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Abstract

Studying the content and impact of news articles has been a recurring in-
terest in economics, finance, psychology, and political and media literature over
the last 20 years. Most of these offerings focus on specific qualities or outcomes
related to their textual data, which limits their applicability and scope. Instead,
we use novel datasets that adopt a more holistic approach to data gathering and
text mining, allowing texts to speak for themselves without shackling them with
presupposed goals or biases. Our data consists of networks of nodes represent-
ing key performance indicators of companies, industries, countries, and events.
These nodes are linked by edges weighted by the number of times the concepts
were connected in media articles between January 2018 and January 2022. We
study these networks through the lens of graph theory and use modularity-based
clustering, in the form of the Leiden algorithm to group nodes into information-
filled communities. We showcase the potential of such data by exploring the
evolution of our dynamic networks and their metrics over time, which highlights
their ability to tell coherent and concise stories about the world economy.
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ten media analysis, R, Gephi.
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1. Introduction
Studies of media output have been a mainstay feature of journals in economics, finance,
psychology, and political and media literature for the last two decades. Regarded as
the fourth estate, media outlets play a vital role in disseminating information and
guiding public opinions and narratives. Of the many mediums permeating news media,
the oldest by far is that of print, stretching as far back as the early 17th century
and maintaining relevance to this day through newspapers, magazines, tabloids, and
their more recently employed online counterparts. The proliferation of the latter made
textual data available for mining and studying, inviting scores of researchers to dissect
and explore news articles in hopes of uncovering something greater. For example, a set
of studies attempted to establish that journalism not only reports on economic news,
but also has tangible impacts on public perception (see Nadeau et al. (1999) and De Boef
and Kellstedt (2004) to name a few), while another group discovered and examined a
distinctly negative bias within media coverage (see Goidel and Langley (1995), Lamla
and Lein (2008), and Soroka et al. (2015)). Others focused on the importance and
influence of investigative journalism (see Hamilton (2016) and Mahone et al. (2019)
for example), with Turkel et al. (2021) recently developing a method to measure the
prevalence of said journalism in the space with the aid of text mining. Textual data
has also seen recent use to develop a “crisis index” focusing on economic recessions
(Le Mezo and Ferrari Minesso 2020). These are only a tip of the iceberg in terms of
the depth and breadth of media-based research.

However, most of these approaches focus on their own goals or presupposed conclusions,
limiting the way they extract, interact with, and represent the data. For human coding
and keyword-search-based methods for example (like Hamilton (2016) and Mahone
et al. (2019)), the application guides the selected keywords, which narrows the scope
of the study to fit its objectives. In this paper, we use sprawling and pliable datasets
that can be molded to fit many a goal. This data comes in the form of networks
of performance indicators of companies, industries, countries, and events, the edges
between which weighted by the number of times they were linked in written media. The
scale of the data allows using graph theory techniques to study, interpret, and visualize
news-based data in new and innovative ways. Our work focuses on the dynamic case,
where the evolution of the network can be observed and tracked rather smoothly, but
the methods explained and applied in this work can be extrapolated to static snapshots
of the data accumulated over long periods of time.

The article attempts to answer multiple questions, the first of which revolves around
the topic of handling, manipulating, pruning, and aggregating data of this nature and
scale into workable datasets that maintain the dynamic structure of the networks. To
this end, we utilize multiple pruning techniques ranging from basic cutoffs of unimpor-
tant links and edges to a more advanced network connectivity-based approach. We also
make use of the data’s dynamic nature to create a series of weekly network snapshots
between January 2018 and January 2022, and aggregate dynamically by implementing
a fluid “memory” into the datasets. We then wish to examine community structure
within the graphs, which is rather challenging given the dynamic nature of the data.
Existing dynamic community detection algorithms tend to “oversmooth” in our case,
as most algorithms emphasize efficient runtime through the enforced stability of clus-
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ters. However, the “memory” implemented into our series of networks creates smooth
transitions, and allows us to apply intuitive modularity-based clustering through the
Leiden algorithm (Traag et al. 2019), a worthy successor to the popular Louvain algo-
rithm (Blondel et al. 2008). Using these datasets and clustering techniques, we then
create compelling dynamic visualizations of the world economy from the perspective of
(mostly Western) media. We utilize R (R Core Team 2022) packages and the external
software Gephi (Bastian et al. 2009) to generate interactive and elaborate yet legible
figures that are adaptable to each economic actor’s prominence within the network.
The paper also attempts the ambitious task of quantifying the true influence of compa-
nies, industries, and countries in ways that do not directly rely on monetary measures
like stock prices or GDP, but instead fully focus on the entities’ media presence and
interactions with other (non-)similar economic actors. We first do so through a study
of nodes that employs popular graph theory metrics like the strength and betweenness
centrality, but also through a novel measure of cluster dominance, which tries to assess
the importance of an economic actor to the local community of nodes detected around
it. We also extrapolate this exact same mindset to the study of links between nodes,
where we employ our novel measure in similar fashion to reveal the most influential
connections between economic actors. The paper also delves into a deeper analysis of
community structure by studying the strongest clusters generated through the Leiden
algorithm. We then apply all these methodologies to find the most influential compa-
nies from a media point of view and concisely explain their evolution over the course
of the study period. All these approaches were discussed with the advent of Covid-19
in mind, which creates an extra layer of complexity to the analysis.
The remainder of the paper is organized as follows. In Section 2, we describe our data
and its sources in detail. Section 3 briefly touches on the chosen modularity-based clus-
tering algorithm and how we adapt it to our dynamic case in Subsections 3.1 and 3.2.
It then features multiple graph theory-based applications to the data, including visu-
alization in Subsection 3.3, studies of influential nodes, edges, clusters, and companies
in Subections 3.4-3.7 respectively. Section 4 concludes.

2. Data Description
Our data is directly supplied by a pioneering American firm known as Causality Link1,
which encompasses a tremendous amount of media-related information collected over
the last 6 years. The company’s servers use web-crawling algorithms to gather articles
from 172 reputable western media/news related websites. They then utilize state-of-
the-art text-mining algorithms to detect connections between key performance indica-
tors (KPI), like supply, demand, profits, losses, and prices for different companies and
industries. Laudy et al. (2022) detail these intricate methodologies that generate prob-
abilistic causal models (also known as Bayesian networks) through natural language
processing (NLP) techniques. For example, the statement “The increase in Apple de-
mand leads to higher profits” would be interpreted as a positive connection between the
KPIs “Apple demand” and “Apple profits”, where the order of the KPIs indicates the
direction of the connection. In this case, “Apple” would be the KPI’s prefix or parent.

