Journal of Data Science,
Statistics, and Visualisation

Robust Model-Based Clustering

Authors

  • Juan Domingo Gonzalez Acoustic Propagation Department, UNIDEF-CONICET
  • Ricardo A. Maronna Universidad de Buenos Aires
  • Victor J. Yohai Universidad de Buenos Aires
  • Ruben H. Zamar University of British Columbia

DOI:

https://doi.org/10.52933/jdssv.v2i6.47

Keywords:

mixture models, EM–algorithm, scatter S–estimators

Abstract

We propose a class of Fisher-consistent robust estimators for mixture models. These estimators are then used to build a robust model-based clustering procedure. We study in detail the case of multivariate Gaussian mixtures and propose an algorithm, similar to the EM algorithm, to compute the proposed estimators and build the robust clusters. An extensive Monte Carlo simulation study shows that our proposal outperforms other robust and non robust, state of the art, model-based clustering procedures. We apply our proposal to a real data set and show that again it outperforms alternative procedures.

Author Biographies

Juan Domingo Gonzalez, Acoustic Propagation Department, UNIDEF-CONICET

Data Scientist

Acoustic Propagation Department, UNIDEF-CONICET

Ricardo A. Maronna, Universidad de Buenos Aires

Professor at the Master of Statistics

Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires

 

Victor J. Yohai, Universidad de Buenos Aires

Professor of Statistics

Departamento de Matematica

Facultad de Ciencias Exactas y Naturales

Universidad de Buenos Aires

Downloads

Published

2022-10-06

How to Cite

Gonzalez, J. D., Maronna, R., Yohai, V., & Zamar, R. (2022). Robust Model-Based Clustering. Journal of Data Science, Statistics, and Visualisation, 2(6). https://doi.org/10.52933/jdssv.v2i6.47
Journal of Data Science,
Statistics, and Visualisation
Pages