 = {τ1}, one obtains AMUSE (Tong et al. 1990).

• For b = 1 and k1 = {τ1, . . . , τk1}, one obtains SOBI (Belouchrani et al. 1997;
Miettinen et al. 2015, 2016).

• For b = 0 and k2 = {τ1, . . . , τk2}, one obtains vSOBI (Miettinen et al. 2020).

AMUSE and SOBI were developed with linear processes, like ARMA models, in mind,
while vSOBI was developed in a framework of models exhibiting stochastic volatility
features, like those present in GARCH models. SOBI can be seen as an extension of
AMUSE by using more than one lag. It was recognized that choosing the optimal lag
is difficult, and using several lags at once often gives better and more stable results.
For more details about the three methods, see Appendix A. Therefore, “generalized”
SOBI (gSOBI) can be seen as a linear combination of SOBI and vSOBI. The tuning
parameter b gives either more weight to the first (SOBI) or the second part (vSOBI).
A user of gSOBI, therefore, has to choose b and which and how many lags should
be included in the lag sets k1 and k2. However, there are hardly any guidelines about
choosing these three quantities, which greatly impact the results. Based on simulations,
Miettinen et al. (2020) suggested to choose b somewhere above 0.5 but recommend
values around 0.9, but they have no recommendations to choose k1 and k2 except that
they usually use a much smaller set of lags for k2 which seems however mainly due to
the computational complexity.
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For AMUSE and SOBI, some considerations about choosing the lags exist. Tang et al.
(2005a) shows in the context of some neuroscience applications how crucial this choice
is. Taskinen et al. (2016) suggest in the case of SOBI to choose a few different lag sets
and then estimate for each of the sets the asymptotic covariance matrix of the estimated
unmixing matrix; then choose as best set the one where the estimated covariance matrix
has the smallest volume. However, this is already quite challenging for SOBI only and
not feasible for gSOBI. Therefore, the general recommendation is to use sets of several
different lags so that at the lags under consideration, the behavior of the latent time
series is as different from each other as possible.
For proper use of gSOBI, our approach in the following is to use VA concepts to
enhance the possibility of finding meaningful parameters for the huge set of possible
combinations of the parameters b, k1, and k2.
Before outlining the strategy in the following section we would like to recall that an
ENM or INM model is often of interest and that another decision must be made here.
The general idea for ENM is that first, a classical principal component analysis would be
performed where the first q components contain all the information for the TBSS, which
is then subsequently performed. The reasoning is that for the population covariance
matrix, the last p−q eigenvalues equal the noise variance σ2 while all other eigenvalues
are larger. However, how to choose q based on the sample covariance matrix is still
an open question that is mostly studied in the literature in an independent identically
distributed framework (Wax and Kailath 1985; Zhao et al. 1986; Virta and Nordhausen
2019; Nordhausen et al. 2022), and due to lack of better methods, these are sometimes
applied to a time series context. Scree plots seem most commonly applied to choose
q. The INM is studied a bit better in the context of SOBI under the assumption that
the noise is white noise. Then Matilainen et al. (2018); Virta and Nordhausen (2021)
provide strategies to decide upon and select the signal components. Such methods are,
however, not yet developed for vSOBI or gSOBI.

2.3. Some Thoughts on Practical Strategies and Tools Involved

In a typical application where gSOBI would be applied, the time series are many, and
the sample size is large. The practitioner is mainly interested in achieving dimension
reduction by performing TBSS and selecting a small number of meaningful, i.e., inter-
pretable, components that sufficiently explain the data at hand. From our personal
experience, we know that this is a tricky task. Many challenges impede thoroughly
investigating the dataset and finding meaningful parameters, which we describe in the
following paragraphs. As a consequence, usually only a couple of fits with different
parameter settings are crudely compared, and subjectively, the best one is selected.

Comparing Fits Using Indices. As the signs and order of the components are
not fixed, it is difficult to compare the different estimates/fits. To compare mixing
matrices, one can use BSS performance measures (Nordhausen et al. 2011), which were
developed for simulations where the mixing matrix A is known. The idea here is that
for a perfect unmixing matrix, the product W A should be a scaled permutation matrix.
Performance measures calculate the distance of W A to the target. Different measures
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are available, and our preferred choice is the minimum distance (MD) index (Ilmonen
et al. 2010), which is defined as

MD(W , A) = 1√
p − 1 inf

C∈C
||CW A − Ip||,

where C corresponds to the set of matrices where each row and column has exactly one
non-zero element. The index takes values between 0 and 1, where 0 means a perfect
separation. In a concrete analysis, A is, of course, unknown. Two competing unmixing
matrices, W 1 and W 2 can be compared by computing MD(W 1, W −1

2 ), which should
be close to zero if they separate the components equally well. In our experience, ex-
treme values of the MD index are rarely obtained, even with small changes in tuning
parameters. Much more commonly, the index takes values around 0.4–0.8, which are
not as easily interpreted. The index value then allows only relative assessments (e.g.,
W 1 separates more like W 2 than W 3), and visual comparison is necessary to find the
exact differences.

Comparing Fits By Their Loadings. The unmixing matrices are important when
deciding about the interpretability of the independent components as they define the
linear transformation from the data to the latent components. As the transformation is
linear in its nature, the unmixing matrix can be interpreted as a loading matrix similar
to PCA or factor analysis. Thus, practitioners can compare different loadings matrices
and decide how well they characterize certain processes.