1Causality Link’s AI-powered research platform at https://causalitylink.com/

https://causalitylink.com/
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These KPIs are not limited to companies and industries, as they can include macro-
level performance indicators like GDP and exports/imports for countries and regions.
To illustrate, the statement “The increase in population is creating stress on natural re-
sources” would be parsed into a negative relationship between “world population” and
“world resources”, where “world” would be the prefix that encompasses general macro
indicators. After some pruning (to be explained later), our data retains 97 companies
and 69 industries. Topical/seasonal KPIs such as trade deals, wars, natural disasters,
and epidemics can also find their way into the transformed data, and can sometimes
absolutely dominate its immediate neighborhoods, as our studies around Covid-19 will
show. Each mention of a connection between two KPIs counts as one entry in the
dataset and is referenced by date, which allows users to factor out older observations.
The text-mining algorithms also attempt to determine whether the connection is dis-
cussing the past, present, or future, as well as the perceived strength of said connection.
The datasets supplied by Causality Link should serve as a detailed and comprehensive
summary of western media output, which ultimately reflects the media’s view of the
world and its economy.
On a more technical level, Causality Link defines its own ontology of countries, in-
dustries, and companies, as well as the KPIs for each category. The algorithms then
search for mentions/synonyms for the key words and attempt to decode its meaning.
This hard-coded approach allows the firm to focus on the most relevant and compelling
parts of the studied texts, distilling an article’s message to its purest form and gen-
erating a rough but concise summary of what it was trying to convey. The defined
ontology is quite wide and exhaustive, and we rarely ever stumbled upon data that
was not parsed or understood properly. That being said, it is worth noting that the
firm only creates causal links between the KPIs of the parent countries, industries,
and companies, and not between the parents themselves. While this aims to center
the discussion around the connections between key performance indicators of the par-
ents, it has the unintended side effect of limiting the influence of otherwise powerful
parents whose KPIs are not explicitly examined very often in western media. For ex-
ample, China, one of the word’s most influential nations in terms of economic impact
and dominance and currently the second largest economy, finds itself rather underrep-
resented in comparison to the USA in the processed data, as seen in the case study
in Section 3. Since concrete data and statistics about the eastern superpower is not
widely available, the text processing algorithms have a hard time parsing the vague
mentions of China into meaningful causal links. While this complication might hold
us back from modelling the true world economy, it can still give us a deeply insightful
look into western media’s view of the economy, exposing interesting quirks that can
only be seen when examining textual data under the “macro-scope” employed in this
work. In the sequel, we employ these weighted networks in their undirected form, as
the inclusion of directed edges limits the set of tools we can use to analyze the data.
Aggregated and processed versions of these datasets have been compiled into a database
of weekly snapshots with a total of 1,108,866 entries (81.7 MB). The processing mech-
anisms needed to create this database are laid out in the sequel, and the database as
well as our implemented methods and code are available for download to the public at
https://github.com/ya-tls/world-economy-dynamics.

https://github.com/ya-tls/world-economy-dynamics
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3. Dynamic Graph Analysis and Main Results

3.1. Clustering and community detection
This section briefly introduces the preferred clustering approach for our data. First, it is
worth noting that other well-known clustering methodologies like k-means (Lloyd 1982)
cannot handle the type of data we have at hand: k-means typically operates on points in
a vector space and attempts to use available explanatory variables to group said points.
It does not operate on adjacency matrices or edge lists directly. This is where modu-
larity optimization shines. The framework attempts to maximize a suitable objective
function that reflects the desired qualities of a partitioned graph (Newman and Girvan
2004). Multiple algorithms have attempted to optimize modularity through hierarchi-
cal agglomeration (Clauset et al. 2004), extremal optimisation (Duch and Arenas 2005),
spectral clustering (Newman 2006), and simulated annealing (Reichardt and Bornholdt
2006) approaches. However, these approaches do not seem to scale well enough with
our data. Such datasets call for fast greedy methods such as the Louvain algorithm
(Blondel et al. 2008), or its more robust successor, the Leiden algorithm (Traag et al.
2019). The latter will serve as our main clustering device going forward. For the sake
of completeness, we provide brief explanations of modularity-based clustering and the
Leiden algorithm. Suppose that A is the adjacency matrix of an unweighted graph with
n nodes such that Aij = 1 if nodes i, j ∈ {1, . . . , n} are connected by an edge, and 0
otherwise, and further suppose that the graph’s nodes are grouped into k ∈ N clusters
(to be updated and determined through the algorithm). General modularity can then
be defined as

Q = 1
2m

∑
i ̸=j

(
Aij − γ

aiaj

2m

)
δ(ci, cj),

where ai = ∑
j Aij is the degree of node i (number of edges connected to node i),

m = ∑
i ̸=j Aij/2 is the total number of edges in the graph, and ci ∈ {1, . . . , k} is the

index of the cluster containing node i among the considered k clusters of the graph, with
δ(ci, cj) being 1 if ci = cj and 0 otherwise. This efficient formulation has the exemplary
quality of weighing down links between nodes with high degrees, as such nodes have a
high chance of being connected regardless of any underlying community structure. This
prevents hubs, or nodes with high degrees, from automatically dominating clusters. As
for γ ∈ R+, it is known as the “resolution” parameter, which controls the granularity
of clustering, i.e., larger γ values lead to bigger numbers of communities, and vice
versa. As such, choices of γ are largely based on preference rather than optimality
to some criterion. However, γ can also be interpreted as the coefficient weighing the
contributions of links against non-links in a network. We thus select γ = 1 in our
analysis to maintain parity between the two, and to open up avenues for comparison
with our modularity clustering algorithms in the future, as most (like the popular
Louvain algorithm) utilize this same choice. We use a weighted version of Q in our
analysis, as implemented in the find_partition and cluster-leiden functions from
the R packages leidenAlg (Kharchenko et al. 2021) and igraph (Csárdi et al. 2023)
respectively, but we will restrict this explanation to the unweighted case to maintain
brevity.
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While the Leiden algorithm can be used to target different types of objective functions,
we focus on optimizing Q. The Leiden algorithm starts from a singleton partition
(each node is its own cluster so that the initial number k of clusters is l0 = n) and
operates by looping three main stages:

• Local Moving of Nodes: individual nodes are greedily moved and merged
across clusters to generate the highest gains in modularity Q. Each node is
visited and evaluated for potential Q improvements at least once, and nodes are
re-visited only if their neighboring nodes experience cluster movement. This stage
yields a temporary number of clusters k = l1, with l1 ≤ l0.

• Refinement: each cluster created in the previous stage is treated as its own
graph, and the nodes within are again assigned into singleton communities. These
nodes then attempt to merge with neighboring well-connected communities un-
til they find a sub-cluster that improves Q. This aims to uncover any potential
sub-communities within each cluster created in the first stage, as well as en-
sure intra-cluster connectivity, yielding a temporary number of clusters k = l2,
with l2 ≥ l1.