Comparing Fits By Their Components. Another approach to compare compet-
ing fits is to compare the resulting components. Again, the challenge is that they might
be in a different order, with different signs, and generally not exactly the same.
One possibility is to order the components from all fits according to some general in-
dex of “interestingness” like kurtosis, skewness, autocorrelation measures, or stochastic
volatility. If the index depends on signs, it might also be meaningful to fix first the
signs of all components such that they are all right-skewed. Another option is to use
absolute values of the index if the index reflects the sign (e.g., skewness). Ideally, such
indices will sort similar components to the same positions, so visual inspection of the
first few components from both fits should select relevant components. Of course, that
cannot generally be assumed. Correlation matrices of components do not depend on
component order, but they are reductive. Thus, inspection of matching components is
necessary. More sophisticated visual support could make comparing matching compo-
nents in alternative fits more efficient.
A clustering algorithm could also group components from all fits. Here, it is crucial
that from each fit one component should be linked to the most similar component from
another fit. The idea here is that, especially in a dimension reduction framework and
under noise assumption, it could be assumed that the real signal components appear
in all fits, while the noise components, as they are not well-defined, most likely differ
between the different fits.

Selecting Lag Sets. Yet another challenging part is the selection of the lag sets.
Many lags and combinations thereof are possible, and humans cannot reason about
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all of them at once. In VA, a common strategy to deal with such amounts of data
is quantification. Let ACovτ (xt) = E

(
(xt − E(xt))(xt−τ − E(xt−τ ))⊤

)
denote the

autocovariance matrix of xt at lag τ . Then, the first idea is to keep those lags where
the diagonal elements of W ACovτ (xt)W T have some big gaps as this means here
the information between the latent components differs the most. Those lags where
the diagonal elements are all very similar would be considered non-informative. This
procedure works best for AMUSE/SOBI. For decision-making with real-world data,
this concept should be extended to vSOBI and gSOBI and involve also higher order
moments. One idea to do this is to consider the matrix of fourth cross-moments Bτ

which is defined for a centered time series as

Bτ (xt) = E(xt+τ x⊤
t xtx

⊤
t+τ )

Under (IC1) and (IC2) for all lags τ , it holds that B(zt) = D∗
τ where D∗

τ is again
a diagonal matrix where the diagonal elements depend on τ (Matilainen et al. 2015).
Thus, similar to the SOBI part now for the stochastic volatility part lag selection, the
interesting or non-interesting lags can be based on the gaps between in the diagonal val-
ues of W Bτ (xt)W ⊤. Also, as mentioned above, under the model, W ACovτ (xt)W ⊤

and W Bτ (xt)W ⊤ should be diagonal for all τ . However, for finite samples, estimated
counterparts will hardly ever be diagonal, and an investigation regarding influential
lags can also be based on the magnitude of the off-diagonal elements of the different
matrix and lag combinations.

Summary. When selecting b, k1 and k2 for gSOBI, keeping an overview over all these
criteria is quite challenging, especially in the framework of R (R Core Team 2022) and
RStudio (RStudio Team 2022), where the changes are not easily immediately visualized
and measured. The following section introduces the VA software tool TBSSvis, which
provides customized interactive visualizations for the TBSS-related tasks discussed in
this section.

3. TBSSvis
TBSSvis (Piccolotto et al. 2022a) is an interactive VA software tool to support TBSS
analysis in the context of gSOBI. It is available on GitHub (Piccolotto 2022), where
detailed instructions on how to run TBSSvis are included. A video demo (using another
dataset than that presented in Section 4) can be found on YouTube1. TBSSvis consists
of a backend server written in R using plumber (Schloerke and Allen 2022) that handles
all necessary computations. The outcomes of those are presented in a web-based fron-
tend built using JavaScript (MDN Contributors 2022) and D3 (Bostock et al. 2011).
We designed TBSSvis for multivariate time series with up to length T = 5 000 and
dimension p = 20. These limits are not strict, but the convenience of using TBSSvis
will gradually decrease with datasets beyond those.
TBSSvis was developed in a user-centered design process with (T)BSS experts over
several months. Continuous discussions of what information to present when were
accompanied by prototypes of increasing fidelity from paper sketches to digital mockups

1https://www.youtube.com/watch?v=iv919b12gek

https://www.youtube.com/watch?v=iv919b12gek
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to the final interactive software tool. TBSSvis may be understood as a visual interface to
gSOBI. We chose gSOBI because of its flexibility and recency. TBSSvis was extensively
evaluated in interviews with five (T)BSS experts who used the software tool on familiar
datasets. They found TBSSvis to be a time-saver and very useful for applied work. The
VA aspects in the design of TBSSvis are discussed in detail in Piccolotto et al. (2022a).
We will present in this section only the most important views, visualizations, and
concepts.
TBSSvis supports two main analysis phases crucial to TBSS model selection: parameter
selection and result comparison (Section 2.3). It is possible to carry these out in
existing tools, like R/RStudio, but it is not ideal. Due to its open-ended and exploratory
nature, TBSS analysis is both i) visual as obtained components need inspection and
comparison and ii) dependent on supporting data mining algorithms, e.g., clustering.
Visual analytics is the science of how to combine these two aspects effectively. Hence,
VA software tools present carefully designed interactive visualizations that efficiently
and effectively support user tasks. R/RStudio, on the other hand, is a general-purpose
programming environment and thus requires manual programming for visualizations
and data mining algorithms. Further, it is not (without additional effort) possible to
interactively modify these plots in ways relevant to the question at hand. Time spent on
manual programming draws focus from the analysis. An advantage of R is its flexibility:
Data may be transformed at will, and any available package may be used. Hence, any
used parameter settings, latent components, and models obtained with TBSSvis can be
exported to RData files and easily imported to R for further analysis.

3.1. Visual Analytics Basics
Like most VA contributions and software tools, TBSSvis uses basic data visualizations
known from statistical graphs and exploratory data analysis. These graphs include
scatter plots, line plots, bar charts, and so on. The major advancement stems from
so-called coordinated and multiple views (CMV); user interaction techniques to link and
highlight between multiple juxtaposed views (Roberts 2007). Each view may contain
single or multiple data visualizations, whether basic or advanced. For such CMV,
common interaction methods make such VA approaches useful and powerful. The
most important include direct manipulation, brushing & linking, and dynamic queries
(indirect manipulation). Direct manipulation allows users to interact directly with the
graphical elements within each plot, e.g., to filter or select. Brushing & linking means
that other views update after direct manipulation actions in one view, e.g., a user selects
dots in a scatter plot which causes highlighting/selection of the same observations in
all linked views that contain them (Roberts 2007). Dynamic queries are related to
brushing & linking as they allow focusing on data of interest, e.g., by filtering the
data. The difference to brushing & linking is that dynamic queries are an indirect
manipulation approach, where users interact with sliders, menus, or buttons.
Because screen space is still limited and multivariate data can be large in observations
and dimensions, it will often be difficult to show every data point in basic or multi-
ple plots. Therefore, various computation and analytics approaches are often utilized
for generating visualizations, e.g., aggregations, clustering, or similarity projections.
Aggregations include, e.g., correlation matrices, histograms, or summary statistics.
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Clustering is beneficial for finding groups of observations, and analysts may then rea-
son about group representatives instead of individual items. Similarity projection, on
the other hand, is commonly employed to generate 2D/3D visualizations of multivari-
ate data for visual cluster analysis. Similar observations appear close to each other
in the similarity projection. All these techniques are necessarily reductive as they do
not show the full data, but they allow analysts to get an initial overview. Necessary
screen space is commonly saved by hiding details at first and showing them only after
user interactions. For example, when a multivariate time series is shown as individual
line charts, each chart does not need to include the (identical) legend. Showing it on
hover/mouse-over is sufficient. In the same spirit, it is common to make charts resiz-
able (e.g., increase Y-axis space for line charts) or zoom into regions of interest (e.g.,
a contiguous time interval) with user interactions. Analysis on different levels of detail
is thus facilitated.

3.2. Parameter Selection
The parameter space of gSOBI is gigantic as 2T +1 possible lag sets exist for a time
series of length T . Hence, TBSSvis focuses primarily on those. TBSSvis employs two
strategies to deal with lags: Organization and quantification. Parameter b may be
chosen interactively with a slider.
TBSSvis relates each lag to the nearest calendar interval to allow the organization of
lags. In other words, lags 24, 168, 720 of hourly intervals become one day, one week, and
one month. The benefit is two-fold. For one, it is a much more natural representation
of time for humans. Second, it allows filtering lags based on temporal granularity, i.e.,
showing lags corresponding to weeks, months, or years. Doing so drastically reduces
the amount of lags to think about.
However, the longer the time series at hand and the shorter its measurement interval,
the more lags are to consider, even after filtering. Here is where the second strategy,
quantification, comes in. The idea is to assign each lag a number indicating how
interesting, relevant, or important it is. TBSSvis computes three such numbers. First,
the autocorrelation of each input variable at all lags. Where input variables correlate
highly, latent components might do that as well. Second, the eigenvalue difference
of autocovariance matrices at all lags. This measure is supposed to be high when
calculated on latent components, so the anticipation is that this might also hold for
input variables for some datasets. Finally, we compute the diagonality of cross-moment
matrices at all lags (for a given gSOBI solution). A better separation might be obtained
by favoring lags where this diagonality was low. See Section 2.3 for detailed statistical
considerations.
Figure 1 shows the relevant visualizations for lag selection. The parallel coordinates plot
(PCP) contains the previously described quantified dimensions for each lag. It can be
filtered to a given temporal granularity with the radio buttons on top. A subset of lags
is selected by brushing along an axis. The available axes are the lags themselves (allows
filtering for low/high lags directly), the temporal granule selected (allows filtering for
low/high lags in relation to the calendar), and the quantified numbers described in the
previous paragraph. A selection is depicted in more detail in the plot underneath the
PCP (linking), which is a multivariate autocorrelation function plot (MACF). Each
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box in the MACF represents the autocorrelation of all input variables (bars) at a given
lag (box). Color saturation encodes the lag length, with less saturation meaning longer
lags. Bars may be ordered by variable (alphabetically) or by value. The latter is
the default, making predominantly positive or negative correlations of variables easily
visible. By hovering over a lag in the MACF, it is highlighted and may be inspected in
even greater detail with the line chart and scatter plot below (brushing & linking). The
line chart shows a user-selected input variable, while the scatter plot shows that variable
vs. itself at the currently highlighted lag. The lag length is shown as a horizontal line
in the line chart, further simplifying reasoning about the lag. These multiple views are
intended to be used in sequence, where the analyst first filters all lags to a subset (PCP,
Figure 1-A), inspects the subset more closely to identify individual lags as candidates
to include in a parameter setting (MACF, Figure 1-B), and finally inspects (line chart
and scatterplot, Figure 1-C) and selects individual lags (Figure 1-C and D).

A

B

C

D

Figure 1: Lag Selection view of TBSSvis. A parallel coordinates plot allows to filter lags
to those that are interesting, e.g., those where an input variable exhibits the highest
autocorrelation (A). A multivariate ACF plot shows input variables at filtered lags
(B). Individual lags may be highlighted with hover, thus updating the scatter plot
underneath (C). Interaction may be circumvented by direct selection of lags with R-like
syntax (D).

3.3. Result Exploration
To assess candidate TBSS models qualitatively, analysts need to compare their results
and parameter settings on various levels of detail. Such comparisons often start at a
very high level, where analysts are interested in the TBSS method used (SOBI, vSOBI,
or gSOBI) and a coarse description of used lag sets (mostly short, mostly long, or
something else). Attention then shifts to the components, where analysts want to know
which are common to many models and which were obtained only by a few. Having
identified those, very detailed comparisons become more relevant. E.g., which lags were
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used in one model but not the other, how do individual components of selected models
compare, and what are the differences in their loadings. TBSSvis provides bespoke
interactive visualizations to support these tasks. We will introduce them here and
demonstrate their use in Section 4.