• Network Aggregation: each cluster of vertices is aggregated into a single node,
creating a graph of aggregated nodes. This graph is then exposed to the three-
stage loop again, starting from l0 = l2, and the loop continues until no further
improvement in Q can be found, and the final k will be set. It’s worth noting
that aggregating the clusters does change the number of nodes considered within
the algorithm’s loops, but these aggregates are then deconstructed back into
their individual node constituents, alongside their cluster assignments, at the
algorithm’s end.

These steps allow the Leiden algorithm to improve on its Louvain counterpart in two
aspects: the implementation of faster local node moving algorithms (node re-visits are
conditional on neighborhood movements), and the inclusion of the additional refinement
stage, which boosts intra-community connectivity. Ultimately, the Leiden algorithm
offers an efficient and scalable approach to modularity optimization, two qualities that
are of the utmost importance in the case of our large datasets.
However, all of the algorithms mentioned above, including the chosen Leiden algorithm,
are predominantly used to cluster static data, whereas our case involves dynamically
evolving data with varying numbers of nodes and edges over time. A few attempts have
been made to handle such data in Held et al. (2016) and more recently in Seifikar et al.
(2020) and Zhuang and Li (2019). Nevertheless, these attempts emphasize runtime
efficiency by promoting the stability of network partitions over time, which does not
truly allow our data to speak for itself. To accommodate our unique database, we
introduce an approach that strikes a balance between partition stability and sensitivity
to changes by implementing a “memory” aspect into the data itself. At each point in
time, data is collected and summarized from the last three preceding months, which
yields smoothness in the evolution of the partitions but still permits shocks to fully
manifest and impact the network and its structures. This data can then be fed directly
into the Leiden algorithm at each time period. This novel framework is very intuitive
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and flexible, as the studied duration at each time period can be customized to fit the
application at hand, and different clustering algorithms can be utilized without issues.
In this paper, we use 3 months (a quarter) as the preferred period of study and the
Leiden algorithm as our clustering method of choice because this combination ends up
achieving the balance between stability and sensitivity that we strive for.

3.2. Data handling
Dynamic graphs offer a unique chance to study the evolution of our networks. In
this analysis, we focus on the period between January 2018 and January 2022, which
encompasses times of stability and relative peace, as well as times of great unrest
with the advent of Covid-19. The data is organized into weekly snapshots observed
every Monday. At each point of observation, we make use of data collected over the
preceding 3 months. This data manipulation was performed directly on the company’s
proprietary AWS (Amazon Web Services) servers using SQL. This ingrained “memory”
mechanism provides fluidity to the evolution of the network without hindering major
shocks from manifesting. However, the massive scope of the data is challenging to deal
with, as it creates unnecessary clutter and partially conceals interesting features of our
dynamic networks. To account for this issue, we lightly prune the data by removing
links with less than 25 mentions accumulated over each 3 month period. This filters out
inconsequential links while maintaining the integrity of our network structure. We then
employ more advanced screening by focusing on the largest connected subgraph within
the network, i.e., the biggest subset of the graph (by vertex number) where every node
is connected, be it directly (direct edge between the nodes) or indirectly (multiple hops
through edges). This stems from the data-based observation that the most influential
actors in the economy are deeply connected and can form their own expressive graph.
Figure 1 clearly demonstrates this observation. The figure showcases different metrics
for information loss resulting from the reliance on the largest connected subgraph.
Panel (a), which displays the number of nodes in both the full graph and the largest
connected subgraph over the studied time period, shows that we are removing quite a
bit of vertices. However, panels (b) and (c), which focus on the evolution of the number
of edges and sum of edge weights respectively, reveal that the loss in either metric is
barely noticeable. This implies that the dropped vertices, although numerous, were only
connected by a few lightly-weighted edges, and that their impact on the overarching
structure of the graph is rather minuscule. The huge shift in node count, edge count,
and sum of edge weights around March 2020 is worth noting, as it coincides with the
point at which Covid-19 had reached pandemic status according to the World Health
Organization. Since our pruning mechanism drops edges with less than 25 mentions
over a 3 month “memory” period, these shifts imply that the increased activity attached
to the virus affected a great number of nodes, allowing new entrants to pass through
our pruning system. These jumps will be examined and expanded upon in the sequel.

3.3. Visualization
While network data, particularly in its dynamic form, is not the easiest to unravel an-
alytically, it makes up for it in spades in terms of visualization efficacy. To emphasize
this dynamic quality of our data, we leverage R and the powerful igraph package, as well
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Figure 1: Studying information loss caused by using the largest connected subgraph
through the weekly evolution of (a) the number of nodes, (b) the number of edges, and
(c) the sum of edge weights.

as Gephi and SigmaJS2 to create an informative and interactive timeline of clustered net-
works, which can be found at https://ya-tls.github.io/world-economy-dynamics/
networks/2018-01/. The timeline uses the aforementioned weekly data between Jan-
uary 2018 and January 2022, and utilizes the Force Atlas 2 placement algorithm
(Jacomy et al. 2014) to create a suitable layout for each point in time. To ensure
the legibility of our plots, we control the size of the nodes to match their degree, which
is the number of links or edges connected to each vertex. This allows KPIs with high
connectivity to shine in the midst of their lesser competition. We also tie each edge’s
width to its weight to give more prominence to links with large numbers of mentions.
In addition to these features, we partition and color-code our graphs using the Leiden
algorithm with the resolution parameter γ = 1, which facilitates tracking the evolution
of community structures and sizes over time. This powerful timeline enables users to
fully interact with the networks and their components, which presents a perfect gate-
way into the more advanced analysis we carry out in the subsequent sections. The
timeline shows a rather consistent ensemble of nodes and clusters from January 2018 to
February 2020, with nodes from the world (macro indicators), USA, food products, oil
and gas consumables, and capital markets prefixes forming their own respective clusters
and dominating the graph. However, starting from around March 2020, we see mas-
sive shifts in our network structure with the “pandemic” nodes taking over the graph,
which coincides with the WHO declaring Covid-19 as a pandemic. Since interactive
timelines are not feasible visualization tools within the confines of this paper, and to
give readers a taste of what the timelines can bring to the table, we visualize key points

2The SigmaJS open-source library: https://www.sigmajs.org/

https://ya-tls.github.io/world-economy-dynamics/networks/2018-01/
https://ya-tls.github.io/world-economy-dynamics/networks/2018-01/
https://www.sigmajs.org/
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Figure 2: Clustered network visualization using weekly data for (a) the first week of
January 2018 (first period), (b) the last week of December 2019, (c) the first week of
March 2020, (d) the first week of April 2020, (e) the first week of June 2020, and (f)
the first week of January 2022 (last period).

in time using Gephi and the Force Atlas 2 layout algorithm. The results can be found
in Figure 2, where panels (a)-(f) respectively show our networks color-coded according
to cluster size (number of nodes within the cluster) for the first week of January 2018,
which is the first observation period, the last week of December 2019, which marks the
last period of relative calm before Covid-19, the first weeks of both March and April
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Table 1: Node dictionary for the most influential nodes in Figure 2.