Model Overview. An overview of candidate models may be obtained from a tabular
representation (Figure 2). Each model is automatically named by a unique identifier.
Two columns hold the k1 and k2 lag set, respectively, shown as a histogram with five
bins. A column between the two shows the b parameter as a triangle on a line. The
table is sorted by b. Gray background in the first column encodes whether the gSOBI
implementation converged and latent components were obtained.

Figure 2: Tabular overview of alternative models. Gray background color shows that
the gSOBI implementation converged for this parameterization. The extreme cases
SOBI (blue) and vSOBI (red) were selected. Histograms in the k1 and k2 columns
show bins with a width of 500 lags.

Component Overview. Equally necessary is an overview of obtained components
(Section 2.3), which TBSSvis provides in two ways (Figure 3). First, a similarity pro-
jection shows the similarity of models via their MD index (Ilmonen et al. 2010). Dots
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close to each other represent models with similar unmixing matrices and, thus, latent
components. The plot is discretized to avoid occlusion (Figure 3a).
Second, TBSSvis applies a custom clustering scheme (Piccolotto et al. 2022a) that re-
spects the set structure of latent components, unlike popular clustering algorithms such
as k-means. Specifically, the clustering scheme groups by component similarity (quanti-
fied by absolute Pearson correlation) but only groups components from distinct models
into the same cluster (Figure 3b). It builds upon constrained clustering techniques, such
as Wagstaff et al. (2001). Cannot-link constraints, i.e., pairs of elements that must not
be grouped into the same cluster, are added for all pairs of latent components of the
same model. TBSSvis uses a k-medoids-like formulation of the problem for increased
generality as k-means requires distances with triangle inequality, and its cluster rep-
resentatives are not actual observations. TBSSvis iteratively adapts an unconstrained
k-medoids solution obtained from the cluster R package by moving components to the
next-best cluster as long as constraints are violated. Pseudocode for the set-aware
clustering scheme can be found in Piccolotto et al. (2022a).
Representatives of these clusters are ordered by a user-selected quantification strategy
(Section 2.3) and plotted in a list. TBSSvis provides kurtosis, absolute skewness, and
periodicity (Vlachos et al. 2005). The boxes left of the cluster representatives represent
components in that cluster. The boxes’ opacity encodes variation in the cluster by
difference to the cluster medoid. The horizontal position of the box encodes the com-
ponent’s order according to the selected feature compared to other components from
the same model. Thus, very saturated boxes mark little variation in the cluster. The
number of clusters (k of k-medoids) can be adjusted with a slider above. A bar chart
on top of the slider depicts the clustering quality. Its peak thus marks the most likely
number of meaningfully different components obtained in all models.

(a) Similarity projection of latent compo-
nents with Multidimensional Scaling.

(b) Set-aware clustering of latent compo-
nents (top 5 components according to kur-
tosis).

Figure 3: Overview of latent components obtained by different models.
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Tuning Parameter Comparison. To allow comparison of tuning parameter set-
tings of different models, we use triangles on a shared line for b. Lag sets can be
compared via interweaved histograms, a visualization specifically designed for that
purpose. By construction, distinct lag sets appear interweaved (few shared columns),
while similar lag sets do not and display many shared columns. The user can regulate
the amount of detail via the bin size.

Component Comparison. Detailed comparison of components is supported by
plotting involved components side-by-side, one column per model. A slope graph
may be added between columns, connecting similar components of adjacent models
(Figure 4). Line thickness encodes three classes of similarity (quantified by absolute
Pearson correlation), and no line is visible for component pairs with an absolute corre-
lation below 0.5. The number of singular and thick lines (similar components) or many
and thin lines (dissimilar components) makes it easy to distinguish the common parts
from the rest.

Figure 4: Slope graphs support the comparison of components from alternative models.
Thick lines connect the most similar pairs, in this case 3-9, 7-8 and 9-7 of the red and
blue solution, respectively. The Pearson correlation coefficient is shown on mouse-over.
Bars left of the numbers encode the value of the component’s quantified interestingness,
e.g., kurtosis.

Figure 5: Visualization of unmixing matrices. Loadings are visible on mouse-hover.
The third component of the red solution and the ET0 input variable were selected for
visual comparison.
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Unmixing Matrix and Loadings Comparison. Loadings are crucial for the in-
terpretation of latent components. TBSSvis visualizes the unmixing matrix in a matrix
visualization (Figure 5) to identify important input variables, where rows correspond to
latent components and columns to input variables. Each row is color-coded separately
with a grey color scale, where black marks input variables with the highest absolute
value. Involved components and input variables are shown below after a cell is selected.

4. Case Study
This part examines an environmental dataset with the introduced TBSS methods and
TBSSvis. All subsequent results are obtained with TBSSvis, version v1.0.1. The backend
server runs R version 4.0.3 (R Core Team 2022) with the packages summarized in
Appendix B.

4.1. Description of the Dataset
The data analyzed in the present case study consist of evapotranspiration levels (mm),
solar radiation (MJ/m2), minimum, average, and maximum temperature (◦C), mini-
mum and maximum humidity (%), wind speed (m/s) and precipitation (mm) weekly
averages for 23 years (2000–2022) with a total of 1 184 temporal observations (Table 1).
Note that evapotranspiration is a synthetic variable based on temperature-related vari-
ables and solar radiation (Hargreaves and Samani 1985). The measurements refer to one
station belonging to the monitoring system of Veneto Meteorological Service2 located
in the Belluno district (Italy) at a high altitude (1 642 m above sea level). Moreover,
the lowest weekly mean values occurred in the winter period and the highest mean
values in the summer period. Hence, we removed the annual periodicity and used the
weekly averages computed by the decompose R function (Kendal 1983) before applying
BSS methods, which requires the stationarity of the time series.

Table 1: Description of the nine climate and meteorological variables

Name Description
ET0 Evapotranspiration
RAD Radiation
TMX Maximum Temperature
TMA Average Temperature
TMN Minimum Temperature
HMX Maximum Humidity
HMN Minimum Humidity
PRE Precipitation
WIN Wind Velocity

2The raw data were obtained via a request to the Environmental Protection Agency of Veneto
Region, who collects climate and weather data from 180 monitoring stations (https://www.arpa.
veneto.it/bollettini/storico). In particular, the evapotranspiration levels were estimated ac-
cording to the Hargreaves equation (Hargreaves and Samani 1982).

https://www.arpa.veneto.it/bollettini/storico
https://www.arpa.veneto.it/bollettini/storico
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Appendix C contains an R script that prepares the considered dataset in CSV format.
Figure 6 depicts the whole considered deseasonalized dataset in detail. From a holistic
point of view, ET0 and RAD show strong oscillations during summer, whereas the
values seem more stable during winter. In contrast, the opposite behavior is observed
in the humidity (HMN and HMX). These effects hint at the existence of volatility in
the observed time series. The temperature-related variables (TMX, TMN, and TMA)
naturally show the same patterns overall, with the minimum temperature having the
strongest oscillations. Interestingly, the temperature variables show a different behavior
between 2006 and 2008. The winter of 2007 especially shows high values, meaning the
winter was unusually warm. On the other hand, the summers of 2006 and 2007 were
unusually cold, which is needed to ensure a constant overall annual mean temperature.
Note that the nine variables are on different scales, which needs to be accounted for
when comparing the loadings for the different BSS methods.
In what follows, the different steps required in finding gSOBI tuning parameter settings
are described. In particular, after a first evaluation of the SOBI and vSOBI results,
the user has to set usable lags by evaluating the MACF plots and usable values of the
parameter b. Finally, the alternative gSOBI solutions have to be compared.

4.2. Comparing SOBI and vSOBI
In the first analysis step, the results of the SOBI and vSOBI methods are compared
with the default values as they give a first impression of the features detected by the
BSS based on sole second-order and sole fourth-order dependence. In particular, the
first 12 lags (k1 = {1, . . . , 12}) and the first 3 lags (k2 = {1, 2, 3}) are used for SOBI
and vSOBI, respectively. In Figure 7, the latent time series for SOBI and vSOBI
are depicted. The MD index between both loadings matrices equals 0.7, indicating
substantially different loadings for both methods.
For the SOBI results in blue (Figure 7), only the last five time series seem to oscillate
around the zero mean evenly and might thus be viewed as non-informative white noise.
The first SOBI component has substantial outliers for 2006, 2012, 2014, 2016, and 2018
around the new year. The loadings both for the raw and scaled data indicate that this
component is mainly formed by the temperature-related variables (i.e., TMX, TMA,
TMN). In particular, the raw loadings weight TMX to 1.4, TMA to -0.9, and TMN to
-0.6 which can be interpreted as the difference between the maximum and the sum of
the average and minimum temperature. Hence, the positive outliers are mainly formed
by a higher average maximum temperature, and the negative ones by the opposite
effect.
The first and the third series show strong time-varying oscillations for the vSOBI latent
time series in red (Figure 7). Large oscillations are evident during winter for component
one and during summer for component three. By inspecting the raw and the scaled
loadings (left panel of Figure 8b) the third latent component is mainly formed by ET0,
which shows the same oscillations during summer (see first time series in Figure 6).
More interesting is the pattern of the first latent component for the vSOBI result
(Figure 7): the raw loadings (left panel of Figure 8b) hint that ET0, TMA, and TMN
form this component with values of -5.3, 2.0 and -1.4. These loadings can be translated
to the difference between the evapotranspiration and the deviation of the minimum
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Figure 6: Overview of the nine climate and meteorological time series.
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Figure 7: Latent time series for vSOBI with parameters k2 = {1, 2, 3} (red) and for
SOBI with parameters k1 = {1, . . . , 12} (blue). The order is according to the kurtosis
values.
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(a) Loadings matrices for the raw data

(b) Loadings matrices for the scaled data

Figure 8: Loadings matrices for vSOBI with parameters k2 = {1, 2, 3} (red) and for
SOBI with parameters k1 = {1, . . . , 12} (blue).

from the average temperature. This deviation is very unstable in the summer months
and very stable in the winter months. Note that this relevant pattern was not observed
in the original variables ET0, TMA, and TMN. In total, both SOBI and vSOBI results
deliver meaningful latent components with the default set of lags. Hence, the gSOBI
variant with a customized lag setting might gain more insights.

4.3. Lag Selection

The default lag selection might not be suitable for every situation as they are based on
the vague assumptions that the first few lags are the most informative. Nevertheless,
they act as an educated first guess. One strategy to select usable lags is to investigate
the MACF function and choose lags where several variables show substantial autocor-
relation. Figure 9a depicts the PCP, which hints that the maximum autocorrelation
is found in the shortest lags. The ACF values for the input variable for the first ten
lags are shown in Figure 9b. The blue lines depict the 95% confidence interval for the
case of pure white noise. Hence, values that are outside these lines can be considered
to exhibit significant autocorrelation. By evaluating the MACF plots, we chose the
lags k1 = {1, . . . , 6, 14, 15, 59, 60, 61} as these seem to show substantial autocorrelation
and a high difference in the eigenvalues of the autocovariance in several variables. The
last three lags of the determined set (59–61 weeks) very roughly correspond to a time
separation of one year, which might indicate that the dataset contains annual effects.
For the lag set k2, we keep the first three weeks as already substantial oscillations were
found.
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(a) PCP depicting the lags, corresponding maximum autocorrelation and the ACF eigenvalue
differences in the data.