KPI Meaning

world-gdp A “macro” (world) indicator for production all
around the world

capital-stock_market An indicator centered around the stock market
and its fluctuations

oil_gas-prices A price indicator for oil and gas products and
their many derivatives

food-production A production indicator revolving around the
worldwide supply chain for food products

world-holiday A macro event indicator related to holidays
celebrated around the world, especially Christmas

world-human_rights
A macro indicator that centers around human
rights violations or discussions, specifically related to
healthcare access and poverty

world-population
A macro indicator that focuses on
birth, mortality, and immigration rates for
populations, as well as casualties from disease/war

usa-project
An event indicator that relates to US government
sponsored plans in the education, health-care,
energy, capital markets, and agricultural sectors

usa-reform An event indicator that is mostly concerned
with US policy regulations and tax cuts/reforms

gold-prices A price indicator for gold

education-usage
An indicator related to the usage and proliferation
of new educational tools, specifically virtual
and remote learning

pharmaceuticals-usage
An indicator centered around the usage
and proliferation of pharmaceuticals, specifically
the newly created Covid-19 vaccines

2020, which correspond with the WHO’s pandemic announcement and the subsequent
spread of the virus in Europe, the first week of June 2020, which is around the time
the virus truly ravaged the USA (more than 100,000 deaths and two million recorded
cases; the period also coincides with the point at which the maximum sum of weights
is achieved in panel (c) of Figure 1), and the final observation period in the first week
of January 2022. We also present a small node dictionary to introduce the most influ-
ential nodes in Table 1. We will use this figure to give a summarized explanation of
the network and community evolution seen in the interactive graph.
Panels (a) and (b) show a rather stable lineup of nodes and communities, even if those
communities are trading spots in the cluster size rankings. Nodes from the food prod-
ucts prefix, specifically “food-production” seem to be highly influential, with the latter
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enjoying the highest degree (i.e., number of edges connected to each vertex), as repre-
sented by the node’s size in both panels. Vertices related to macro indicators such as
“world_gdp” and “world_population”, as well as those centered around projects, plans,
reforms, and taxes in the USA also share center stage, with the latter exerting a powerful
magnetic pull and creating the largest cluster in terms of node count in January 2018.
This top spot is taken over by the capital markets cluster in December 2019, forming a
high-powered and well-populated community around the stock market, specifically the
New York Exchange in the form of “capital-stock_market”. The oil and gas industry
is also well represented, as it seems to pull a consistently large cluster in both panels,
and the price indicator “oil_gas-price” enjoys respectable prominence. We start see-
ing a sizable shift in community structure as Covid-19 enters the picture in panel (c),
with “china-pandemic” and “world-pandemic” suddenly jumping to the forefront of
the network in March 2020. The relative stability of the graphs in panels (a) and (b)
then violently implodes as Covid-19 spreads in April 2020, as panel (d) clearly shows
the pandemic nodes “world-pandemic” and “usa-pandemic” dominating the graph and
forming the two largest clusters in the network. Panel (e) provides an even more ex-
treme visual of this dominance in June 2020, as the powerful nodes of the first two pan-
els fade into the background, which further illustrates the severity of the pandemic’s
impact on every single aspect of the economy. Panel (f), on the other hand, shows
the world economy in a state of recovery and adaptation, with nodes like “education-
usage”, “pharmaceuticals-usage”, and “health_care_providers_services-usage” enjoy-
ing a huge push in the media, the first due to the seismic blow dealt to the education
industry during the pandemic and the many efforts taken to re-establish some sense
of normality, and the other two reflecting the extensive media coverage of the pan-
demic’s human toll and the numerous vaccines that attempted to counter and limit
its spread. This short analysis of the panels reveals how much potential these types
of datasets hold: a six-panel figure gave us enough information to write a concise
yet insightful exposition about the evolution of the world economy. We strongly en-
courage the reader to experience this evolution through our interactive visualization
in https://ya-tls.github.io/world-economy-dynamics/networks/2018-01/. We
can push this type of analysis much further by employing the tools and metrics of
graph theory to concretely identify nodes, clusters, and edges of interest, and track the
evolution of companies and their dynamic interaction with the entire graph, as done in
the next sections.

3.4. Influential nodes
A simple but intuitive way of identifying the main feature of a graph is to study its
most powerful and influential nodes. However, it is not that simple to define what
“powerful” and “influential” mean in the context of graph theory, as a plethora of
node-related metrics attempt to quantify these concepts in different ways. We explore
three such metrics in this section: two well-known devices, and one completely novel
measure. The first is the strength, also known as the weighted degree, which can be
expressed as

Strengthi =
∑

j

wij,

with i and j as nodes and wij ∈ R+ as the weight of the connection between the two

https://ya-tls.github.io/world-economy-dynamics/networks/2018-01/
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nodes, or equivalently, the number of times they were linked in written media (wij = 0
implies the lack of an edge). In essence, this metric sums the weights of all connections
linked to a certain node, which gives us a measure of its importance in the graph.
Nodes with higher strength often feature as hubs of influence in weighted graphs, but
the metric can be somewhat deceiving if a few links enjoy an abnormally large weight.
To remedy this defect, we utilize a more refined way of quantifying the influence of a
node while equally weighing the different edges connected to it. The metric is known
as betweenness centrality (see p.47 of Kolaczyk and Csárdi (2014)), which relies on the
number of “shortest paths” passing through each vertex. In essence, one can find a
set of shortest paths between pairs of vertices, i.e., the set of paths that connect two
nodes (not necessarily with a direct edge) with the least required number of edges, or
“jumps”. For nodes u, v, and i, the betweenness centrality of node i can be defined as
follows:

Betweenness Centralityi =
∑

u̸=v ̸=i

σuv(i)
σuv

,

where σuv is the number of shortest paths between nodes u and v, and σuv(i) is the
number of shortest paths between u and v that pass through node i. Vertices with
high centrality are often regarded as highly influential, as they can exert control over
the network by providing short traversal paths between otherwise disconnected nodes.
Combined with strength, betweenness centrality can help identify truly powerful nodes
within these huge, ever-evolving networks.
However, these two measures are predominantly global: they utilize all available edges
with no consideration for whether a node can accumulate its own community. A novel
way to examine a node’s gravitational potential is by clustering the data, then checking
whether said node “dominates” the cluster. To establish dominance, we use the Leiden
algorithm explained in Section 3.1 with γ = 1 to partition networks, and then treat
each community as a completely separate graph. Inside these subgraphs, we then re-
compute betweenness centrality, and declare the node with the highest value of the
metric as dominant. We choose betweenness instead of strength because the former is
more concerned with centrality, which is exactly the quality we are looking for.
Using the above setup, we can now spot nodes with exceptionally high numbers of
mentions using the strength, nodes that are highly central and pivotal to the over-
all connectivity of the graph using betweenness centrality, and nodes with significant
gravitational pulls using the cluster dominance criterion. However, since we are dealing
with dynamic graphs, we cannot closely examine each data snapshot separately. We
opt for a more holistic approach by finding the top 5 nodes according to the first two
metrics for each snapshot, and then counting the number of times a node was featured
in the top 5 over time, divided by the length of the studied time period. This essentially
generates the proportion or percentage of time a node managed to crack the top 5 for
each metric. The third criterion, cluster dominance, requires more delicate handling, as
the act of dominating a cluster is only as impressive as the size and importance of the
cluster being dominated. We address this by ranking the top 5 nodes by the size (num-
ber of nodes) of the clusters they dominate, which guarantees that top-ranking nodes
are associated with large, prominent communities. We also choose to study the data in
two portions: the pre-Covid-19 data, extending from January 2018 to February 2020,
and the post-Covid-19 data, extending from March 2020 to January 2022. We choose
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Figure 3: Top nodes by (a) strength, (b) betweenness centrality, and (c) cluster
dominance. The inner chart represents 112 weeks between January 2018 and February
2020, while the outer chart represents 98 weeks between March 2020 and January 2022.

March 2020 because it marks the pivotal point where the WHO declared Covid-19 as
a pandemic. This allows us to analyze the state of the world before the advent of the
infectious virus and contrast it with the times of its spread and aftermath. Figure 3
showcases a nested piechart of the top nodes for each metric, where the inner and outer
charts present results for the pre and post-Covid-19 data respectively. On the charts,
we only display node names and percentages for nodes that feature in the top 5 for each
metric more than 10% of the time, while the legend shows all relevant information.
We first focus on the pre-Covid-19 era. The inner circles of Figure 3 reveal that “food-
production” and “world-gdp” are extremely influential in both a global and local sense
in the pre-virus era, as they successfully maintain high spots for strength (panel (a)),
betweenness centrality (panel (b)), and cluster dominance (panel (c)). For example,
“food-production” achieves 100% for both strength and betweenness, which implies
that the node was in the top 5 vertices for both metrics in every week before the
advent of Covid-19. It also sits at a 91.1% for cluster dominance, which indicates that
it managed to dominate one of the five biggest clusters for 91.1% of the weeks in the
pre-virus period. Meanwhile, nodes like “usa-project” and “usa-reform” perform fairly
well for the first 2 metrics but fall short in the cluster dominance department, which
implies that these nodes do not enjoy the same gravitational pull as the two vertices
discussed earlier. The oil and gas prices node follows a somewhat similar trend as
it cements its position in the top 5 for node strength, but wavers in the other two
rankings. This suggests that while oil and gas prices receive extensive media attention,
discussions of their impact seems to be rather isolated to the field and its immediate
neighbors which does not translate into consistent placement for metrics that require
high centrality and clustering potential. On the other hand, the stock market node
falls behind in terms of strength but picks up some steam in the centrality rankings,
and achieves a perfect 100% rate for the cluster dominance criterion. The node, which
corresponds to stock markets and their fluctuations, seems to exert a powerful draw on
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a large number of nodes, which makes sense given the real world implications of this
influential market. An even more extreme example of a node that falters globally but
excels locally is the gold-prices vertex, which falls short of the top 5 for the first two
metrics while performing fairly well for clustering potential (more on this in Section 3.6).
Another interesting observation is that USA-based nodes are heavily featured at the
top, while those of other economic superpowers, say China, are missing. Whether this
is the result of an American leaning bias in western media, a lack of concrete data that
complicates parsing relevant KPIs about China, or a combination of the two is unclear.
This analysis, however, reveals very interesting quirks about the representative quality
of data gathered from western media, and suggests that their view of the world is quite
USA-centric.

We now turn our attention to the post Covid-19 era. The outer circles of Figure 3 tell a
strikingly different story. The pandemic nodes “world-pandemic” and “usa-pandemic”
reign supreme over nearly all three metrics, which is indicative of the severe impact of
the virus on the world economy and the extensive coverage it subsequently received.
It is worth noting that while the “china-pandemic” node does make it into the top 5,
it again did not receive the same attention as its world and USA counterparts. The
“world-population” node, which mainly focuses on access to healthcare service, makes
its debut into the top 5 with an extremely strong showing in the strength criterion,
which sheds light on the media’s scrutiny of the accessibility to and performance of
the healthcare system in face of crisis. Another newcomer is “tourism-revenue”, which
seems to find some footing in the betweenness centrality and cluster dominance metrics,
highlighting the drastic toll of pandemic-related lockdowns on the industry. Returning
faces like “food-production” and “world-gdp” continue to perform very well in the
strength and centrality criteria, but their cluster dominance is much diminished by
the overwhelming pandemic nodes. However, the stock market and gold prices nodes
retain their clustering potential, which exemplifies their communal power. Examining
this figure motivates studying the evolution of some of these metrics over time for our
influential nodes. Figure 4 showcases the strength of some nodes of interest as solid
lines, in addition to the maximum recorded metric as a dashed line, between January
2018 and January 2022, while Figure 5 displays their normalized betweenness centrality
in a similar fashion; normalization is done through 2 × (Betweenness Centrality)/(n −
1)(n − 2), where n is the number of nodes in the network.

Figure 4 tells a very direct story: the three pandemic nodes accumulate negligible
strengths between January 2018 and February 2020, where the food production node
consistently dominates the metric. However, March 2020 sees the three nodes of inter-
est begin a meteoric rise, with the USA and “world” pandemic nodes overtaking food
production by a wide margin, and the “world”-based vertex establishing a comfortable
lead over all competitors. It is worth noting that all three pandemic nodes peak rather
early around May 2020, and then begin a systematic decline which signifies that the
panic around the pandemic was slowly tapering off. However, even during this decline,
the “world” pandemic node retains its position at the top, implying the devastating
impact Covid-19 continued to have long after it first struck. Another interesting ob-
servation revolves around the “world-gdp” node, which also overtakes the dominant
food production node around the beginning of the pandemic’s expansion. This can
be attributed to the catastrophic economic impact of the virus and its aftermath, as



Journal of Data Science, Statistics, and Visualisation 15

Figure 4: Weekly evolution of strengths for nodes of interest.