(b) MACF for lags 1–10
.

(c) MACF for lags 12–21

(d) MACF for lags 56–65

Figure 9: PCP and MACF plots for the environmental dataset under study.

4.4. Selection of the Parameter b

Parameter b determines the ratio between SOBI (b = 1) and vSOBI (b = 0). As
vSOBI accounts for fourth-order temporal dependence, it will automatically surpass
the second-order dependence of SOBI (power of two versus power of four). Thus, to
equally distribute between SOBI and vSOBI, values of b close to one will be needed.
To investigate the effect of the parameter b, we keep the k1 either to the default
(k1 = {1, . . . , 12}) or the custom one (k1 = {1, . . . , 6, 14, 15, 59, 60, 61}), k2 lag set
unchanged and set b to the values 0.9, 0.95, 0.97 and 0.99 and compare the results
to the sole SOBI and vSOBI cases. Note that in the case study, only values of the
parameter b above 0.9 are considered, as values below 0.9 only showed the sole vSOBI
results based on initial investigations. This behavior indicates that fourth-order effects
are highly present in the dataset. Figure 10a and Figure 10b depict the different settings
of b for the default lag setting, while panels Figure 10c and Figure 10d show different b
for the custom lag setting, found in Section 4.3. Specifically, these plots show matrices
of pairwise MD indices and clustering of the results based on correlations between the
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(a) Component similarity default lags (b) MD indices default lags

(c) Component similarity custom lags (d) MD indices custom lags

Figure 10: Results for different choices of gSOBI parameter settings (dots in a and c).
Variations of b parameter are highlighted for the default lag set k1 = {1, . . . , 12} in
a–b: b = 0, b = 0.95, b = 0.99 and b = 1. Variations of b parameter are highlighted for
the custom lag set k1 = {1, . . . , 6, 14, 15, 59, 60, 61} in c–d: b = 0, b = 0.97, b = 0.99
and b = 1. Parameter settings of the remaining points are listed in Appendix D.

components.
By evaluating the results for the default lag setting (left panel Figure 10a), it is evident
that a parameter of b = 0.95 is still very close to the sole vSOBI (b = 0) and a parameter
of b = 0.99 is closer to the sole SOBI (b = 1). For the custom lag selection (Figure 10c)
it is interesting to see that the SOBI solution b = 1 is far from all other computed
results. Regarding the MD index, the b = 0.97 and b = 0.99 solutions are still close
to the SOBI solution b = 1 (compare right panels in Figure 10c and Figure 10d).
When the parameter b is changed, the solutions lie in the middle of the sole vSOBI
solution and the SOBI solution for both lag settings in the component similarity plot.
This behavior hints that these solutions combine features found by both methods. The
solutions obtained by the custom lag setting appear to be more spread out in the
component similarity plot. For this reason, we investigate the corresponding gSOBI
solutions (b = 0.97 and b = 0.99) in more detail.

4.5. Results of gSOBI
In the previous section, two alternative gSOBI solutions with the parameters k1 =
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Figure 11: Clustering for different results. The colors depict gSOBI with weights
b = 0.97 and b = 0.99 and lag sets k1 = {1, . . . , 6, 14, 15, 59, 60, 61}, k2 = {1, 2, 3}
(same for both colors).

{1, . . . , 6, 14, 15, 59, 60, 61}, k2 = {1, 2, 3} and b = 0.97 and b = 0.99 have been found.
These results have to be compared in more detail as the custom lag setting uses lags
with the highest autocorrelation, and the two b values lie in between the two extremes
SOBI and vSOBI. The latent components (of all computed results) are clustered in
Figure 11 to investigate the differences between the two gSOBI results. The number
of optimal clusters equals eleven, as that is where the clustering quality is best (bar
chart on top of the slider). From the rank histograms in Figure 11, it can be observed
that the components listed as first and eighth are only found in solution b = 0.97,
while only b = 0.99 captures components listed as fourth and seventh, as the respective
histograms contain either a green or purple box, but not both. All components and
their correlation are depicted in Figure 12 ordered by kurtosis value, which shows that
the first and second b = 0.99 components equal the second and third of the b = 0.97
results. Especially the first green and second purple components show again time-
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Figure 12: Latent time series and correlation lines for gSOBI with weights b = 0.97 and
b = 0.99 and lag sets k1 = {1, . . . , 6, 14, 15, 59, 60, 61}, k2 = {1, 2, 3} (same for both
colors). The order is according to kurtosis values.

varying oscillations, which are high during the summer months and low during winter.
By inspecting the corresponding loadings matrix (Figure 13), we can see that this
component is similarly formed by evapotranspiration (ET0) and temperature-related
variables. Similarly, the second green and third purple components show similarities in
their patterns and loadings compared to the fourth latent component of the sole gSOBI
results. The first purple and third green components show a medium correlation. The
purple component again reveals time-varying oscillation with the highest volatility in
the winter (in contrast to purple component two).

5. Discussion and Conclusions
TBSS can serve as a tool to gain insights into the data at hand as it combines a
straightforward interpretation scheme (loadings and scores) and delivers latent compo-
nents that are serially uncorrelated and maximize certain criteria important to time
series analysis: SOBI maximizes autocorrelation, vSOBI maximizes fourth-order se-
rial dependence and gSOBI is a linear combination of these two quantities. While the
theoretical implications of TBSS are well-studied, the challenge lies in finding suitable
tuning parameter settings for the dataset at hand. SOBI and vSOBI need one set
of lags; therefore, gSOBI needs two lag sets and the vSOBI/SOBI ratio parameter b.
On the order of 2T , gSOBI tuning parameter settings are possible for a time series of
length T , thus requiring systematic and efficient ways to traverse this huge parameter
space and related latent components. We described VA as a promising remedy to these
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(a) Loadings matrices for the raw data

(b) Loadings matrices for the scaled data

Figure 13: Loadings matrices for gSOBI with b = 0.97 and b = 0.99 and lag sets
k1 = {1, . . . , 6, 14, 15, 59, 60, 61}, k2 = {1, 2, 3} (same for both colors).

problems in Section 1 and Section 3.
In the presented case study, numerous parameter settings were investigated in the first
step. Based on those, three lag sets for SOBI and for vSOBI and three different b pa-
rameters with all lag set combinations for gSOBI were investigated in more detail. In
total, roughly thirty solutions were investigated in under an hour. The time effort nec-
essary to carry out the same analysis steps in R/RStudio would exceed that of TBSSvis
by far. That becomes especially clear when considering that TBSSvis is interactive, al-
lowing quick comparisons between different results. Moreover, the quality of the results
is immediately visible as all important quantities (e.g., scores, loadings matrix, corre-
lation, and MD to other results) are shown in custom-made visualizations to support
the task at hand. Qualitatively, TBSSvis offers an interactive surface to investigate
multivariate time series through the ACF function, lagged fourth moments, time series
plots, and lagged scatter plots. On the other hand, plots of different quantities that
are specific to the TBSS framework are interactively visualized. The ability to switch
easily between these two surfaces mimics the general BSS analysis framework as the
time series specific quantities influence the choice of the parameters, and consequently,
the results, leading again to refinements of the parameters. Interactively carrying out
this analysis cycle further enhances the ability to scan the TBSS methods’ parameter
space conveniently.
Finally, BSS methods were also extended to other kinds of data. For example, those
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observed at different geographical positions, i.e., spatial BSS (Nordhausen et al. 2015;
Bachoc et al. 2020). Following the successful application of VA principles to TBSS,
it stands to reason that similar benefits may be gained for other BSS methods, which
we could already show for spatial BSS tuning parameter selection (Piccolotto et al.
2022b). Thus, a logical next research step is to develop BSS theory and VA tools for
multivariate data exhibiting temporal and spatial dependencies.
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A. Some more details on TBSS methods used
As mentioned in Section 2.2, gSOBI has as special cases AMUSE, SOBI and vSOBI.
In the following, we give some more details about these methods.

A.1. AMUSE and SOBI
One of the first methods suggested to exploit serial dependence in a BSS framework
was AMUSE (Tong et al. 1990). Let ACovτ (xt) denote the autocovariance matrix of xt

at lag τ which reduces for τ = 0 to the covariance matrix, i.e., ACov0(xt) = Cov(xt).
For a lag τ ≥ 1 the AMUSE unmixing matrix W A is obtained as the matrix which
simultaneously diagonalizes Cov(xt) and ACovτ (xt) in the following way

W A Cov(xt)W ⊤
A = Ip and W A ACovτ (xt)W ⊤

A = D,

where D is a diagonal matrix with decreasing diagonal elements d1, . . . , dp. AMUSE
can be obtained via a generalized eigenvalue decomposition and it is well defined if all
diagonal elements in D are distinct, which translates to the assumptions:

IC3: ACovτ (zt) = Dτ for all τ , where Dτ denotes a diagonal matrix whose diagonal
elements depend on τ .

IC4: For at least one τ the diagonal elements of Dτ are distinct.

The statistical properties of AMUSE are discussed in Miettinen et al. (2012) and it is
well known that the performance of AMUSE depends heavily on the choice of τ which
should be chosen so that the gaps between the diagonal elements of Dτ are maximized.
Finding a good lag τ is quite challenging and AMUSE is therefore used often simply
with τ = 1.

However, in practical applications, the preferred approach is not to have to choose one
lag but rather a set of distinct lags k = {τ1, . . . , τK} and then jointly diagonalizing
the corresponding K autocovariance matrices. This approach is known as SOBI (Be-
louchrani et al. 1997) and the SOBI unmixing matrix W S, is defined as the maximizer
of

K∑
k=1

p∑
i=1

(w⊤
i ACovτk

(xt)wi)2,

under the constraint that W Cov(xt)W ⊤ = Ip, where w⊤
i denotes the ith row of W ,

i = 1, . . . , p. Usually the order of the components is fixed so that the pseudo-eigenvalues∑K
k=1

∑p
i=1(w⊤

i ACovτk
(xt)wi)2 are in descending order.

For the estimation purpose, there are many algorithms for this joint diagonalization
problem as discussed, for example, in Illner et al. (2015). Using an algorithm is nec-
essary as for finite samples the K + 1 matrices involved will usually not commute due
to measurement error and the problem is thus formulated as a minimization problem.
Two matrices as used in AMUSE can always be simultaneously diagonalized. The algo-
rithm used for the joint diagonalization has also influence on the statistical properties
of the estimator as discussed in Miettinen et al. (2014, 2016), and in the paper, we will
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always use in the case of joint diagonalization the algorithm based on Jacobi rotations
(Clarkson 1988) which seems to be the most common choice. Independent from that,
SOBI is well-defined under (IC1-IC3) and the additional assumption

IC4: The diagonal elements of ∑
i Di are strictly decreasing.