Figure 5: Weekly evolution of betweenness centrality for nodes of interest.

the potent food node seems to regain its lead on GDP as the pandemic slows downs.
Figure 5 hits mostly similar narrative notes, as food production again dominates the
graph between for the majority of the pre-Covid-19 era, save for a brief period in the
beginning of 2018 where “usa-reform” took the lead, only to get completely crushed by
the world pandemic node after March 2020. The latter’s betweenness centrality spikes
to unprecedented levels that it manages to maintain over the remaining duration of
2020 and the first three quarters of 2021. While the USA and China Covid-19 nodes
fail to rise to the same heights as their “world” counterpart, their betweenness cen-
trality still enjoys a sizeable bump around March 2020. World GDP again overtakes
food production after the pandemic strikes, which is consistent with the behavior of
the strengths seen earlier. These shifts in centrality, particularly that for the world
pandemic node, are emblematic of the severe impact of Covid-19 and the chokehold it
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places on many different avenues of the world economy, bringing together vertices that
might have been isolated before the emergence of the pandemic.

3.5. Influential links
Having explored the most influential nodes in our network, the next logical step would
be to study the links between them. We wish to unravel links that truly play a defining
role within our network structures. One way to identify such links is to simply look
at their weights, which reflects the number of mentions a specific link has received.
While extremely straightforward and intuitive, the metric does not concern itself with
the edge’s contribution to the network’s connectivity, e.g., it can end up focusing on
intra-industry links that are indeed powerful but not as conducive to important inter-
industry interactions. To this end, we can also evaluate links using the edge betweenness
construct, which is simply a link analogue to the node betweenness centrality concept
discussed earlier. Similarly to its node counterpart, this metric can reveal links that
are inextricable to the overall connectivity of the graph, which should allow vital inter-
industry connections to shine. However, since these two metrics are very global in
nature, they tend to ignore the local impact of links that might be key to internal
community structures within the graph. To capture this particular feature, we borrow
the cluster dominance concept introduced in Section 3.4, but we apply it to edges by
pinpointing links with the highest edge betweennes inside each subgraph. This allows
us to highlight edges that are paramount to within-cluster connectivity. We look at the
top 5 edges from each time period for each metric (and the cluster dominance ranking
is determined by the size of the cluster “dominated” by the link) and then create an
all-encompassing ranking for the pre and post Covid-19 eras as seen in the last section.
However, we choose to present the results as bar plots instead of piecharts, as tracking
the top 5 edges from each time period produces an extremely large number of edges to
keep an eye on, and bar plots allow us to limit the presentation to interesting edges.
We plot the results in Figures 6 and 7 for the two respective periods.
Figure 6 focuses on the pre-Covid-19 era and sees a key link from the oil and gas in-
dustry and a plethora of powerful food chain-related edges dominate the edge weight
category. Capital markets and stock exchanges receive better representation in the
edge betweenness and cluster dominance categories, with the link between the New
York Stock Exchange and the overall stock market topping both metrics. The con-
nection between Amazon revenues and the “world-holiday” node takes second place
in the edge betweenness ranking, which emphasizes Amazon’s ever expanding role in
satisfying consumer demand. The intricate connection between USA interest rates and
the macro indicator “world-gdp” receives some well-deserved attention as it contends
for the top spots for cluster dominance. It is worth noting that the top links for the
edge betweenness and cluster dominance metrics seem to struggle for consistency, with
all but one of the strongest links from both categories featuring in the top 5 less than
half the time. This high variability implies that links might be strongly tapping into
the ever-changing news cycle, which focuses on transient scoops and stories while con-
sistently making time for oil, gas, and food production. The post-Covid-19 results
in Figure 7 are a lot more straightforward to interpret, with pandemic-related nodes
making up 14 of the 18 links (top 6 links for each of the 3 metrics) on display. The
pandemic’s impact on population mortality rates, world GDP, food production, and
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Figure 6: Top six links by (a) edge weight, (b) edge betweenness, and (c) cluster
dominance over the 112 weeks between January 2018 and February 2020.

Figure 7: Top six links by (a) edge weight, (b) edge betweenness, and (c) cluster
dominance over the 98 weeks between March 2020 and January 2022.

capital markets clearly dominate all three metrics. Studying these links also highlights
the pandemic’s connections to the decline of the tourism and hospitality sectors, as
well as the semiconductor supply shortage3 and the cryptocurrency boom4 witnessed

3Howley, D. (2021). These 169 industries are being hit by the global chip shortage, Yahoo Finance,
April 25. Link.

4Locke, T. (2021). From bitcoin hitting $1 trillion in market value to Elon Musk’s dogecoin tweets:
12 key crypto moments from 2021, CNBC, December 27. Link.

https://finance.yahoo.com/news/these-industries-are-hit-hardest-by-the-global-chip-shortage-122854251.html
https://www.cnbc.com/2021/12/27/12-key-moments-that-fueled-cryptos-record-growth-in-2021.html
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Figure 8: Evolution of the number of clusters obtained on a weekly basis.

around the beginning of the pandemic, which are two important events that we could
not detect in Section 3.4. The post-Covid-19 era also sees the top links in the edge
betweenness and cluster dominance categories achieve significantly higher consistency,
which suggests that the news cycle was overwhelmed by the pandemic and its impact
on the world economy.

3.6. Influential clusters
After taking a deep dive into the most influential nodes and links in our network,
it would do us well to take a more comprehensive look at our data through the use
of communities and clustering algorithms. Instead of identifying individual hubs of
interest, clustering allows us to recognize powerful conglomerates of nodes that play an
essential part in the economy. To this end, we again utilize the Leiden algorithm with
γ = 1. Before delving into the structure of these clusters, we first track the number of
generated communities over time between January 2018 and January 2022 in Figure 8.
The figure shows a relatively consistent number of clusters between January 2018 and
February 2020, followed by a sudden explosion around March 2020, which mirrors the
jumps we saw in Figure 1, as well as the shifts in Figures 4 and 5. This is again
indicative of the influx of new nodes attached to the increased activity around the
rapid spread of the virus.
After analyzing the evolution of the number of generated clusters, we can now focus on
understanding their structure and contents. However, one issue that arises with this
novel type of analysis is that of naming the newly formed communities. We opt for
an intuitive strategy that makes direct use of vertex names, particularly their prefixes.
For each cluster, we track the number of vertices belonging to the same prefix inside
the community and name the cluster by the prefix with the most vertices. This should
give us a general idea about prefix hierarchy within each cluster. However, this method
alone fails to account for highly heterogeneous clusters with many competing prefixes.
To deal with these troublesome clusters, we add the caveat that the “dominant” pre-
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fix should account for at least 25% of the cluster’s vertex count, and no other prefix
should achieve that threshold within the same community. Clusters that violate these
conditions will simply be referred to as “No Dominance”. In the case of a single pre-
fix dominating multiple clusters or the formation of many “No Dominance” clusters,
which would yield duplicate cluster names, we order these communities by size (node
count) and bestow the prefix name (or the aforementioned “No Dominance”) on the
most populated cluster. The remaining communities are then given numbered names
(e.g., “No Dominance 1” for the second largest heterogeneous cluster). At each point
in time, we rank clusters by size and sum of edge weights within the cluster. The first
ranking system rewards clusters with powerful hubs and strong magnetic pulls, while
the second favors the existence of important edges within the community. For each
ranking mechanism, we look at the top 5 clusters for each time period and then create
a summarized leaderboard that tracks how many times a cluster featured in said top 5,
divided by the maximum number of features, similarly to how we dealt with our influ-
ential nodes and links. We again split the data into the pre and post-Covid-19 datasets
to address the potential heterogeneity in our datasets. The inner and outer charts of
Figures 9 display the results for the two respective periods. Only clusters achieving
10% or higher are displayed on the piechart, while the legend showcases all relevant
information.