The assumption (IC4) means that the spectrum of the independent times series differs
and the lag set used in SOBI should be chosen such that for each component there
is at least one lag for which the autocorrelation differs from all other components’
autocorrelation. SOBI with one lag reduces to AMUSE but when using more lags
it is much more general. The previous condition is often evaluated by the simplified
approximation that the sum of the pseudo-eigenvalues ∑K

k=1
∑p

i=1(w⊤
i ACovτk

(xt)wi)2

should be distinct. The general motivation for SOBI vs AMUSE is that even if AMUSE
has a good lag chosen adding worse lags in SOBI will make the unmixing only minimal
worse, but the chance of having good lags chosen in SOBI is much more likely than
relying on one specific lag of AMUSE. This is also supported by the asymptotic findings
in Miettinen et al. (2014, 2016).
Tang et al. (2005a) argue that the lag selection in SOBI is still crucial and show the
considerable effects in some neuro-science applications when considering different lag
sets. But there are no guidelines for practitioners and a common default choice is to
use the K = 12 first lags. These are for example shown to be bad in the context of
the examples of Tang et al. (2005a). Taskinen et al. (2016) suggest choosing a few
different lag sets and then estimate for each of the sets, the asymptotic covariance
matrix of the estimated unmixing matrix, and choose as best set the one where the
estimated covariance matrix has the smallest volume. The limitation of this approach
is that the number of lag sets should be small as estimation of the covariance matrix
is computationally expensive and requires much stricter assumptions as specified in
(IC1)–(IC4) and also large sample sizes.
Note that the model specified by (IC1)–(IC3) is often called the second-order source
separation (SOS) model as it can be separated using second-order information alone.

A.2. vSOBI
Loosely, AMUSE and SOBI work best if the latent components have some kind of au-
toregressive moving average (ARMA) structure but are not very successful for economic
and financial times series. The reason is that by using only second-order information,
components with stochastic volatility features cannot be detected. To overcome this
issue, Matilainen et al. (2017) reformulated SOBI by introducing a non-linearity func-
tion G into the optimization problem above and yield vSOBI, with the corresponding
unmixing matrix W vS, as the maximizer of

K∑
k=1

p∑
i=1

(E(G(w⊤
i xt)G(w⊤

i xt+τk
) − (E(G(w⊤

i xt)E(G(w⊤
i xt+τk

)))2,

where xt is centered and again the constraint W Cov(xt)W ⊤ = Ip applies. The
unmixing matrix W vS can be computed for finite data using a fixed-point algorithm,
and G can be any twice continuously differentiable function and common choices are
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G(x) = x2 or G(x) = log(cosh(x)). vSOBI works under the framework (IC1) and (IC2)
and when it fails depends on the lag set chosen and on the function G. In general,
it focuses on higher order information and was designed to detect stochastic volatility
features and is not very efficient in a pure SOS model.
However, as most time series exhibit second order and higher order dependence, vSOBI
was not much investigated and the idea of gSOBI is to combine information exploited
by AMUSE/SOBI and by vSOBI.

B. R packages used on backend server
Table 2 summarizes the R which are used to derive the results described in Section 4.

Table 2: Summary of the used R packages on the backend server.

Name Version Reference
cluster 2.1.0 (Maechler et al. 2019)
digest 0.6.27 (Eddelbuettel et al. 2020)
dplyr 1.0.2 (Wickham et al. 2020)
hash 2.2.6.2 (Brown 2022)
lhs 1.1.5 (Carnell 2022)
lubridate 1.8.0 (Grolemund and Wickham 2011)
MASS 7.3-53 (Venables and Ripley 2002)
moments 0.14.1 (Komsta and Novomestky 2022)
Philentropy 0.7.0 (Drost 2018)
pryr 0.1.5 (Wickham 2021)
purrr 0.3.4 (Henry and Wickham 2020)
reshape2 1.4.4 (Wickham 2007)
SpatialBSS 0.11-0 (Muehlmann et al. 2021)
tibble 3.0.4 (Müller and Wickham 2020)
tictoc 1.1 (Izrailev 2022)
tsBSS 0.5.6 (Matilainen et al. 2020)
zoo 1.8-8 (Zeileis and Grothendieck 2005)

C. Data Preparation
The following R code is used to derive a CSV file with the considered dataset in Section 4
from the package SpaceTimeBSS version 0.2-0 (Muehlmann et al. 2022). The time
series of the dataset are depicted in Figure 6.

library("SpaceTimeBSS")
data("meteo_veneto")

dat <- meteo_veneto[meteo_veneto$sp.ID == 3, ]
dat$x <- NULL
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dat$y <- NULL
dat$sp.ID <- NULL
dat$timeIndex <- as.Date("2000-01-01") + (dat$timeIndex - 1) * 7
names(dat) <- c("date", "ET0", "RAD", "TMX", "TMA",

"TMN", "HMX", "HMN", "PRE", "WIN")

write.csv(dat, "meteo_veneto_ts.csv", row.names = FALSE)

D. Parameter Settings Used for Figures

Table 3: All parameter settings used for investigations in Section 4.

b Lag set k1 Lag set k2
0 — 1, 2, 3

0.95 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 1, 2, 3
0.99 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 1, 2, 3

1 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 —
0.9 1, 2, 3, 4, 5, 6, 14, 15, 59, 60, 61 1, 2, 3

0.95 1, 2, 3, 4, 5, 6, 14, 15, 59, 60, 61 1, 2, 3
0.97 1, 2, 3, 4, 5, 6, 14, 15, 59, 60, 61 1, 2, 3
0.99 1, 2, 3, 4, 5, 6, 14, 15, 59, 60, 61 1, 2, 3

1 1, 2, 3, 4, 5, 6, 14, 15, 59, 60, 61 —
0.9 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14,

16, 18, 20, 25, 30, 35, 40, 45, 50, 55,
60, 65, 70, 75, 80, 85, 90, 95, 100,
120, 140, 160, 180, 200, 220, 240,
260, 280, 300

1, 2, 3

0.99 1, 2, 3, 4, 12, 36, 52, 104, 208 1
0.49 52, 151, 190, 196, 249, 434, 436, 486,

532, 534, 613, 621, 634, 650
11, 107, 109, 166, 250, 253, 256, 327,
337, 362, 367, 388, 394, 435, 461,
494, 502, 867

0.67 141, 455, 872 374, 402, 420, 480, 521, 571, 574,
619, 791, 824
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