Figure 9: Top 5 clusters by (a) size and (b) sum of weights. The inner chart represents
112 weeks between January 2018 and February 2020, while the outer chart represents
98 weeks between March 2020 and January 2022.

It is clear from the figure that clusters dominated by the USA, world (macro indi-
cators), food products, capital markets, and the oil industry prefixes dominate the
largest clusters in terms of both vertex count and sum of internal edge weights. This
list includes most of the usual suspects when talking about main players in the world
economy. However, China is again a notable absentee, which reflects the unbalanced
nature of the collected data. We study the extent to which the Eastern superpower
makes a tangible impact in our network later on in this section. It is also peculiar



20 World Economy Dynamics

that “No Dominance” clusters were so prevalent at the top in terms of cluster size,
especially in the post-virus era. To elaborate on this interesting observation, we first
find the top node by strength and betweenness centrality inside the 2 most populated
heterogeneous “No Dominance” clusters for each time period, then summarize these
rankings in a similar fashion to what we have done earlier. We also track the top prefix
by node count in each of the two largest “No Dominance” clusters in each time pe-
riod and collate them into a concise ranking similarly to the first 2 metrics. We again
present the results as proportions in the inner and outer circles of Figure 10 for the pre
and post-pandemic eras respectively, and we restrict node names and prefixes on the
chart to those that achieve at least 10%, while the legend shows everything.

Figure 10: Understanding “No dominance” clusters through ranking their nodes by
(a) strength and (b) betweenness centrality and (c) tracking their top prefixes. The
inner chart represents 112 weeks between January 2018 and February 2020, while the
outer chart represents 98 weeks between March 2020 and January 2022.

The figure leaves very little room for doubt about which set of nodes overwhelms the
“No Dominance” clusters. The gold prices vertex consistently tops the strength and
betweenness centrality metrics, and the gold prefix outshines the rest in terms of node
population within these clusters. In fact, it seems that these clusters are mostly cen-
tered around metals, as the “metals” and “steel” prefixes also feature quite heavily in
the prefix rankings. These observations make it quite clear that these expansive clus-
ters assemble closely related industries to create heterogeneous yet logically consistent
communities. On a different note, the tourism revenues vertex and tourism-related
nodes in general establish a decent foothold in the post-virus era, which seems to be
inline with the huge losses the industry suffered as the pandemic shut down travel. The
“No Dominance” clusters, while vague in nature due to their name, seem to have their
own convincing narratives to discover and explore.
Now that we have uncovered the mysteries of the “No Dominance” clusters, we can re-
turn to a more complete study of communities. To this end, we collapse each community
into one node, and construct a new graph using these new aggregated vertices. These
nodes will receive their respective cluster names. This yields nodes that are named
after companies, industries, regions, and countries. To connect these community-
representing vertices, it is sufficient to sum up the weights of connections between
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members of each community, i.e., for two communities indexed by u and v,

ωu,v =
∑
i ̸=j

wij δ(ci, u)δ(cj, v),

will be the weight of the connection between collapsed vertices u and v, where wij is
again the weight of the connection between the original non-collapsed vertices i and
j, and ci is the index of the community containing vertex i. We can then compute
the strength and betweenness centrality of these collapsed vertices and track the top 5
nodes for each period, which leads to a summarized ranking in keeping with our ongoing
trend. The results are collated in the inner and outer circles of Figure 11 for the pre
and post-pandemic eras respectively. We again only display cluster names on the chart
when the 10% threshold is cleared, while the legend requires no such condition.

Figure 11: Cluster rankings by (a) strength and (b) betweenness centrality. The inner
chart represents 112 weeks between January 2018 and February 2020, while the outer
chart represents 98 weeks between March 2020 and January 2022.

The results in the inner chart of Figure 11 are mostly consistent with those in Fig-
ure 9 for the pre-Covid-19 period, with collapsed nodes related to food products, USA,
world, oil and gas, and capital markets dominating both the strength and betweenness
centrality metrics. However, the post-pandemic results in the outer chart of Figure 11
slightly differ from those in Figure 9 in that they allow the pharmaceuticals and edu-
cation “nodes” to shine, which reflects the massive influx of coverage related to these
two sectors after the virus struck. China also barely makes it above the 10% threshold
for the first time in our analysis, which emphasizes the severe understatement of the
country’s role in the world economy.
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3.7. Influential companies
Our study of influential nodes, edges, and clusters is very informative, but also very
broad in nature. It would be interesting to see how the methodologies established in the
earlier subsections can be used to examine a specific subset of economic actors, or even
a single actor. To this end, we choose to take a closer look at companies, as they are
arguably the lifeblood of the world economy. A rather simple but telling approach would
be to rank the top company-related nodes over time. Figure 12 shows the proportion of
times a company-related node managed to break into the top 3 company-related nodes
according to the strength and betweenness centrality criteria.

Figure 12: Company-related node rankings by (a) strength and (b) betweenness cen-
trality. The inner chart represents 112 weeks between January 2018 and February 2020,
while the outer chart represents 98 weeks between March 2020 and January 2022.

The figure sees Amazon demand, revenue, and employment nodes top the charts for
both metrics and both time periods. Apple related nodes also consistently feature in the
rankings for both strength and betweenness centrality, while Microsoft sees much better
representation in the centrality metric, which highlights the company’s pivotal role in
the functioning of the world economy. Notable company mentions include Pfizer and
Astrazeneca, two pharmaceutical companies that were instrumental in the post Covid-
19 era. Studying company-nodes provides some interesting observations about which
firms occupied much of public interest before and after Covid-19. We can supplement
this analysis further by employing the clustering methodologies of Section 3.6 with
a small twist. Instead of tracking a cluster’s size/sum of weights, a very convincing
measure of a company’s magnetic pull would be whether the company managed to
formulate its own cluster, i.e., a company’s nodes took up at least 25% of a cluster’s
constituents. In Figure 13, we showcase the proportion of times a company was able
to attract and dominate its own cluster before and after Covid-19. Again, Amazon
performs rather well before and after March 2020, forming its own cluster more than
50% of the time before the advent of the pandemic, and close to 70% of the time after it.
Facebook, on the other hand, sees underwhelming performance in the first time period,
and then skyrockets to the top after the virus struck. This type of graph also allows
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us to spot more seasonal stories like the Pacific Gas & Electric Company’s (“pg_e” in
panel (a) of the figure) issues with electrical fires in California5. It is also worth noting
that company cluster formation rates increase across the board in the post-pandemic
era, which can be attributed to the influx of new nodes into the network (Figure 1)
brought about by the virus’ impact. However, this influx does not seem to help Pfizer
and Astrazeneca, two of the most relevant companies in the post-pandemic era, to pull
their own clusters enough times to make it into the top 10 companies for that time
period. We study this particular peculiarity at the end of this section.

Figure 13: The proportion of times a company was able to dominate a cluster (a)
between January 2018 and February 2020 and (b) between March 2020 and January
2022. The figure shows the top 10 companies for each period.

Examining Figures 12 and 13 separately yields a coherent view of companies in the
world economy, but it does not tell the full story. In the case of Amazon for example,
there is no guarantee that the top Amazon nodes (demand, revenue, and employment)
from the first figure made it into the clusters showcased in the second figure. In other
words, while an Amazon cluster might indeed exist, it will not necessarily contain the
defining nodes of the global conglomerate, which can cast some doubt on the cluster’s
true influence. To get a more accurate measure of the cluster’s importance, we instead
focus on which clusters housed the top three Amazon nodes over time. To be more
specific, the cluster needs to contain all three nodes to be considered. We use the “split”
designation to denote a time period where the three nodes were spread across multiple
clusters. We also choose to center the analysis around the post-pandemic period, where
node and cluster population is more dense. Figure 14 shows the results, and sees the
Amazon cluster on top again, as it manages to maintain the membership of the top
company nodes around 70% of the time. Other clusters related to air freight logistics,

5Associate Press (2021). PG&E Is Charged With Manslaughter In A California Wildfire That
Killed 4, National Public Radio, September 24. Link.

https://www.npr.org/2021/09/24/1040630538/pacific-gas-electric-manslaughter-charges-california-wildfire-zogg
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IT, and not surprisingly, cryptocurrency, contribute in very diminished amounts. The
latter can be attributed to the fact that multiple news reports came out tying Amazon
to a crypto token release, but none of them have materialized thus far.
We can do a similar analysis for the notable abscentees from the clusters in panel (b)
of Figure 13, Astrazeneca and Pfizer. We again focus on the post-pandemic period,
and target their most influential nodes: usage, production, and risk for Astrazeneca,
and only the latter two for Pfizer, as seen in panel (a) of Figure 12. Figure 15 displays
the results, and sees the two companies’ most relevant nodes get absorbed into the
overarching pharmaceuticals cluster. This implies that even though the two companies
were extremely influential during the struggle against Covid-19, they were still viewed
by the media as a global collection of pharmaceutical companies, sometimes referred
to as “big pharma” (in a derogatory manner).

Figure 14: The proportion of times the three main Amazon nodes were placed into
the same cluster between March 2020 and January 2022. The figure shows the top 5
clusters in terms of proportion.

4. Discussion
In this article, we studied the Western media’s view of the world economy through
network data and graph theory techniques. In Section 3.4, we examined the most
influential nodes, or economic actors, in our networks over time through the use of the
strength, betweenness centrality, and the novel cluster dominance metrics. The results
clearly favor nodes like world GDP, food production, capital markets, and oil and gas
prices. However, all these powerful nodes get eclipsed by the spectre of the world and
USA pandemic nodes, as the latter two managed to establish an indomitable chokehold
on the world economy at alarming speeds. Section 3.5 studied influential links within
our dynamic networks, and found interesting connections between food, oil and gas, and
world (macro) related nodes in the pre-pandemic era. However, these links again take a
backseat to the connections formed around the pandemic nodes, specifically those that
relate to the pandemic’s severe repercussions on population mortality rates, world GDP,
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Figure 15: The proportion of times the main (a) Astrazeneca and (b) Pfizer nodes
were placed into the same cluster between March 2020 and January 2022. “Split” refers
to situations where not all nodes were placed into the same cluster. The figure shows
the top 5 clusters in terms of proportion for each company.

food production, capital markets, and the tourism industry, to name a few. Section 3.6
attempted to unravel the inner workings of community formation within our dynamic
graphs through a study of the clustering outcomes of the Leiden algorithm. Using a
fairly intuitive rule to name clusters, we found that communities dominated by USA,
world, oil and gas, and capital markets consistently topped the charts in terms of cluster
size and sum of internal edge weights. However, we also saw a decent chunk of data
get pulled into “no dominance” clusters, the study of which revealed that one of the
main culprits for this phenomenon is none other than gold prices. Section 3.7 focused
the analysis to companies. A study of the most prominent company-related nodes saw
Amazon and Apple nodes perform rather consistently before and after the advent of
the pandemic. Production, usage, and risk nodes attributed to Astrazeneca and Pfizer
experienced a rapid rise to prominence in the pandemic era, which was warranted given
their influence on the evolution and containment of the virus. We then examined these
same companies from a clustering standpoint, and quantified their magnetic pull by
tracking the number of times each company managed to create its own cluster, and
whether that cluster actually contained the company’s most noteworthy nodes. In our
brief analysis, we found that Amazon had no issues forming clusters around its most
powerful vertices, whereas Pfizer and Astrazeneca failed to differentiate themselves
enough from their overarching pharmaceutical ecosystem to warrant the formation of
their own clusters.
Such data has seen limited exploration in applied literature, and we believe that it
hides plenty of untapped potential. While our application focuses on visualizing and
describing the data, our foray into dynamic graphs suggests that temporal networks
might have predictive power as an early warning system. Further research needs to
be dedicated to news-based data of this nature, as these concise yet comprehensive
summaries of expert opinions in Western written media can be key to new relevant
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variables and/or models. Other research directions include studying the unbalanced
nature of the data at hand, especially in regards to China, as well as the impact of
re-introducing directionality into our dynamic networks.

Computational Details
The results in this paper were obtained using R 4.2.1, Gephi, and SigmaJS. R it-
self and all packages used are available from the Comprehensive R Archive Network
(CRAN) at https://CRAN.R-project.org/. Gephi can be downloaded from https:
//gephi.org/, and SigmaJS is available at https://www.sigmajs.org/. All relevant
code and data can be found in the Github repository: https://github.com/ya-tls/
world-economy-dynamics.
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